1
|
Marques BDS, de Andrade KN, Peixoto BP, Dos Santos FM, Pedrosa LF, Fiorot RG, Costa de Souza M. Sequential nucleophilic aromatic substitutions on cyanuric chloride: synthesis of BODIPY derivatives and mechanistic insights. Org Biomol Chem 2024; 22:5987-5998. [PMID: 38989906 DOI: 10.1039/d4ob00683f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Herein we report a study on the sequential substitution of different nucleophiles on cyanuric chloride to obtain potential candidates for metal sensors (5a-c). The set of nucleophiles on the 1,3,5-triazine ring includes a phenolic BODIPY, an aminoalkyl pyridine and aminoalkyl phosphoramidates, each one designed to play a specific role in the final fluoroionophore. Three new triazine triads were synthesized in similar yields: 5a (45%), 5b (43%) and 5c (52%) after a methodical sequential combination of the nucleophiles via thermodependent nucleophilic aromatic substitution of the three chlorine atoms of cyanuric chloride. To ratify the synthetic results we simulated the reaction mechanisms for the different nucleophiles, aiming to address the distinctive orthogonality and temperature control inherent in this process, identifying and providing a sound rationale for any preferential sequence of nucleophiles inserted into the triazine core. According to our experimental and computational analysis (thermo- and kinetic preferences), we have identified the following preferential order for the sequential substitution: p-hydroxybenzaldehyde > 2-(pyridin-2-yl)ethanamine > aminoalkyl phosphoramidate, indicating that all steps follow a single-step process (concerted) in two stages, where nucleophilic addition precedes leaving group dissociation. The Meisenheimer σ-complex was identified as a transition state structure, with insufficient stability to exist as an intermediate. We observed a consistent and progressive increase in barrier height: 2-8 kcal mol-1 for the first step, 9-15 kcal mol-1 for the second step, and >15 kcal mol-1 for the third substitution. These findings align with the experimental observation of thermodependency in the sequential substitution.
Collapse
Affiliation(s)
- Bruno da Silva Marques
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil.
| | - Karine Nascimento de Andrade
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil.
| | - Bárbara Pereira Peixoto
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil.
| | - Fernando Martins Dos Santos
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil.
| | - Leandro Ferreira Pedrosa
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil.
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal Fluminense, 27213-145, Volta Redonda, RJ, Brazil
| | - Rodolfo Goetze Fiorot
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil.
| | - Marcos Costa de Souza
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil.
| |
Collapse
|
2
|
Cao R, Zhang M, Tang W, Wu J, Wang M, Niu X, Liu Z, Hao F, Xu H. A Novel D-π-A Type Fluorescent Probe for Cu 2+ Based on Styryl-Pyridinium Salts Conjugating Di-(2-picolyl)amine (DPA) Units. J Fluoresc 2023:10.1007/s10895-023-03151-0. [PMID: 36787040 DOI: 10.1007/s10895-023-03151-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/13/2023] [Indexed: 02/15/2023]
Abstract
A novel D-π-A type fluorescent probe L(NO3) for Cu (II) sensing was designed and fully characterized. The probe consists of a styryl-pyridine cation fluorescent group and a di-(2-picolyl)amine (DPA) receptor unit, which are linked by a phenyl group to form an electron donor-π-acceptor (D-π-A) conjugate system, especially the introduction of a nitrate counter anion for significantly enhanced water solubility of the probe. Fluorescence titration studies of the probe L(NO3) showed a higher selectivity for Cu2+ than other metal ions, and the emission spectrum was strongly quenched upon binding. The competitive binding assay and the low detection limit (0.932 µM) showed that the probe L(NO3) had strong anti-interference ability and excellent Cu2+ detection performance. The binding ratio of probe L(NO3) and Cu2+ was determined from Job's plot to be 1:1, which is consistent with the results obtained from X-ray crystal structures. Meanwhile, the probe showed instantaneous chemical reversibility when titrated with EDTA solution, indicating potential recycling properties of the probe. In addition, the design of inexpensive fluorescent test strips can perform the on-site and real-time detection Cu2+ with a color recognition application.
Collapse
Affiliation(s)
- Rui Cao
- School of Chemistry and Materials Engineering, Fuyang Normal University, Anhui, 236037, Fuyang, People's Republic of China
| | - Mengyu Zhang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Anhui, 236037, Fuyang, People's Republic of China
| | - Wen Tang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Anhui, 236037, Fuyang, People's Republic of China
| | - Jing Wu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Anhui, 236037, Fuyang, People's Republic of China
| | - Meixiang Wang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Anhui, 236037, Fuyang, People's Republic of China
| | - Xiaoxiao Niu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Anhui, 236037, Fuyang, People's Republic of China
| | - Zhaodi Liu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Anhui, 236037, Fuyang, People's Republic of China.
| | - Fuying Hao
- School of Chemistry and Materials Engineering, Fuyang Normal University, Anhui, 236037, Fuyang, People's Republic of China
| | - Huajie Xu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Anhui, 236037, Fuyang, People's Republic of China.
| |
Collapse
|
3
|
Liu G, Xia N, Tian L, Sun Z, Liu L. Progress in the Development of Biosensors Based on Peptide-Copper Coordination Interaction. BIOSENSORS 2022; 12:bios12100809. [PMID: 36290946 PMCID: PMC9599103 DOI: 10.3390/bios12100809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 05/17/2023]
Abstract
Copper ions, as the active centers of natural enzymes, play an important role in many physiological processes. Copper ion-based catalysts which mimic the activity of enzymes have been widely used in the field of industrial catalysis and sensing devices. As an important class of small biological molecules, peptides have the advantages of easy synthesis, excellent biocompatibility, low toxicity, and good water solubility. The peptide-copper complexes exhibit the characteristics of low molecular weight, high tenability, and unique catalytic and photophysical properties. Biosensors with peptide-copper complexes as the signal probes have promising application prospects in environmental monitoring and biomedical analysis and diagnosis. In this review, we discussed the design and application of fluorescent, colorimetric and electrochemical biosensors based on the peptide-copper coordination interaction.
Collapse
Affiliation(s)
- Gang Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450052, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
- Correspondence: (N.X.); (L.L.)
| | - Linxu Tian
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Zhifang Sun
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
- Correspondence: (N.X.); (L.L.)
| |
Collapse
|
4
|
Nie W, Yang J, Wu J, Hu L. Synthesis and photophysical properties of vice-like 1,8-naphthalimide fluorescent sensor for sensitive detection of Mn2+ and Zn2+. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Rosental M, Coldman RN, Moro AJ, Angurell I, Gomila RM, Frontera A, Lima JC, Rodríguez L. Using Room Temperature Phosphorescence of Gold(I) Complexes for PAHs Sensing. Molecules 2021; 26:molecules26092444. [PMID: 33922155 PMCID: PMC8122727 DOI: 10.3390/molecules26092444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 11/23/2022] Open
Abstract
The synthesis of two new phosphane-gold(I)–napthalimide complexes has been performed and characterized. The compounds present luminescent properties with denoted room temperature phosphorescence (RTP) induced by the proximity of the gold(I) heavy atom that favors intersystem crossing and triplet state population. The emissive properties of the compounds together with the planarity of their chromophore were used to investigate their potential as hosts in the molecular recognition of different polycyclic aromatic hydrocarbons (PAHs). Naphthalene, anthracene, phenanthrene, and pyrene were chosen to evaluate how the size and electronic properties can affect the host:guest interactions. Stronger affinity has been detected through emission titrations for the PAHs with extended aromaticity (anthracene and pyrene) and the results have been supported by DFT calculation studies.
Collapse
Affiliation(s)
- Marian Rosental
- Department of Inorganic and Organic Chemistry, Inorganic Chemistry Section, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; (M.R.); (R.N.C.); (I.A.)
- Institute of Inorganic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Richard N. Coldman
- Department of Inorganic and Organic Chemistry, Inorganic Chemistry Section, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; (M.R.); (R.N.C.); (I.A.)
| | - Artur J. Moro
- LAQV-REQUIMTE, Departamento de Química, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.J.M.); (J.C.L.)
| | - Inmaculada Angurell
- Department of Inorganic and Organic Chemistry, Inorganic Chemistry Section, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; (M.R.); (R.N.C.); (I.A.)
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Rosa M. Gomila
- Serveis Científico Tècnics, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Baleares, Spain;
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Baleares, Spain;
| | - João Carlos Lima
- LAQV-REQUIMTE, Departamento de Química, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.J.M.); (J.C.L.)
| | - Laura Rodríguez
- Department of Inorganic and Organic Chemistry, Inorganic Chemistry Section, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; (M.R.); (R.N.C.); (I.A.)
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
- Correspondence:
| |
Collapse
|