1
|
Zhao D, Yan Z, Xiao X. Peroxidase-mimetic carbon dot based nanozyme hydrogel colorimetric sensor for visual trichlorfon detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 336:126027. [PMID: 40120458 DOI: 10.1016/j.saa.2025.126027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/22/2025] [Accepted: 03/08/2025] [Indexed: 03/25/2025]
Abstract
Organophosphorus pesticide residues pose considerable threats to the environment and public health and have become a global concern. This paper reports the development of a visual sensing platform for the detection of trichlorfon based on a carbon-based nanozyme (abbreviated as Fe-CDs) with peroxidase-mimetic catalytic activity in conjunction with acetylcholinesterase (AChE). The peroxide-mimetic enzyme activity of Fe-CDs can be inhibited by sulfhydryl (-SH) compounds, and AChE can decompose thiocholine (ATCh) to produce -SH-containing thiocholine (TCh), leading to the inability of Fe-CDs to oxidise 3,3',5,5'-tetramethylbenzidine (TMB) to turn the solution blue, while trichlorfon can inhibit the activity of AChE, thereby recovering the blue colour. This platform achieves sensitive detection of trichlorfon with a linear range of 200-50,000 pM and a detection limit of 157.57 pM and has been successfully applied to the detection of trichlorfon in Chinese cabbage. In addition, encapsulating Fe-CDs, ATCh and TMB in sodium alginate hydrogels and using a smartphone and colour analysis software, a colorimetric hydrogel portable kit is developed, realising the simple and rapid detection of the trichlorfon residue in real samples. This study provides a direct, simple and rapid strategy for the detection of trichlorfon in agricultural products and offers a potential on-site detection tool for food safety monitoring.
Collapse
Affiliation(s)
- Dan Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Zewen Yan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Xincai Xiao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China.
| |
Collapse
|
2
|
Yadav M, Sangwan A, Mahapatra R, Bhardwaj N, Mondal K, Patra D. Enzyme-Instructed Interfacial Jamming of Pillar[5]arenes for Macroscopic Signal Amplification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2323-2330. [PMID: 39844780 DOI: 10.1021/acs.langmuir.4c03984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Enzyme-instructed signal generation at liquid-liquid interfaces presents a novel strategy for controlling and detecting biochemical processes on macroscopic scales. Here, we explore the self-assembly and jamming of pillar[5]arene (P[5]A) derivatives at the oil-water interface via a copper-mediated "click" reaction, providing a versatile platform for generating observable signals. The formation of a pillar[5]arenes network at the droplet interface reduces interfacial tension, allowing droplets to adopt various nonequilibrium shapes based on the interfacial jamming process. By varying concentrations of P[5]A derivatives and ascorbic acid (AA), we fine-tune the surface coverage of droplets, offering control over the jamming dynamics. Additionally, we introduce a signal amplification mechanism where the dephosphorylation of a dormant reductant by alkaline phosphatase (ALP) triggers the "click" reaction at the interface. This system enables the quantification of ALP activity through macroscopic surface changes with inhibition of ALP by heavy metals and metal chelators reducing surface coverage. This approach represents a promising method for amplifying molecular signals into detectable macroscopic outputs with potential applications in biochemical sensing and materials science.
Collapse
Affiliation(s)
- Mohit Yadav
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Anvi Sangwan
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Reek Mahapatra
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Nidhi Bhardwaj
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Kaushik Mondal
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Debabrata Patra
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| |
Collapse
|
3
|
Saldaña-Ahuactzi Z, Gómez-Montaño FJ, Morales-Chávez J, Salinas RA, Reyes-Betanzo C, Rojas-López M, Dutt A, Orduña-Díaz A. Advancing foodborne pathogen detection: a review of traditional and innovative optical and electrochemical biosensing approaches. Mikrochim Acta 2025; 192:102. [PMID: 39843762 DOI: 10.1007/s00604-024-06924-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025]
Abstract
Foodborne diseases are a significant cause of morbidity (600 million cases) and mortality (420,000 deaths) worldwide every year and are mainly associated with pathogens. Besides the direct effects on human health, they have relevant concerns related to financial, logistics, and infrastructure for the food and medical industries. The standard pathogen identification techniques usually require a sample enrichment step, plating, isolation, and biochemical tests. This process involves specific facilities, a long-time analysis procedures, and skilled personnel. Conversely, biosensors are an emerging innovative approach to detecting pathogens in real time due to their portability, specificity, sensitivity, and low fabrication costs. These advantages can be achieved from the synergistic work between nanotechnology, materials science, and biotechnology for coupling biomolecules in nano-matrices to enhance biosensing performance. This review highlights recent advancements in electrochemical and optical biosensing techniques for detecting bacteria and viruses. Key properties, such as detection limits, are examined, as they depend on factors like the design of the biorecognition molecule, the type of transducer, the target's characteristics, and matrix interferences. Sensitivity levels reported range from 1 to 1 × 10⁸ CFU/mL, with detection times spanning 10 min to 8 h. Additionally, the review explores innovative approaches, including biosensors capable of distinguishing between live and dead bacteria, multimodal sensing, and the simultaneous detection of multiple foodborne pathogens - emerging trends in biosensor development.
Collapse
Affiliation(s)
- Zeus Saldaña-Ahuactzi
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, 90700, Tlaxcala, México.
| | - Francisco Javier Gómez-Montaño
- Instituto Tecnológico Superior de San Martín Texmelucan. Camino a Barranca de Pesos S/N., San Martín Texmelucan, 74120, Puebla, México
| | | | - Rafael A Salinas
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico City, México
| | - Claudia Reyes-Betanzo
- Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro # 1, Tonantzintla, 72840, Puebla, México
| | - Marlon Rojas-López
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, 90700, Tlaxcala, México
| | - Ateet Dutt
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico City, México
| | - Abdú Orduña-Díaz
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, 90700, Tlaxcala, México.
| |
Collapse
|
4
|
Wu W, Yan Y, Xie M, Liu Y, Deng L, Wang H. A critical review on metal organic frameworks (MOFs)-based sensors for foodborne pathogenic bacteria detection. Talanta 2025; 281:126918. [PMID: 39305763 DOI: 10.1016/j.talanta.2024.126918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
The pervasive threat of foodborne pathogenic bacteria necessitates advancements in rapid and reliable detection methods. Traditional approaches suffer from significant limitations including prolonged processing times, limited sensitivity and specificity. This review comprehensively examines the integration of metal organic frameworks (MOFs) with sensor technologies for the enhanced detection of foodborne pathogens. MOFs, with their unique properties such as high porosity, tunable pore sizes, and ease of functionalization, offer new avenues for sensor enhancement. This paper provides a comprehensive analysis of recent developments in MOFs-based sensors, particularly focusing on electrochemical, fluorescence, colorimetric, and surface-enhanced Raman spectroscopy sensors. We have provided a detailed introduction for the operational principles of these sensors, highlighting the role of MOFs play in enhancing their performance. Comparative analyses demonstrate MOFs' superior capabilities in enhancing signal response, reducing response time, and expanding detection limits. This review culminates in presenting MOFs as transformative materials in the detection of foodborne pathogens, paving the way for their broader application in ensuring food safety.
Collapse
Affiliation(s)
- Wenbo Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Yueling Yan
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Maomei Xie
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Yidan Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Liyi Deng
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Haixia Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for TCM, Tianjin, 301617, China; State Key Laboratory of Chinese Medicine Modernization, Tianjin University of TCM, Tianjin, 301617, China.
| |
Collapse
|
5
|
Laliwala A, Pant A, Svechkarev D, Sadykov MR, Mohs AM. Advancements of paper-based sensors for antibiotic-resistant bacterial species identification. NPJ BIOSENSING 2024; 1:17. [PMID: 39678719 PMCID: PMC11645268 DOI: 10.1038/s44328-024-00016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024]
Abstract
Evolution of antimicrobial-resistant bacterial species is on a rise. This review aims to explore the diverse range of paper-based platforms designed to identify antimicrobial-resistant bacterial species. It highlights the most important targets used for sensor development and examines the applications of nanosized particles used in paper-based sensors. This review also discusses the advantages, limitations, and applicability of various targets and detection techniques for sensing drug-resistant bacterial species using paper-based platforms.
Collapse
Affiliation(s)
- Aayushi Laliwala
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6858 USA
- Present Address: Department of Radiology, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Ashruti Pant
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6858 USA
| | - Denis Svechkarev
- Department of Chemistry, University of Nebraska at Omaha, Omaha, NE 68182-0109 USA
| | - Marat R. Sadykov
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198-5900 USA
| | - Aaron M. Mohs
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6858 USA
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5900 USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-6858 USA
| |
Collapse
|
6
|
Kumar A, Islam MR, Zughaier SM, Chen X, Zhao Y. Precision classification and quantitative analysis of bacteria biomarkers via surface-enhanced Raman spectroscopy and machine learning. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124627. [PMID: 38880073 DOI: 10.1016/j.saa.2024.124627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/19/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
The SERS spectra of six bacterial biomarkers, 2,3-DHBA, 2,5-DHBA, Pyocyanin, lipoteichoic acid (LTA), Enterobactin, and β-carotene, of various concentrations, were obtained from silver nanorod array substrates, and the spectral peaks and the corresponding vibrational modes were identified to classify different spectra. The spectral variations in three different concentration regions due to various reasons have imposed a challenge to use classic calibration curve methods to quantify the concentration of biomarkers. Depending on baseline removal strategy, i.e., local or global baseline removal, the calibration curve differed significantly. With the aid of convolutional neural network (CNN), a two-step process was established to classify and quantify biomarker solutions based on SERS spectra: using a specific CNN model, a remarkable differentiation and classification accuracy of 99.99 % for all six biomarkers regardless of the concentration can be achieved. After classification, six regression CNN models were established to predict the concentration of biomarkers, with coefficient of determination R2 > 0.97 and mean absolute error (MAE) < 0.27. The feature of important calculations indicates the high classification and quantification accuracies were due to the intrinsic spectral features in SERS spectra. This study showcases the synergistic potential of SERS and advanced machine learning algorithms and holds significant promise for bacterial infection diagnostics.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA
| | - Md Redwan Islam
- School of Computing, The University of Georgia, Athens, GA 30602, USA
| | - Susu M Zughaier
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, P.O. Box 2731, Qatar
| | - Xianyan Chen
- Department of Statistics, The University of Georgia, Athens, GA 30602, USA
| | - Yiping Zhao
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
7
|
Chen CH, Liang HH, Wang CC, Yang YT, Lin YH, Chen YL. Unlocking early detection of Alzheimer's disease: The emerging role of nanomaterial-based optical sensors. J Food Drug Anal 2024; 32:296-324. [PMID: 39636776 PMCID: PMC11464041 DOI: 10.38212/2224-6614.3520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/24/2024] [Indexed: 12/07/2024] Open
Abstract
Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disorder that affects millions of individuals worldwide. Researchers have conducted numerous studies to find accurate biomarkers for early AD diagnosis and develop more effective treatments. The main pathological hallmarks of AD are amyloid beta and Tau proteins. Other biomarkers, such as DNA, RNA, and proteins, can also be helpful in early AD diagnosis. To diagnose and treat AD promptly, it is essential to accurately measure the concentration of biomarkers in the cerebrospinal fluid or blood. However, due to the low concentrations of these biomarkers in the body, highly sensitive analytical techniques are required. To date, sensors have become increasingly important due to their high sensitivity, swift detection, and adaptable manipulation features. These qualities make them an excellent substitute for conventional instruments. Nanomaterials are commonly employed in sensors to amplify signals and improve sensitivity. This review paper summarized the integration of nanomaterials in optical sensor systems, including colorimetric, fluorescent, and surface-enhanced Raman scattering sensors for AD biomarkers detection.
Collapse
Affiliation(s)
- Chun-Hsien Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378,
Taiwan
| | - Hsin-Hua Liang
- School of Pharmacy, China Medical University, Taichung 406040,
Taiwan
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621301,
Taiwan
- Center for Nano Bio-Detection, National Chung Cheng University, Chiayi 621301,
Taiwan
| | - Chun-Chi Wang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378,
Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378,
Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807378,
Taiwan
| | - Yi-Ting Yang
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621301,
Taiwan
| | - Yi-Hui Lin
- School of Pharmacy, China Medical University, Taichung 406040,
Taiwan
| | - Yen-Ling Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378,
Taiwan
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621301,
Taiwan
- Center for Nano Bio-Detection, National Chung Cheng University, Chiayi 621301,
Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378,
Taiwan
| |
Collapse
|
8
|
Das T, Das S, A BC. Fabrication of a Label-Free Immunosensor Using Surface-Engineered AuPt@GQD Core-Shell Nanocomposite for the Selective Detection of Trace Levels of Escherichia coli from Contaminated Food Samples. ACS Biomater Sci Eng 2024; 10:4018-4034. [PMID: 38816970 DOI: 10.1021/acsbiomaterials.4c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Fabrication of label-free immunosensors is highly necessitated due to their simplicity, cost-effectiveness, and robustness. Herein, we report the facile development of a label-free, direct, rapid, capacitive immunosensor for ultrasensitive and rapid recognition of trace levels of Escherichia coli from contaminated food samples. This was achieved using gold platinum core-shell nanoparticles loaded with graphene quantum dots (AuPt@GQDs) that were utilized as electrode modifiers. The incorporation of GQDs to the surface of AuPt core-shell nanoparticles was performed using the "greener" probe-sonication method. The electrochemical properties of AuPt@GQDs, determined using cyclic voltammetry and electrochemical impedance spectroscopy, suggested the optimized loading concentration of AuPt to be 0.05% in the core-shell nanocomposite to exhibit the highest current response. Furthermore, immobilization of anti-E. coli monoclonal antibodies (anti-E. coli mAb) onto the surface of modified electrodes was performed using amine coupling. The high specific binding of E. coli cells onto the surface of the immuno-electrode was measured as a direct function of change in transient capacitance with time that was measured at low and high frequencies. The resultant immunosensor (bovine serum albumin/anti-E. coli mAb/AuPt0.05@GQDs/FTO) demonstrated a detection range (5 to 4.5 × 103 cells/mL), with the detection limit as low as 1.5 × 102 cells/mL, and an excellent sensitivity ∼171,281.40 μF-1 mL cells-1 cm-2 without the use of any labels (R2-0.99). These findings were further verified using real sample analysis wherein the immuno-electrode demonstrated outstanding sensitivity, the highest noticed so far. More interestingly, the high resuability ∼48 weeks (RSD-5.92%) and excellent reproducibility in detection results (RSD ∼ 9.5%) testify its potential use in a clinical setting. The results reveal the usefulness of the surface-engineered AuPt@GQDs core-shell nanocomposite as an electrode modifier that can be used for the development of newer on-site monitoring devices to estimate trace levels of pathogens present as contaminants in food samples.
Collapse
Affiliation(s)
- Tushar Das
- Department of Chemistry, National Institute of Technology Patna, Bihar 800005, India
| | - Subrata Das
- Department of Chemistry, National Institute of Technology Patna, Bihar 800005, India
| | - Betty C A
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400085, India
| |
Collapse
|
9
|
Li L, Zhang J, Jiao Z, Zhou X, Ren L, Wang M. Seamless Integration of Rapid Separation and Ultrasensitive Detection for Complex Biological Samples Using Multistage Annular Functionalized Carbon Nanotube Arrays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312518. [PMID: 38354403 DOI: 10.1002/adma.202312518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/13/2024] [Indexed: 02/16/2024]
Abstract
Efficient separation, enrichment, and detection of bacteria in diverse media are pivotal for identifying bacterial diseases and their transmission pathways. However, conventional bacterial detection methods that split the separation and detection steps are plagued by prolonged processing times. Herein, a multistage annular functionalized carbon nanotube array device designed for the seamless integration of complex biological sample separation and multimarker detection is introduced. This device resorts to the supersmooth fluidity of the liquid sample in the carbon nanotubes interstice through rotation assistance, achieving the ability to quickly separate impurities and capture biomarkers (1 mL sample cost time of 2.5 s). Fluid dynamics simulations show that the reduction of near-surface hydrodynamic resistance drives the capture of bacteria and related biomarkers on the functionalized surface of carbon nanotube in sufficient time. When further assembled as an even detection device, it exhibited fast detection (<30 min), robust linear correlation (101-107 colony-forming units [CFU] mL-1, R2 = 0.997), ultrasensitivity (limit of detection = 1.7 CFU mL-1), and multitarget detection (Staphylococcus aureus, extracellular vesicles, and enterotoxin proteins). Collectively, the material and system offer an expanded platform for real-time diagnostics, enabling integrated rapid separation and detection of various disease biomarkers.
Collapse
Affiliation(s)
- Lihuang Li
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Jialing Zhang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhengqi Jiao
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Xi Zhou
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Lei Ren
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
- State Key Lab of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| | - Miao Wang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
10
|
Wen Z, Yu J, Jeong H, Kim DU, Yang JY, Hyun KA, Choi S, Park S, Jung HI. An all-in-one platform to deplete pathogenic bacteria for rapid and safe enrichment of plant-derived extracellular vesicles. LAB ON A CHIP 2023; 23:4483-4492. [PMID: 37750717 DOI: 10.1039/d3lc00585b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Plant-derived extracellular vesicles (PDEVs) have exhibited several advantages, such as high biocompatibility, improvement of skin conditions, and the prevention of skin aging. However, traditional methods of extraction for plant substances, such as heating under reflux or solvent extraction, are complicated, time-consuming, and low in purity. Accordingly, a simple and efficient platform is necessary for purely isolating natural substances from plants. In this study, we report a newly designed platform for removing impurities to purify PDEVs. The proposed platform comprises three parts: (i) inflow of samples, (ii) depletion of impurities, and (iii) collection of PDEVs. The platform is designed to flow from top to bottom using gravity without the need for electric components. The platform allows the delimitation of impurities, such as the pathogenic bacteria in PDEVs, by capturing magnetic beads coated with Concanavalin A (Con A). We validate the practicality of our platform using extracellular vesicles derived from liquorice (LdEVs). Notably, the LdEVs purified using the Con A-coated magnetic beads provide better cell uptake and wound recovery than the commercialized extract LdEVs. This highlights the therapeutic potential of fresh LdEVs purified using our platform, particularly in preventing skin aging. The findings of this study hold significant practical implications for the cosmeceutical and therapeutic field, providing a promising approach for the extraction and purification of natural substances from plants to harness their benefits effectively.
Collapse
Affiliation(s)
- Zhihao Wen
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Jianning Yu
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do, 26493, Republic of Korea
| | - Hyorim Jeong
- The DABOM Inc., 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Dong-Uk Kim
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Ji Yeong Yang
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- The DABOM Inc., 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyung-A Hyun
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Seoyeon Choi
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- The DABOM Inc., 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sunyoung Park
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- The DABOM Inc., 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyo-Il Jung
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- The DABOM Inc., 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
11
|
Fu L, Deng S, Luo Y, Fu Q, Fan Y, Jia L. An ultrasensitive colorimetric biosensor for the detection of Gram-positive bacteria by integrating paper-based enrichment and carbon dot-based selective recognition. Talanta 2023; 265:124920. [PMID: 37451123 DOI: 10.1016/j.talanta.2023.124920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Rapid screening of bacteria by low-cost and eco-friendly material-based approaches is still a major challenge. Herein, a colorimetric biosensor was designed for the ultrasensitive and rapid detection of Gram-positive bacteria. The biosensor exploited polydopamine and polyethyleneimine (PDA-PEI)-modified papers for separating bacteria and carbon dots (CDs) for selective colorimetric detection of Gram-positive bacteria. Noble metal-free CDs can target Gram-positive bacteria by binding with peptidoglycan and possess peroxidase-like activity. Thus, they can avert the step of modifying recognition probes, facilitating biosensor fabrication, and reducing the cost. This biosensor can detect S. aureus as low as 1 cfu mL-1, L. monocytogenes as low as 5 cfu mL-1, and B. subtilis as low as 9 cfu mL-1 within 55 min. In addition, a portable device was constructed to enable convenient and on-site quantitative detection of Gram-positive bacteria. The feasibility of the biosensor was verified by detecting Gram-positive bacteria in eggshell and sausage samples with recoveries ranging from 91.2% to 110%.
Collapse
Affiliation(s)
- Li Fu
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Suqi Deng
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yimin Luo
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Qiang Fu
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yi Fan
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Li Jia
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
12
|
Leite L, Pais V, Bessa J, Cunha F, Relvas C, Ferreira N, Fangueiro R. Prussian Blue Sensor for Bacteria Detection in Personal Protection Clothing. Polymers (Basel) 2023; 15:polym15040872. [PMID: 36850156 PMCID: PMC9962065 DOI: 10.3390/polym15040872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Biological hazards can be defined as substances that endanger the life of any living organism, most notably humans, and are often referred to as biohazards. Along with the use of personal protective equipment (PPE), early detection of contact is essential for the correct management and resolution of a biological threat, as well as lower mortality rates of those exposed. Herein, Prussian blue (PB) was evaluated as a functional compound applied on polyester knits to act as an on-site sensor for bacteria detection. In order to study the best compound concentration for the intended application, polymeric solutions of 0.5, 1 and 2 g/L were developed. The three conditions tested displayed high abrasion resistance (>2000 cycles). The bacterial sensing capacity of the coated knits was assessed in liquid and solid medium, with the functionalised substrates exhibiting the capability of detecting both Gram-positive and Gram-negative bacteria and changing colours from blue to white. Evaluation of water repellence and chemical penetration resistance and repellence was also performed in polyester functionalised with PB 0.5 and 1 g/L. Both knits showed a hydrophobic behaviour and a capacity to resist to penetration of chemicals and level 3 repellence effect for both acid and base chemicals.
Collapse
Affiliation(s)
- Liliana Leite
- Fibrenamics—Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal
- Correspondence: (L.L.); (V.P.)
| | - Vânia Pais
- Fibrenamics—Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal
- Correspondence: (L.L.); (V.P.)
| | - João Bessa
- Fibrenamics—Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal
| | - Fernando Cunha
- Fibrenamics—Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal
| | - Cátia Relvas
- A. Ferreira & Filhos, Rua Amaro de Sousa 408, 4815-901 Caldas de Vizela, Portugal
| | - Noel Ferreira
- A. Ferreira & Filhos, Rua Amaro de Sousa 408, 4815-901 Caldas de Vizela, Portugal
| | - Raul Fangueiro
- Fibrenamics—Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal
- Department of Textile Engineering, University of Minho, 4800-058 Guimarães, Portugal
| |
Collapse
|
13
|
Wang P, Sun H, Yang W, Fang Y. Optical Methods for Label-Free Detection of Bacteria. BIOSENSORS 2022; 12:bios12121171. [PMID: 36551138 PMCID: PMC9775963 DOI: 10.3390/bios12121171] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 05/27/2023]
Abstract
Pathogenic bacteria are the leading causes of food-borne and water-borne infections, and one of the most serious public threats. Traditional bacterial detection techniques, including plate culture, polymerase chain reaction, and enzyme-linked immunosorbent assay are time-consuming, while hindering precise therapy initiation. Thus, rapid detection of bacteria is of vital clinical importance in reducing the misuse of antibiotics. Among the most recently developed methods, the label-free optical approach is one of the most promising methods that is able to address this challenge due to its rapidity, simplicity, and relatively low-cost. This paper reviews optical methods such as surface-enhanced Raman scattering spectroscopy, surface plasmon resonance, and dark-field microscopic imaging techniques for the rapid detection of pathogenic bacteria in a label-free manner. The advantages and disadvantages of these label-free technologies for bacterial detection are summarized in order to promote their application for rapid bacterial detection in source-limited environments and for drug resistance assessments.
Collapse
Affiliation(s)
- Pengcheng Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Hao Sun
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Wei Yang
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yimin Fang
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
14
|
Byzova NA, Zherdev AV, Gorbatov AA, Shevyakov AG, Biketov SF, Dzantiev BB. Rapid Detection of Lipopolysaccharide and Whole Cells of Francisella tularensis Based on Agglutination of Antibody-Coated Gold Nanoparticles and Colorimetric Registration. MICROMACHINES 2022; 13:2194. [PMID: 36557493 PMCID: PMC9784915 DOI: 10.3390/mi13122194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The paper presents development and characterization of a new bioanalytical test system for rapid detection of lipopolysaccharide (LPS) and whole cells of Francisella tularensis, a causative agent of tularemia, in water samples. Gold nanoparticles (AuNPs) coated by the obtained anti-LPS monoclonal antibodies were used for the assay. Their contact with antigen in tested samples leads to aggregation with a shift of absorption spectra from red to blue. Photometric measurements at 530 nm indicated the analyte presence. Three preparations of AuNPs with different diameters were compared, and the AuNPs having average diameter of 34 nm were found to be optimal. The assay is implemented in 20 min and is characterized by detection limits equal to 40 ng/mL for LPS and 3 × 104 CFU/mL for whole cells of F. tularensis. Thus, the proposed simple one-step assay integrates sensitivity comparable with other immunoassay of microorganisms and rapidity. Selectivity of the assay for different strains of F. tularensis was tested and the possibility to choose its variants with the use of different antibodies to distinguish virulent and non-virulent strains or to detect both kinds of F. tularensis was found. The test system has been successfully implemented to reveal the analyte in natural and tap water samples without the loss of sensitivity.
Collapse
Affiliation(s)
- Nadezhda A. Byzova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Alexey A. Gorbatov
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Anton G. Shevyakov
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Sergey F. Biketov
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
15
|
Yoo SM, Jeon YM, Heo SY. Electrochemiluminescence Systems for the Detection of Biomarkers: Strategical and Technological Advances. BIOSENSORS 2022; 12:bios12090738. [PMID: 36140123 PMCID: PMC9496345 DOI: 10.3390/bios12090738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 01/03/2023]
Abstract
Electrochemiluminescence (ECL)-based sensing systems rely on light emissions from luminophores, which are generated by high-energy electron transfer reactions between electrogenerated species on an electrode. ECL systems have been widely used in the detection and monitoring of diverse, disease-related biomarkers due to their high selectivity and fast response times, as well as their spatial and temporal control of luminance, high controllability, and a wide detection range. This review focuses on the recent strategic and technological advances in ECL-based biomarker detection systems. We introduce several sensing systems for medical applications that are classified according to the reactions that drive ECL signal emissions. We also provide recent examples of sensing strategies and technologies based on factors that enhance sensitivity and multiplexing abilities as well as simplify sensing procedures. This review also discusses the potential strategies and technologies for the development of ECL systems with an enhanced detection ability.
Collapse
|