1
|
Wang M, Sun HN, Liu XY, Liu M, Li SS. A sensitive electrochemical biosensor based on Pd@PdPtCo mesoporous nanopolyhedras as signal amplifiers for assay of cardiac troponin I. Bioelectrochemistry 2025; 161:108838. [PMID: 39442495 DOI: 10.1016/j.bioelechem.2024.108838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/25/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Cardiac troponin I (cTnI) has been widely used in clinical diagnosis of acute myocardial infarction (AMI). Herein, a sensitive electrochemical biosensor for cTnI analysis was designed, in which the simple synthesized Pd@PdPtCo mesoporous nanopolyhedras (MNPs) were utilized as signal amplifiers. The mesoporous polyhedral structure of Pd@PdPtCo MNPs endows them with more specific surface area and more active sites, as well as the synergistic effect between multiple metal elements, all of which increase the electrocatalytic performance of Pd@PdPtCo MNPs in efficiently oxidizing hydroquinone (HQ) to benzoquinone (BQ). Experimental results showed that Pd@PdPtCo MNPs had better performance in oxidation of HQ to BQ compared with their corresponding monometallic and bimetallic nanomaterials. With the aid of the interaction between antigens and antibodies, the peak current of HQ to BQ showed an upward trend with increasing concentration of cTnI, thus the quantitative detection of cTnI could be achieved. Under optimal conditions, the biosensor prepared in this work has a wider linear range (1.0 × 10-4-200 ng mL-1) and a lower detection limit (0.031 pg mL-1) than other sensors reported in literatures, coupled by good stability and high sensitivity. More importantly, it also performed well in complex serum environment, proving that the electrochemical sensor has a practical application potential in this field.
Collapse
Affiliation(s)
- Miao Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - He-Nan Sun
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xing-Yu Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Mingjun Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China
| | - Shan-Shan Li
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
2
|
Kumari S, Nehra M, Jain S, Kumar A, Dilbaghi N, Marrazza G, Chaudhary GR, Kumar S. Carbon dots for pathogen detection and imaging: recent breakthroughs and future trends. Mikrochim Acta 2024; 191:684. [PMID: 39432033 DOI: 10.1007/s00604-024-06762-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
As a class of carbon-based nanomaterials, carbon dots (CDs) have gained a lot of interest for a variety of applications. They offer distinctive optical, chemical, and structural characteristics along with favourable attributes such as low cost, availability of abundant functional groups, remarkable chemical inertness, high stability, exceptional biocompatibility, and ecofriendliness. This review discusses synthesis methods, structural characteristics, and surface modifications of CDs, specific for pathogen detection. Furthermore, it delves into the mechanisms that govern the interaction between pathogens and CDs. In addition, the study explores the use of CDs in a number of detection modalities, such as optical, electrochemical, and electrochemiluminescence, emphasising real-time pathogen monitoring. Moreover, both the challenges and opportunities related to the application of CDs-based detection and imaging methods are highlighted in field and clinical contexts.
Collapse
Affiliation(s)
- Sonam Kumari
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh, Chandigarh, 160014, India
| | - Monika Nehra
- Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, 160014, India
| | - Shikha Jain
- Department of Bio-Nanotechnology, College of Biotechnology, CCS Haryana Agricultural University (CCSHAU), Hisar, Haryana, 125004, India
| | - Aman Kumar
- Department of Physics, Punjab Engineering College (Deemed to Be University), Chandigarh, 160012, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Giovanna Marrazza
- Department of Chemistry" Ugo Schiff", University of Florence, Via Della Lastruccia 3, Florence, Sesto Fiorentino, 50019, Italy
| | - Ganga Ram Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh, Chandigarh, 160014, India
| | - Sandeep Kumar
- Department of Physics, Punjab Engineering College (Deemed to Be University), Chandigarh, 160012, India.
| |
Collapse
|
3
|
Zhan Y, Guo J, Hu P, Huang R, Ning J, Bao X, Chen H, Yan Z, Ding L, Shu C. A sensitive analytical strategy of oligonucleotide functionalized fluorescent probes for detection of nusinersen sodium in human serum. Talanta 2024; 275:126153. [PMID: 38692053 DOI: 10.1016/j.talanta.2024.126153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Spinal muscular atrophy (SMA) is a rare autosomal recessive neuromuscular disease. Nusinersen sodium (NS) is the world's first antisense oligonucleotide (ASO) drug for SMA precise targeted therapy. However, the limited half-life of oligonucleotides and their tendency to accumulate in hepatic and renal tissues presented significant challenges for clinical investigation and therapeutic drug monitoring. In this study, we proposed an analytical strategy based on the specific capture of oligonucleotide functionalized fluorescent probes by single stranded binding proteins (SSB) for ultra-sensitive and high-throughput detection of nusinersen sodium in human serum. The magnetic nanoparticles modified with single-strand binding protein (MNPs-SSB) selectively bonded to the red fluorescent quantum dots functionalized with oligonucleotides (RQDs-ssDNA) that were complementary to nusinersen sodium. Upon interaction with nusinersen sodium, RQDs-ssDNA formed a double-stranded complex (RQDs-ssDNA-NS), resulting in enhanced red fluorescence after magnetic separation as it was no longer captured by MNPs-SSB but remained in the supernatant. A quantitative analysis of nusinersen sodium in biological samples was successfully achieved by establishing a relationship between fluorescence intensity and its concentration. The detection signal F/F0 exhibited a linear correlation (R2 = 0.9871) over a wide range from 0.1 nM to 200 nM, with a limit of detection (LOD) of 0.03 nM, demonstrating the high specificity and rapid analysis time (only 30 min). This method provided a novel approach for sensitive, high-throughput, and specific analysis of nusinersen sodium and similar ASO drugs.
Collapse
Affiliation(s)
- Yujuan Zhan
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, 210009, China; Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jingru Guo
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, 210009, China; Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Penghui Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, 210009, China; Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ruiyan Huang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, 210009, China; Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiangyue Ning
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, 210009, China; Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xingyan Bao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, 210009, China; Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Haotian Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, 210009, China; Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zelong Yan
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, 210009, China; Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, 210009, China; Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Chang Shu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, 210009, China; Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
4
|
Wang H, Hang X, Wang H, Peng J, Yu H, Wang L. Label/immobilization-free Cas12a-based electrochemiluminescence biosensor for sensitive DNA detection. Talanta 2024; 275:126114. [PMID: 38631265 DOI: 10.1016/j.talanta.2024.126114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/30/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
Electrochemiluminescence (ECL) is one of the most sensitive techniques in the field of diagnostics. However, they typically require luminescent labeling and electrode surface biological modification, which is a time-consuming and laborious process involving multiple steps and may also lead to low reaction efficiency. Fabricating label/modification-free biosensors has become one of the most attractive parts for simplifying the ECL assays. In this work, the ECL luminophores carbon dots (CDs) were encapsulated in DNA hydrogel in situ by a simple rolling circle amplification (RCA) reaction. Upon binding of the target DNA, active Cas12a induces a collateral cleavage of the hydrogel's ssDNA backbone, resulting in a programmable degradation of the hydrogel and the release of CDs. By directly measuring the released CDs ECL, a simple and rapid label/modification-free detection of the target HPV-16 was realized. It is noted that this method allowed for 0.63 pM HPV-16 DNA detection without any amplification step, and it could take only ∼60 min for a fast test of a human serum sample. These results showed that our label/modification-free ECL biosensor has great potential for use in simple, rapid, and sensitive point-of-care (POC) detection.
Collapse
Affiliation(s)
- Honghong Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Xiaomin Hang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Huiyi Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jiaxin Peng
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Haoming Yu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Li Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
5
|
Salih S. Association of Lipoprotein and Apolipoprotein Ratios With Glycemic Levels in Individuals With Prediabetes: A Case-Control Study. Cureus 2024; 16:e63500. [PMID: 39081429 PMCID: PMC11287781 DOI: 10.7759/cureus.63500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Prediabetes is defined as a hyperglycemic state between normal glucose metabolism and diabetes mellitus. It is also recognized as a predisposing factor for cardiovascular disease. Apolipoprotein is a constituent of lipoproteins, and its ratio levels (ApoB/ApoA1 ratio) are considered an independent risk factor for cardiovascular diseases. This study aimed to evaluate the apolipoprotein ratio (ApoB/ApoA1 ratio) and lipoprotein ratio (low-density lipoprotein cholesterol/high-density lipoprotein cholesterol (LDL-C/HDL-C) ratio) in prediabetes in relation to glycemic levels and establish the association between apolipoprotein and lipoprotein ratios in prediabetic individuals and their glycemic levels. METHODOLOGY A case-control study was conducted among 150 participants, 75 with prediabetes and 75 apparently healthy individuals (with no prediabetes or diabetes), from January 1, 2023 to December 30, 2023. The parameters involved are fasting serum glucose, insulin, blood HbA1c%, HDL-C, LDL-C, apolipoprotein A, apolipoprotein B, and lipoprotein(a) (Lp(a)), measured using different principles. RESULTS Prediabetes was more predominant in males (58.7%), particularly those aged over 40 years (74.7%). The mean Lp(a) (46.18±11.66 mg/dl), LDL-C/HDL-C ratio (1.74±0.96), and ApoB/ApoA ratio (1.10±0.62) were significantly higher among prediabetic individuals. Moreover, these ratios were insignificantly higher in prediabetic individuals with HbA1c level (5.8-6.4%) and fasting glucose level (100-125 mg/dl) than those with lower levels. CONCLUSIONS Prediabetic individuals exhibited a notably elevated average level of Lp(a), as well as increased mean ApoB/ApoA1 ratio and mean LDL-C/HDL-C ratio compared to individuals who were apparently healthy.
Collapse
Affiliation(s)
- Sherwan Salih
- Department of Medical Chemistry, College of Medicine, University of Duhok, Duhok, IRQ
| |
Collapse
|
6
|
Wang H, Liu P, Peng J, Yu H, Wang L. Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) modified metal-organic frameworks boosting carbon dots electrochemiluminescence emission for sensitive miRNA detection. Biosens Bioelectron 2024; 249:116015. [PMID: 38211464 DOI: 10.1016/j.bios.2024.116015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/26/2023] [Accepted: 01/07/2024] [Indexed: 01/13/2024]
Abstract
Highly efficient luminescent materials play an important role in electrochemiluminescence (ECL) biosensing systems. Herein, the poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) modified carbon dots (CDs)/zeolitic imidazolate framework-8 (ZIF-8) compositing metal-organic frameworks (MOFs) materials with excellent luminescence performance were prepared as the ECL emitters for biosensing application. In this novel ternary composites, CDs were used as emitters, ZIF-8 was used as a carrier, and the luminescent performance was finally improved by introducing PEDOT:PSS to improve the conductivity of the nanomaterials. As a result, CDs/PEDOT:PSS/ZIF-8 exhibited an approximately 8 times ECL intensity compared to CDs alone. By further modifying with AuNPs, the enhancement factor reached ≈10 in reference to the individual CDs. After combining with a DNAzyme-based two-cycle target amplification principle, an ECL biosensor was constructed to achieve high-sensitivity detection of miRNA-21 with a detection limit of 50 aM. The biosensor also demonstrated desirable selectivity, excellent stability, and quantitative ability for human serum target detection. Overall, these findings not only provide a promising pathway for high luminous efficiency ECL emitters synthesis, but also provide a platform for ultrasensitive miRNA sensing.
Collapse
Affiliation(s)
- Honghong Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Pengfei Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Jiaxin Peng
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Haoming Yu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Li Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
7
|
Chowdhury NA, Wang L, Gu L, Kaya M. Exploring the Potential of Sensing for Breast Cancer Detection. APPLIED SCIENCES 2023; 13:9982. [DOI: 10.3390/app13179982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Breast cancer is a generalized global problem. Biomarkers are the active substances that have been considered as the signature of the existence and evolution of cancer. Early screening of different biomarkers associated with breast cancer can help doctors to design a treatment plan. However, each screening technique for breast cancer has some limitations. In most cases, a single technique can detect a single biomarker at a specific time. In this study, we address different types of biomarkers associated with breast cancer. This review article presents a detailed picture of different techniques and each technique’s associated mechanism, sensitivity, limit of detection, and linear range for breast cancer detection at early stages. The limitations of existing approaches require researchers to modify and develop new methods to identify cancer biomarkers at early stages.
Collapse
Affiliation(s)
- Nure Alam Chowdhury
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Lulu Wang
- Biomedical Device Innovation Center, Shenzhen Technology University, Shenzhen 518118, China
| | - Linxia Gu
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Mehmet Kaya
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL 32901, USA
| |
Collapse
|
8
|
Mwanza C, Ding SN. Newly Developed Electrochemiluminescence Based on Bipolar Electrochemistry for Multiplex Biosensing Applications: A Consolidated Review. BIOSENSORS 2023; 13:666. [PMID: 37367031 PMCID: PMC10295983 DOI: 10.3390/bios13060666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
Recently, there has been an upsurge in the extent to which electrochemiluminescence (ECL) working in synergy with bipolar electrochemistry (BPE) is being applied in simple biosensing devices, especially in a clinical setup. The key objective of this particular write-up is to present a consolidated review of ECL-BPE, providing a three-dimensional perspective incorporating its strengths, weaknesses, limitations, and potential applications as a biosensing technique. The review encapsulates critical insights into the latest and novel developments in the field of ECL-BPE, including innovative electrode designs and newly developed, novel luminophores and co-reactants employed in ECL-BPE systems, along with challenges, such as optimization of the interelectrode distance, electrode miniaturization and electrode surface modification for enhancing sensitivity and selectivity. Moreover, this consolidated review will provide an overview of the latest, novel applications and advances made in this field with a bias toward multiplex biosensing based on the past five years of research. The studies reviewed herein, indicate that the technology is rapidly advancing at an outstanding purse and has an immense potential to revolutionize the general field of biosensing. This perspective aims to stimulate innovative ideas and inspire researchers alike to incorporate some elements of ECL-BPE into their studies, thereby steering this field into previously unexplored domains that may lead to unexpected, interesting discoveries. For instance, the application of ECL-BPE in other challenging and complex sample matrices such as hair for bioanalytical purposes is currently an unexplored area. Of great significance, a substantial fraction of the content in this review article is based on content from research articles published between the years 2018 and 2023.
Collapse
Affiliation(s)
- Christopher Mwanza
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Chemistry Department, University of Zambia, Lusaka 10101, Zambia
| | - Shou-Nian Ding
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
9
|
Calabria D, Lazzarini E, Pace A, Trozzi I, Zangheri M, Cinti S, Difonzo M, Valenti G, Guardigli M, Paolucci F, Mirasoli M. Smartphone-based 3D-printed electrochemiluminescence enzyme biosensor for reagentless glucose quantification in real matrices. Biosens Bioelectron 2023; 227:115146. [PMID: 36821991 DOI: 10.1016/j.bios.2023.115146] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Three-dimensional (3D) printed electrochemical devices are increasingly used in point-of-need and point-of-care testing. They show several advantages such as simple fabrication, low cost, fast response, and excellent selectivity and sensitivity in small sample volumes. However, there are only a few examples of analytical devices combining 3D-printed electrodes with electrochemiluminescence (ECL) detection, an electrochemical detection principle widely employed in clinical chemistry analysis. Herein, a portable, 3D-printed miniaturized ECL biosensor for glucose detection has been developed, based on the luminol/H2O2 ECL system and employing a two-electrode configuration with carbon black-doped polylactic acid (PLA) electrodes. The ECL emission is obtained by means of a 1.5V AA alkaline battery and detected using a smartphone camera, thus providing easy portability of the analytical platform. The ECL system was successfully applied for sensing H2O2 and, upon coupling the luminol/H2O2 system with the enzyme glucose oxidase, for glucose detection. The incorporation of luminol and glucose oxidase in an agarose hydrogel matrix allowed to produce ECL devices preloaded with the reagents required for the assay, so that the analysis only required sample addition. The ECL biosensor showed an excellent ability to detect glucose up to 5 mmol L-1, with a limit of detection of 60 μmol L-1. The biosensor was also used to analyse real samples (i.e., glucose saline solutions and artificial serum samples) with satisfactory results, thus suggesting its suitability for point-of-care analysis. Coupling with other oxidases could further extend the applicability of this analytical platform.
Collapse
Affiliation(s)
- Donato Calabria
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, I-40126, Bologna, Italy; Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum-University of Bologna, Via Baldassarre Canaccini 12, I-47121, Forlì, Italy
| | - Elisa Lazzarini
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, I-40126, Bologna, Italy
| | - Andrea Pace
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, I-40126, Bologna, Italy
| | - Ilaria Trozzi
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, I-40126, Bologna, Italy
| | - Martina Zangheri
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, I-40126, Bologna, Italy; Interdepartmental Centre for Industrial Agrofood Research (CIRI AGRO), Alma Mater Studiorum - University of Bologna, Via Quinto Bucci 336, I-47521, Cesena, Italy; Interdepartmental Centre for Industrial Research in Advanced Mechanical Engineering Applications and Materials Technology (CIRI MAM), Alma Mater Studiorum-University of Bologna, Viale Risorgimento 2, I-40136, Bologna, Italy
| | - Stefano Cinti
- Department of Pharmacy, University Naples Federico II, Via Domenico Montesano 49, I-80131, Naples, Italy; BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli "Federico II", 80055, Portici, Naples, Italy
| | - Marinella Difonzo
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, I-40126, Bologna, Italy
| | - Giovanni Valenti
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, I-40126, Bologna, Italy
| | - Massimo Guardigli
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, I-40126, Bologna, Italy; Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum-University of Bologna, Via Baldassarre Canaccini 12, I-47121, Forlì, Italy; Interdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum - University of Bologna, Via Sant'Alberto 163, I-48123, Ravenna, Italy
| | - Francesco Paolucci
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, I-40126, Bologna, Italy.
| | - Mara Mirasoli
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, I-40126, Bologna, Italy; Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum-University of Bologna, Via Baldassarre Canaccini 12, I-47121, Forlì, Italy; Interdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum - University of Bologna, Via Sant'Alberto 163, I-48123, Ravenna, Italy.
| |
Collapse
|
10
|
Pourmadadi M, Rajabzadeh-Khosroshahi M, Saeidi Tabar F, Ajalli N, Samadi A, Yazdani M, Yazdian F, Rahdar A, Díez-Pascual AM. Two-Dimensional Graphitic Carbon Nitride (g-C 3N 4) Nanosheets and Their Derivatives for Diagnosis and Detection Applications. J Funct Biomater 2022; 13:204. [PMID: 36412845 PMCID: PMC9680252 DOI: 10.3390/jfb13040204] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 12/14/2022] Open
Abstract
The early diagnosis of certain fatal diseases is vital for preventing severe consequences and contributes to a more effective treatment. Despite numerous conventional methods to realize this goal, employing nanobiosensors is a novel approach that provides a fast and precise detection. Recently, nanomaterials have been widely applied as biosensors with distinctive features. Graphite phase carbon nitride (g-C3N4) is a two-dimensional (2D) carbon-based nanostructure that has received attention in biosensing. Biocompatibility, biodegradability, semiconductivity, high photoluminescence yield, low-cost synthesis, easy production process, antimicrobial activity, and high stability are prominent properties that have rendered g-C3N4 a promising candidate to be used in electrochemical, optical, and other kinds of biosensors. This review presents the g-C3N4 unique features, synthesis methods, and g-C3N4-based nanomaterials. In addition, recent relevant studies on using g-C3N4 in biosensors in regard to improving treatment pathways are reviewed.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
| | | | - Fatemeh Saeidi Tabar
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
| | - Narges Ajalli
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
| | - Amirmasoud Samadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
- Department of Chemical and Biomolecular Engineering, 6000 Interdisciplinary Science & Engineering Building (ISEB), Irvine, CA 92617, USA
| | - Mahsa Yazdani
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran 14179-35840, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of science, University of Zabol, Zabol 538-98615, Iran
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|