Mao Y, Zhou X, Hu W, Yang W, Cheng Z. Dynamic video recognition for cell-encapsulating microfluidic droplets.
Analyst 2024;
149:2147-2160. [PMID:
38441128 DOI:
10.1039/d4an00022f]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Droplet microfluidics is a highly sensitive and high-throughput technology extensively utilized in biomedical applications, such as single-cell sequencing and cell screening. However, its performance is highly influenced by the droplet size and single-cell encapsulation rate (following random distribution), thereby creating an urgent need for quality control. Machine learning has the potential to revolutionize droplet microfluidics, but it requires tedious pixel-level annotation for network training. This paper investigates the application software of the weakly supervised cell-counting network (WSCApp) for video recognition of microdroplets. We demonstrated its real-time performance in video processing of microfluidic droplets and further identified the locations of droplets and encapsulated cells. We verified our methods on droplets encapsulating six types of cells/beads, which were collected from various microfluidic structures. Quantitative experimental results showed that our approach can not only accurately distinguish droplet encapsulations (micro-F1 score > 0.94), but also locate each cell without any supervised location information. Furthermore, fine-tuning transfer learning on the pre-trained model also significantly reduced (>80%) annotation. This software provides a user-friendly and assistive annotation platform for the quantitative assessment of cell-encapsulating microfluidic droplets.
Collapse