1
|
Nurtaza A, Dyussembekova D, Islamova S, Samatova I, Zhanybekova Z, Umirzakova A, Magzumova G, Muranets A, Kakimzhanova A. In Vitro conservation and genetic diversity analysis of rare species Ribes janczewskii. Sci Rep 2024; 14:31117. [PMID: 39730712 DOI: 10.1038/s41598-024-82320-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024] Open
Abstract
Ribes janczewskii is a rare and valuable plant known for its resistance to spring frosts, pests, and diseases. It is used in hybridization to develop resistant currant varieties but is on the verge of extinction, listed in Kazakhstan Red Book. This study developed a micropropagation and slow-growth storage protocol for conservation. Genotypes were identified through DNA barcode analysis (rbcL, ITS, and matK) and sequences uploaded to the National Center for Biotechnology Information database. Genetic diversity was assessed using iPBS primers, generating 98 fragments with 88-94% polymorphic bands. Biochemical analysis of fruits showed vitamin C content from 4.64 to 5.61 mg/100 g, vitamin E from 2.26 to 3.16 mg/100 g, vitamin B5 from 3.18 to 4.93 mg/100 g, and quercetin up to 12.5 mg/100 g. Micropropagation stages were optimized with 12% hydrogen peroxide for surface sterilization, achieving up to 73.3% explant viability. Effective hormonal combinations for in vitro culture included WPM with BAP 0.2 mg L-1 and GA 0.5 mg L-1, and for propagation, BAP 0.25 mg L-1, GA 0.5 mg L-1, and IBA 0.5 mg L-1. Mannitol (20 g L-1) was used for slow-growth storage, keeping explants viable for 4 months without re-cultivation.
Collapse
Affiliation(s)
- Aidana Nurtaza
- National Center for Biotechnology, 13/5, Korgalzhyn Road, 010000, Astana, Kazakhstan
| | - Damira Dyussembekova
- National Center for Biotechnology, 13/5, Korgalzhyn Road, 010000, Astana, Kazakhstan
| | - Symbat Islamova
- National Center for Biotechnology, 13/5, Korgalzhyn Road, 010000, Astana, Kazakhstan
| | - Indira Samatova
- National Center for Biotechnology, 13/5, Korgalzhyn Road, 010000, Astana, Kazakhstan
| | - Zhanargul Zhanybekova
- National Center for Biotechnology, 13/5, Korgalzhyn Road, 010000, Astana, Kazakhstan
| | - Alima Umirzakova
- Department of Science, Information and Monitoring, Sairam-Ugam State National Nature Park, 24 1, Ilyaev Street, 160011, Shymkent, Kazakhstan
| | - Gulmira Magzumova
- National Center for Biotechnology, 13/5, Korgalzhyn Road, 010000, Astana, Kazakhstan
| | - Anna Muranets
- National Center for Biotechnology, 13/5, Korgalzhyn Road, 010000, Astana, Kazakhstan
| | - Almagul Kakimzhanova
- National Center for Biotechnology, 13/5, Korgalzhyn Road, 010000, Astana, Kazakhstan.
| |
Collapse
|
2
|
Hassan AH, Mokhtar MM, El Allali A. Transposable elements: multifunctional players in the plant genome. FRONTIERS IN PLANT SCIENCE 2024; 14:1330127. [PMID: 38239225 PMCID: PMC10794571 DOI: 10.3389/fpls.2023.1330127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024]
Abstract
Transposable elements (TEs) are indispensable components of eukaryotic genomes that play diverse roles in gene regulation, recombination, and environmental adaptation. Their ability to mobilize within the genome leads to gene expression and DNA structure changes. TEs serve as valuable markers for genetic and evolutionary studies and facilitate genetic mapping and phylogenetic analysis. They also provide insight into how organisms adapt to a changing environment by promoting gene rearrangements that lead to new gene combinations. These repetitive sequences significantly impact genome structure, function and evolution. This review takes a comprehensive look at TEs and their applications in biotechnology, particularly in the context of plant biology, where they are now considered "genomic gold" due to their extensive functionalities. The article addresses various aspects of TEs in plant development, including their structure, epigenetic regulation, evolutionary patterns, and their use in gene editing and plant molecular markers. The goal is to systematically understand TEs and shed light on their diverse roles in plant biology.
Collapse
Affiliation(s)
- Asmaa H. Hassan
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Agricultural Genetic Engineering Research Institute, Agriculture Research Center, Giza, Egypt
| | - Morad M. Mokhtar
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Agricultural Genetic Engineering Research Institute, Agriculture Research Center, Giza, Egypt
| | - Achraf El Allali
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
3
|
Terletskaya NV, Turzhanova AS, Khapilina ON, Zhumagul MZ, Meduntseva ND, Kudrina NO, Korbozova NK, Kubentayev SA, Kalendar R. Genetic Diversity in Natural Populations of Rhodiola Species of Different Adaptation Strategies. Genes (Basel) 2023; 14:794. [PMID: 37107552 PMCID: PMC10137911 DOI: 10.3390/genes14040794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Representatives of the Crassulaceae family's genus Rhodiola are succulents, making them distinctive in a changing environment. One of the most significant tools for analyzing plant resources, including numerous genetic processes in wild populations, is the analysis of molecular genetic polymorphism. This work aimed to look at the polymorphisms of allelic variations of the superoxide dismutase (SOD) and auxin response factor (ARF) gene families, as well as the genetic diversity of five Rhodiola species, using the retrotransposons-based fingerprinting approach. The multi-locus exon-primed intron-crossing (EPIC-PCR) profiling approach was used to examine allelic variations in the SOD and ARF gene families. We implemented the inter-primer binding site (iPBS) PCR amplification technique for genome profiling, which demonstrated a significant level of polymorphism in the Rhodiola samples studied. Natural populations of Rhodiola species have a great capacity for adaptation to unfavorable environmental influences. The genetic variety of wild populations of Rhodiola species leads to their improved tolerance of opposing environmental circumstances and species evolutionary divergence based on the diversity of reproductive systems.
Collapse
Affiliation(s)
- Nina V. Terletskaya
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty 050040, Kazakhstan;
- Institute of Genetic and Physiology, Al-Farabi Avenue 93, Almaty 050040, Kazakhstan; (N.D.M.); (N.O.K.); (N.K.K.)
| | - Ainur S. Turzhanova
- National Center for Biotechnology, Qorghalzhyn Hwy 13, Astana 010000, Kazakhstan; (A.S.T.); (O.N.K.)
| | - Oxana N. Khapilina
- National Center for Biotechnology, Qorghalzhyn Hwy 13, Astana 010000, Kazakhstan; (A.S.T.); (O.N.K.)
| | - Moldir Z. Zhumagul
- Astana International University, Kabanbai Batyr 8, Astana 010000, Kazakhstan;
- Astana Botanical Garden, Orunbur 16, Astana 010000, Kazakhstan;
| | - Nataliya D. Meduntseva
- Institute of Genetic and Physiology, Al-Farabi Avenue 93, Almaty 050040, Kazakhstan; (N.D.M.); (N.O.K.); (N.K.K.)
| | - Nataliya O. Kudrina
- Institute of Genetic and Physiology, Al-Farabi Avenue 93, Almaty 050040, Kazakhstan; (N.D.M.); (N.O.K.); (N.K.K.)
- National Center for Biotechnology, Qorghalzhyn Hwy 13, Astana 010000, Kazakhstan; (A.S.T.); (O.N.K.)
| | - Nazym K. Korbozova
- Institute of Genetic and Physiology, Al-Farabi Avenue 93, Almaty 050040, Kazakhstan; (N.D.M.); (N.O.K.); (N.K.K.)
- National Center for Biotechnology, Qorghalzhyn Hwy 13, Astana 010000, Kazakhstan; (A.S.T.); (O.N.K.)
| | | | - Ruslan Kalendar
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
4
|
Hassan AH, Mokhtar MM, El Allali A. TEMM: A Curated Data Resource for Transposon Element-Based Molecular Markers in Plants. Methods Mol Biol 2023; 2703:45-57. [PMID: 37646936 DOI: 10.1007/978-1-0716-3389-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Transposon elements (TEs) are mobile genetic elements that can insert themselves into new locations and modify the plant genome. In recent years, they have been used as molecular markers in plant breeding programs. TE-based molecular markers (TE-markers) are divided into two categories depending on the transcription mechanism of the TEs. The first category is retrotransposon-based molecular markers, which include RBIP, IRAP, REMAP, and iPBS. The second group is DNA-based-TE-markers, which include MITE, TE-junction, and CACTA TE-markers. These markers are a good tool for studying genetic diversity and can provide information on plants' phylogenetic and evolutionary history. They can help improve breeding programs to increase agronomic traits and develop new varieties. Overall, TE-markers play an important role in plant genetics and plant breeding and contribute to a better understanding of plant biology. Here, we present TEMM, a curated data resource for TE-markers in plants. Relevant research articles were screened to collect primer sequences and related information. Only articles containing primer sequences are added to the present data resource. TEMM contains 784 primers with their associated PCR reaction programs and their applications in various crops. These include 203 IPBS, 191 RBIP, 140 IRAP, 78 TE-junction, 76 IRAPS, 47 RBIP-IRAP, 16 IRAP-REMAP, 12 REMAP, 12 REMA-IRAP, 6 REMA, and 3 ISBP primers. The data resource is freely available at https://bioinformatics.um6p.ma/TEMM .
Collapse
Affiliation(s)
- Asmaa H Hassan
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Morad M Mokhtar
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| |
Collapse
|
5
|
Milarska SE, Androsiuk P, Bednarek PT, Larson K, Giełwanowska I. Genetic variation of Cerastium alpinum L. from Babia Góra, a critically endangered species in Poland. J Appl Genet 2023; 64:37-53. [PMID: 36322376 PMCID: PMC9837003 DOI: 10.1007/s13353-022-00731-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Babia Góra massif is the only site of occurrence of the Cerastium alpinum L. in Poland, an arctic-alpine perennial plant with a wide distribution in North America, northwestern Asia, and Europe. To determine whether the isolated Polish populations are genetically distinct, we have performed an evaluation of C. alpinum from Babia Góra with the use of iPBS markers. A total number of 133 individuals of C. alpinum from seven populations representing four localizations of the species were analyzed, i.e., from Babia Góra (Poland), Alps (Switzerland), Nuolja massif (Sweden), and Kaffiøyra (Svalbard, Norway). Genetic analysis of all C. alpinum samples using eight PBS primers identified 262 bands, 79.4% of which were polymorphic. iPBS markers revealed low genetic diversity (average He = 0.085) and high population differentiation (FST = 0.617). AMOVA results confirmed that the majority of the genetic variation (62%) was recorded among populations. The grouping revealed by PCoA showed that C. alpinum from Svalbard is the most diverged population, C. alpinum from Switzerland and Sweden form a pair of similar populations, whereas C. alpinum from the Babia Góra form a heterogeneous group of four populations. Results of isolation by distance analysis suggested that the spatial distance is the most probable cause of the observed differentiation among populations. Although significant traces of a bottleneck effect were noted for all populations of C. alpinum from Babia Góra, the populations still maintain a low but significant level of genetic polymorphism. These results are of great importance for developing conservation strategies for this species in Poland.
Collapse
Affiliation(s)
- Sylwia Eryka Milarska
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Piotr Androsiuk
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Piotr Tomasz Bednarek
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, 05-870, Błonie, Poland
| | - Keith Larson
- Climate Impacts Research Centre, Department of Ecology and Environmental Sciences, Umeå University, 901 87, Umeå, Sweden
| | - Irena Giełwanowska
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| |
Collapse
|
6
|
Papolu PK, Ramakrishnan M, Mullasseri S, Kalendar R, Wei Q, Zou L, Ahmad Z, Vinod KK, Yang P, Zhou M. Retrotransposons: How the continuous evolutionary front shapes plant genomes for response to heat stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1064847. [PMID: 36570931 PMCID: PMC9780303 DOI: 10.3389/fpls.2022.1064847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/21/2022] [Indexed: 05/28/2023]
Abstract
Long terminal repeat retrotransposons (LTR retrotransposons) are the most abundant group of mobile genetic elements in eukaryotic genomes and are essential in organizing genomic architecture and phenotypic variations. The diverse families of retrotransposons are related to retroviruses. As retrotransposable elements are dispersed and ubiquitous, their "copy-out and paste-in" life cycle of replicative transposition leads to new genome insertions without the excision of the original element. The overall structure of retrotransposons and the domains responsible for the various phases of their replication is highly conserved in all eukaryotes. The two major superfamilies of LTR retrotransposons, Ty1/Copia and Ty3/Gypsy, are distinguished and dispersed across the chromosomes of higher plants. Members of these superfamilies can increase in copy number and are often activated by various biotic and abiotic stresses due to retrotransposition bursts. LTR retrotransposons are important drivers of species diversity and exhibit great variety in structure, size, and mechanisms of transposition, making them important putative actors in genome evolution. Additionally, LTR retrotransposons influence the gene expression patterns of adjacent genes by modulating potential small interfering RNA (siRNA) and RNA-directed DNA methylation (RdDM) pathways. Furthermore, comparative and evolutionary analysis of the most important crop genome sequences and advanced technologies have elucidated the epigenetics and structural and functional modifications driven by LTR retrotransposon during speciation. However, mechanistic insights into LTR retrotransposons remain obscure in plant development due to a lack of advancement in high throughput technologies. In this review, we focus on the key role of LTR retrotransposons response in plants during heat stress, the role of centromeric LTR retrotransposons, and the role of LTR retrotransposon markers in genome expression and evolution.
Collapse
Affiliation(s)
- Pradeep K. Papolu
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Sileesh Mullasseri
- Department of Zoology, St. Albert’s College (Autonomous), Kochi, Kerala, India
| | - Ruslan Kalendar
- Helsinki Institute of Life Science HiLIFE, Biocenter 3, University of Helsinki, Helsinki, Finland
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Long−Hai Zou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Zishan Ahmad
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | | | - Ping Yang
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Sabouri H, Alegh SM, Sahranavard N, Sanchouli S. SSR Linkage Maps and Identification of QTL Controlling Morpho-Phenological Traits in Two Iranian Wheat RIL Populations. BIOTECH 2022; 11:biotech11030032. [PMID: 35997340 PMCID: PMC9397039 DOI: 10.3390/biotech11030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 11/22/2022] Open
Abstract
Wheat is one of the essential grains grown in large areas. Identifying the genetic structure of agronomic and morphological traits of wheat can help to discover the genetic mechanisms of grain yield. In order to map the morpho-phenological traits, an experiment was conducted in the two cropping years of 2020 and 2021 on the university farm of the Faculty of Agriculture, GonbadKavous University. This study used two F8 populations, including 120 lines resulting from Gonbad × Zagros and Gonbad × Kuhdasht. The number of days to physiological maturity, number of days to flowering, number of germinated grains, number of tillers, number of tillers per plant, grain filling periods, plant height, peduncle length, spike length, awn length, spike weight, peduncle diameter, flag leaf length and weight, number of spikelets per spike, number of grains per spike, grain length, grain width, 1000-grain weight, biomass, grain yield, harvest index, straw-weight, and number of fertile spikelets per spike were measured. A total of 21 and 13 QTLs were identified for 11 and 13 traits in 2020 and 2021, respectively. In 2020, qGL-3D and qHI-1A were identified for grain length and harvest index on chromosomes 3D and 1A, explaining over 20% phenotypic variation, respectively. qNT-5B, qNTS-2D, and qSL-1D were identified on chromosomes 5B, 2D, and 1D with the LOD scores of 4.5, 4.13, and 3.89 in 2021, respectively.
Collapse
Affiliation(s)
- Hossein Sabouri
- Department of Plant Production, College of Agricultural Science and Natural Resources, Gonbad Kavous University, Gonbad Kavous 4971799151, Iran
- Correspondence: (H.S.); (S.S.); Tel.: +98-911-143-8917 (H.S.); +98-911-793-0631 (S.S.)
| | - Sharifeh Mohammad Alegh
- Department of Plant Production, College of Agricultural Science and Natural Resources, Gonbad Kavous University, Gonbad Kavous 4971799151, Iran
| | - Narges Sahranavard
- Department of Biology, College of Science, Gonbad Kavous University, Gonbad Kavous 4971799151, Iran
| | - Somayyeh Sanchouli
- Department of Plant Production, College of Agricultural Science and Natural Resources, Gonbad Kavous University, Gonbad Kavous 4971799151, Iran
- Correspondence: (H.S.); (S.S.); Tel.: +98-911-143-8917 (H.S.); +98-911-793-0631 (S.S.)
| |
Collapse
|
8
|
Makhtoum S, Sabouri H, Gholizadeh A, Ahangar L, Katouzi M. QTLs Controlling Physiological and Morphological Traits of Barley (Hordeum vulgare L.) Seedlings under Salinity, Drought, and Normal Conditions. BIOTECH 2022; 11:biotech11030026. [PMID: 35892931 PMCID: PMC9326576 DOI: 10.3390/biotech11030026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
To identify the genomic regions for the physiological and morphological traits of barley genotypes under normal salinity and drought, a set of 103 recombinant inbred line (RIL) populations, developed between Badia and Kavir crosses, was evaluated under phytotron conditions in a completely randomized design in 2019. Linkage maps were prepared using 152 SSR markers, 72 ISSR, 7 IRAP, 29 CAAT, 27 SCoT, and 15 iPBS alleles. The markers were assigned to seven barley chromosomes and covered 999.29 centimorgans (cM) of the barley genome. In addition, composite interval mapping showed 8, 9, and 26 quantitative trait loci (QTLs) under normal, drought, and salinity stress conditions, respectively. Our results indicate the importance of chromosomes 1, 4, 5, and 7 in salinity stress. These regions were involved in genes controlling stomata length (LR), leaf number (LN), leaf weight (LW), and genetic score (SCR). Three major stable pleiotropic QTLs (i.e., qSCS-1, qRLS-1, and qLNN-1) were associated with SCR, root length (RL), and root number (RN) in both treatments (i.e., normal and salinity), and two major stable pleiotropic QTLs (i.e., qSNN-3 and qLWS-3) associated with the stomata number (SN) and LW appeared to be promising for marker-assisted selection (MAS). Two major-effect QTLs (i.e., SCot8-B-CAAT5-D and HVM54-Bmag0571) on chromosomes 1 and 2 were characterized for their positive allele effect, which can be used to develop barley varieties concerning drought conditions. The new alleles (i.e., qLWS-4a, qSLS-4, qLNS-7b, qSCS-7, and qLNS-7a) identified in this study are useful in pyramiding elite alleles for molecular breeding and marker assisted selection for improving salinity tolerance in barley.
Collapse
Affiliation(s)
- Somayyeh Makhtoum
- Department of Plant Production, Faculty of Agriculture Science and Natural Resources, Gonbad Kavous University, Gonbad 4971799151, Iran; (S.M.); (A.G.); (L.A.)
| | - Hossein Sabouri
- Department of Plant Production, Faculty of Agriculture Science and Natural Resources, Gonbad Kavous University, Gonbad 4971799151, Iran; (S.M.); (A.G.); (L.A.)
- Correspondence: or (H.S.); (M.K.); Tel.: +98-91-1143-8917 (H.S.); +41-77-9660486 (M.K.)
| | - Abdollatif Gholizadeh
- Department of Plant Production, Faculty of Agriculture Science and Natural Resources, Gonbad Kavous University, Gonbad 4971799151, Iran; (S.M.); (A.G.); (L.A.)
| | - Leila Ahangar
- Department of Plant Production, Faculty of Agriculture Science and Natural Resources, Gonbad Kavous University, Gonbad 4971799151, Iran; (S.M.); (A.G.); (L.A.)
| | - Mahnaz Katouzi
- Crop Génome Dynamics Group, Agroscope Changins, 1260 Nyon, Switzerland
- Correspondence: or (H.S.); (M.K.); Tel.: +98-91-1143-8917 (H.S.); +41-77-9660486 (M.K.)
| |
Collapse
|