1
|
Sparks ME, Nelson DR, Harrison RL, Larson NR, Kuhar D, Haber AI, Heraghty SD, Rebholz Z, Tholl D, Grettenberger IM, Weber DC, Gundersen-Rindal DE. Transcriptomic resources for Bagrada hilaris (Burmeister), a widespread invasive pest of Brassicales. PLoS One 2024; 19:e0310186. [PMID: 39729495 DOI: 10.1371/journal.pone.0310186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/27/2024] [Indexed: 12/29/2024] Open
Abstract
The bagrada bug, Bagrada hilaris (Burmeister), is an emerging agricultural pest in the Americas, threatening agricultural production in the southwestern United States, Mexico and Chile, as well as in the Old World (including Africa, South Asia and, more recently, Mediterranean areas of Europe). Substantive transcriptomic sequence resources for this damaging species would be beneficial towards understanding its capacity for developing insecticide resistance, identifying viruses that may be present throughout its population and identifying genes differentially expressed across life stages that could be exploited for biomolecular pesticide formulations. This study establishes B. hilaris transcriptomic resources for eggs, 2nd and 4th larval instars, as well as male and female adults. Three gene families involved in xenobiotic detoxification-glutathione S-transferases, carboxylesterases and cytochrome P450 monooxygenases-were phylogenetically characterized. These data were also qualitatively compared with previously published results for two closely related pentatomid species-the brown marmorated stink bug, Halyomorpha halys (Stål), and the harlequin bug, Murgantia histrionica (Hahn)-to elucidate shared enzymatic components of terpene-based sex pheromone biosynthetic pathways. Lastly, the sequence data were screened for potential RNAi- and virus-related content and for genes implicated in insect growth and development.
Collapse
Affiliation(s)
- Michael E Sparks
- Invasive Insect Biocontrol and Behavior Laboratory, USDA-ARS, Beltsville, Maryland, United States of America
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Robert L Harrison
- Invasive Insect Biocontrol and Behavior Laboratory, USDA-ARS, Beltsville, Maryland, United States of America
| | - Nicholas R Larson
- Invasive Insect Biocontrol and Behavior Laboratory, USDA-ARS, Beltsville, Maryland, United States of America
| | - Daniel Kuhar
- Invasive Insect Biocontrol and Behavior Laboratory, USDA-ARS, Beltsville, Maryland, United States of America
| | - Ariela I Haber
- Invasive Insect Biocontrol and Behavior Laboratory, USDA-ARS, Beltsville, Maryland, United States of America
| | - Sam D Heraghty
- Invasive Insect Biocontrol and Behavior Laboratory, USDA-ARS, Beltsville, Maryland, United States of America
| | - Zarley Rebholz
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Dorothea Tholl
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Ian M Grettenberger
- Department of Entomology and Nematology, University of California, Davis, Davis, California, United States of America
| | - Donald C Weber
- Invasive Insect Biocontrol and Behavior Laboratory, USDA-ARS, Beltsville, Maryland, United States of America
| | - Dawn E Gundersen-Rindal
- Invasive Insect Biocontrol and Behavior Laboratory, USDA-ARS, Beltsville, Maryland, United States of America
| |
Collapse
|
2
|
Kaur I, Kariyat R. Trichomes mediate plant-herbivore interactions in two Cucurbitaceae species through pre- and post-ingestive ways. JOURNAL OF PEST SCIENCE 2023; 96:1077-1089. [PMID: 37168103 PMCID: PMC10047472 DOI: 10.1007/s10340-023-01611-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 05/13/2023]
Abstract
Plant structural defenses such as trichomes exert a significant selection pressure on insect herbivores. However, whether variation in structural defense traits affects common herbivores in related plant species is less understood. Here, we examined the role of trichomes in plant-herbivore interactions in two commonly cultivated members in Cucurbitaceae: bottle gourd (Lagenaria siceraria) and cucumber (Cucumis sativa). In common garden experiments when the two species were grown together, we observed that they differed in their attractiveness to four major herbivore species (Trichoplusia ni, Acalymma vittatum, Diaphania indica, and Anasa tristis) and, consequently, their feeding behavior. We found that L. siceraria consistently harbored less herbivores, and the two lepidopteran herbivores (T. ni and D. indica) were found to take significantly longer time to commence feeding on them, a primary mode of pre-ingestive defense function of trichomes. To tease apart structural and chemical modes of defenses, we first used scanning electron microscopy to identify, quantify, and measure trichome traits including their morphology and density. We found that C. sativa has significantly lower number of trichomes compared to L. siceraria, regardless of trichome type and leaf surface. We then used artificial diet enriched with trichomes as caterpillar food and found that trichomes from these two species differentially affected growth and development of T. ni showing cascading effects of trichomes. Taken together, we show that trichomes, independent of chemical defenses, are an effective pre- and post-ingestive defense strategy against herbivores with negative consequences for their feeding, growth, and development. Supplementary Information The online version contains supplementary material available at 10.1007/s10340-023-01611-x.
Collapse
Affiliation(s)
- Ishveen Kaur
- School of Earth Environmental and Marine Sciences, University of Texas Rio Grande Valley, Edinburg, TX 78539 USA
| | - Rupesh Kariyat
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| |
Collapse
|
3
|
Parvizi E, Dhami MK, Yan J, McGaughran A. Population genomic insights into invasion success in a polyphagous agricultural pest, Halyomorpha halys. Mol Ecol 2023; 32:138-151. [PMID: 36261398 PMCID: PMC10099481 DOI: 10.1111/mec.16740] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 01/07/2023]
Abstract
Invasive species are increasingly threatening ecosystems and agriculture by rapidly expanding their range and adapting to environmental and human-imposed selective pressures. The genomic mechanisms that underlie such rapid changes remain unclear, especially for agriculturally important pests. Here, we used genome-wide polymorphisms derived from native, invasive, and intercepted samples and populations of the brown marmorated stink bug (BMSB), Halyomorpha halys, to gain insights into population genomics processes that have promoted the successful global invasion of this polyphagous pest. Our analysis demonstrated that BMSB exhibits spatial structure but admixture rates are high among introduced populations, resulting in similar levels of genomic diversity across native and introduced populations. These spatial genomic patterns suggest a complex invasion scenario, potentially with multiple bridgehead events, posing a challenge for accurately assigning BMSB incursions to their source using reduced-representation genomic data. By associating allele frequencies with the invasion status of BMSB populations, we found significantly differentiated single nucleotide polymorphisms (SNPs) located in close proximity to genes for insecticide resistance and olfaction. Comparing variations in allele frequencies among populations for outlier SNPs suggests that BMSB invasion success has probably evolved from standing genetic variation. In addition to being a major nuisance of households, BMSB has caused significant economic losses to agriculture in recent years and continues to expand its range. Despite no record of BMSB insecticide resistance to date, our results show high capacity for potential evolution of such traits, highlighting the need for future sustainable and targeted management strategies.
Collapse
Affiliation(s)
- Elahe Parvizi
- Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand
| | - Manpreet K Dhami
- Biocontrol and Molecular Ecology, Manaaki Whenua Landcare Research, Lincoln, New Zealand
| | - Juncong Yan
- Plant Health and Environment Laboratory, Ministry for Primary Industries, Auckland, New Zealand
| | - Angela McGaughran
- Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
4
|
Saha S, Allen KC, Mueller LA, Reddy GVP, Perera OP. Chromosome length genome assembly of the redbanded stink bug, Piezodorus guildinii (Westwood). BMC Res Notes 2022; 15:115. [PMID: 35317820 PMCID: PMC8939125 DOI: 10.1186/s13104-022-05924-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/26/2022] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE The redbanded stink bug (RBSB), Piezodorus guildinii (Hemiptera: Pentatomidae), is native to the Caribbean Basin and is currently considered an invasive pest in Florida, Louisiana, Mississippi, and Texas in the southern United States. Although RBSB is an economically important invasive pest in the USA, relatively few studies have been conducted to understand molecular mechanisms, population genetic structure, and the genetic basis of resistance to insecticides. The objective of this work was to obtain a high-quality genome assembly to develop genomic resources to conduct population genetic, genomic, and physiological studies of the RBSB. RESULTS The genome of RBSB was sequenced with Pacific Biosciences technology followed by two rounds of scaffolding using Chicago libraries and HiC proximity ligation to obtain a high-quality assembly. The genome assembly contained 800 scaffolds larger than 1 kbp and the N50 was 170.84 Mbp. The largest scaffold was 222.22 Mbp and 90% of the genome was included in the 7 scaffolds larger than 118 Mbp. The number of megabase scaffolds also matched the number of chromosomes in this insect. The genome sequence will facilitate the development of resources to conduct studies on genetics, transcriptomics, and physiology of RBSB.
Collapse
Affiliation(s)
- Surya Saha
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA
| | - K Clint Allen
- Southern Insect Management Research Unit, USDA ARS, Stoneville, MS, 38776, USA
| | - Lukas A Mueller
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA
| | - Gadi V P Reddy
- Southern Insect Management Research Unit, USDA ARS, Stoneville, MS, 38776, USA
| | - Omaththage P Perera
- Southern Insect Management Research Unit, USDA ARS, Stoneville, MS, 38776, USA.
| |
Collapse
|
5
|
Bailey E, Field L, Rawlings C, King R, Mohareb F, Pak KH, Hughes D, Williamson M, Ganko E, Buer B, Nauen R. A scaffold-level genome assembly of a minute pirate bug, Orius laevigatus (Hemiptera: Anthocoridae), and a comparative analysis of insecticide resistance-related gene families with hemipteran crop pests. BMC Genomics 2022; 23:45. [PMID: 35012450 PMCID: PMC8751118 DOI: 10.1186/s12864-021-08249-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Orius laevigatus, a minute pirate bug, is a highly effective beneficial predator of crop pests including aphids, spider mites and thrips in integrated pest management (IPM) programmes. No genomic information is currently available for O. laevigatus, as is the case for the majority of beneficial predators which feed on crop pests. In contrast, genomic information for crop pests is far more readily available. The lack of publicly available genomes for beneficial predators to date has limited our ability to perform comparative analyses of genes encoding potential insecticide resistance mechanisms between crop pests and their predators. These mechanisms include several gene/protein families including cytochrome P450s (P450s), ATP binding cassette transporters (ABCs), glutathione S-transferases (GSTs), UDP-glucosyltransferases (UGTs) and carboxyl/cholinesterases (CCEs). METHODS AND FINDINGS In this study, a high-quality scaffold level de novo genome assembly for O. laevigatus has been generated using a hybrid approach with PacBio long-read and Illumina short-read data. The final assembly achieved a scaffold N50 of 125,649 bp and a total genome size of 150.98 Mb. The genome assembly achieved a level of completeness of 93.6% using a set of 1658 core insect genes present as full-length genes. Genome annotation identified 15,102 protein-coding genes - 87% of which were assigned a putative function. Comparative analyses revealed gene expansions of sigma class GSTs and CYP3 P450s. Conversely the UGT gene family showed limited expansion. Differences were seen in the distributions of resistance-associated gene families at the subfamily level between O. laevigatus and some of its targeted crop pests. A target site mutation in ryanodine receptors (I4790M, PxRyR) which has strong links to diamide resistance in crop pests and had previously only been identified in lepidopteran species was found to also be present in hemipteran species, including O. laevigatus. CONCLUSION AND SIGNIFICANCE This assembly is the first published genome for the Anthocoridae family and will serve as a useful resource for further research into target-site selectivity issues and potential resistance mechanisms in beneficial predators. Furthermore, the expansion of gene families often linked to insecticide resistance may be an indicator of the capacity of this predator to detoxify selective insecticides. These findings could be exploited by targeted pesticide screens and functional studies to increase effectiveness of IPM strategies, which aim to increase crop yields by sustainably, environmentally-friendly and effectively control pests without impacting beneficial predator populations.
Collapse
Affiliation(s)
- Emma Bailey
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK.
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK.
- The Bioinformatics Group, Cranfield Soil and Agrifood Institute, Cranfield University, Cranfield, UK.
| | - Linda Field
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Christopher Rawlings
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - Rob King
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - Fady Mohareb
- The Bioinformatics Group, Cranfield Soil and Agrifood Institute, Cranfield University, Cranfield, UK
| | - Keywan-Hassani Pak
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - David Hughes
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - Martin Williamson
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Eric Ganko
- Syngenta Biotechnology Inc, Research Triangle Park, NC, USA
| | - Benjamin Buer
- Bayer AG, Crop Science Division, R&D, Monheim, Germany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Monheim, Germany
| |
Collapse
|
6
|
Wu C, Ding C, Chen S, Wu X, Zhang L, Song Y, Li W, Zeng R. Exposure of Helicoverpa armigera Larvae to Plant Volatile Organic Compounds Induces Cytochrome P450 Monooxygenases and Enhances Larval Tolerance to the Insecticide Methomyl. INSECTS 2021; 12:238. [PMID: 33808968 PMCID: PMC7998352 DOI: 10.3390/insects12030238] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 11/20/2022]
Abstract
Plants release an array of volatile chemicals into the air to communicate with other organisms in the environment. Insect attack triggers emission of herbivore-induced plant volatiles (HIPVs). How insect herbivores use these odors to plan their detoxification systems is vital for insect adaptation to environmental xenobiotics. Here we show that the larvae of Helicoverpa armigera (Hübner), a broadly polyphagous lepidopteran herbivore, have the capacity to use plant volatiles as cues to upregulate multiple detoxification systems, including cytochrome P450 monooxygenases (P450s), for detoxification of insecticides. Olfactory exposure of the fifth instars to two terpene volatiles limonene and nerolidol, and two green-leaf volatiles 2-heptanone and cis-3-hexenyl acetate significantly reduced larval susceptibility to the insecticide methomyl. However, larval pretreatment with piperonyl butoxide (PBO), a known P450 inhibitor, neutralized the effects of volatile exposure. Furthermore, larval exposure to the four plant volatiles enhanced activities of P450 enzymes in midguts and fatbodies, and upregulated expression of CYP6B2, CYP6B6 and CYP6B7, P450s involved in detoxification of the insecticide. Larval exposure to 2-heptanone and limonene volatiles also enhanced activities of glutathione-s-transferase and carboxylesterase. Our findings suggest that olfactory exposure to HIPVs enhances larval insecticide tolerance via induction of detoxification P450s.
Collapse
Affiliation(s)
- Choufei Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou 313000, China; (C.W.); (X.W.); (L.Z.)
| | - Chaohui Ding
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China;
| | - Shi Chen
- College of Materials and Energy, South China Agricultural University, Wushan, Guangzhou 510642, China;
| | - Xiaoying Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou 313000, China; (C.W.); (X.W.); (L.Z.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China;
| | - Liqin Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou 313000, China; (C.W.); (X.W.); (L.Z.)
| | - Yuanyuan Song
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China;
| | - Wu Li
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Rensen Zeng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China;
| |
Collapse
|