1
|
Aydin S, Darko K, Jenkins A, Detchou D, Barrie U. Deep brain stimulation for Tourette's syndrome. Neurosurg Rev 2024; 47:734. [PMID: 39367173 DOI: 10.1007/s10143-024-02958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/07/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
Tourette's syndrome is a neuropsychiatric disorder characterized by formidable motor and vocal tics. Many individuals also present with comorbid neuropsychiatric conditions. Though patients often benefit from pharmacological and behavioral therapies, a subset of individuals develop severe, treatment-resistant symptoms that might necessitate more invasive interventions, such as Deep Brain Stimulation (DBS). DBS, particularly targeting regions like the globus pallidus internus (GPi) and the centromedian-parafascicular complex (CM-Pf) of the thalamus, has demonstrated effectiveness in reducing tic severity and improving quality of life. This review outlines the mechanism, clinical efficacy, and long-term outcome of DBS in TS. Results from clinical studies reveal significant reductions in tics. However, success with DBS is variable depending on a number of factors, including target selection and electrode placement. The use of DBS has ethical considerations, which include risks to the surgical procedure, the need for full and complete informed consent, and questions about the implications of such treatment on cognitive and emotional growth. Long-term follow-up will be required to ensure appropriate patient outcomes and complication management. Additional research and ethical debate will be needed with advancing DBS technology to ensure responsible and equitable treatment. This paper narratively summarizes the surgical options available for TS, with a focus on the current status of DBS in the management of the disease.
Collapse
Affiliation(s)
- Serhat Aydin
- School of Medicine, Koc University, Istanbul, Turkey
| | - Kwadwo Darko
- Department of Neurosurgery, Korle Bu Teaching Hospital, Accra, Ghana
| | - Abigail Jenkins
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Donald Detchou
- Department of Neurosurgery, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| | - Umaru Barrie
- Department of Neurosurgery, New York University Grossman School of Medicine, New York City, NYC, USA
| |
Collapse
|
2
|
Wang S, Zhang Y, Wang M, Meng F, Liu Y, Zhang J. Deep brain stimulation for Tourette's syndrome. Cochrane Database Syst Rev 2024; 8:CD015924. [PMID: 39136257 PMCID: PMC11320656 DOI: 10.1002/14651858.cd015924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
This is a protocol for a Cochrane Review (intervention). The objectives are as follows: To assess the efficacy and harm of deep brain stimulation for motor symptoms, with psychiatric and behavioural comorbidities, either individually or in combination, in adults and adolescents with Tourette's syndrome compared to placebo, sham intervention, or the best available behavioural and pharmacological treatment.
Collapse
Affiliation(s)
- Shu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yuan Zhang
- Neonatal Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Minzhong Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Fangang Meng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing 100070, China
| | - Yali Liu
- Center for Clinical Epidemiology and Evidence-based Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing 100070, China
| |
Collapse
|
3
|
Gao Y, Wang S, Wang A, Fan S, Ge Y, Wang H, Gao D, Wang J, Mao Z, Zhao H, Zhang H, Shi L, Liu H, Zhu G, Yang A, Bai Y, Zhang X, Liu C, Wang Q, Li R, Liang K, Brown KG, Cui Z, Han C, Zhang J, Meng F. Comparison of children and adults in deep brain stimulation for Tourette Syndrome: a large-scale multicenter study of 102 cases with long-term follow-up. BMC Med 2024; 22:218. [PMID: 38816877 PMCID: PMC11141040 DOI: 10.1186/s12916-024-03432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) is a promising therapy for refractory Gilles de la Tourette syndrome (GTS). However, its long-term efficacy, safety, and recommended surgical age remain controversial, requiring evidence to compare different age categories. METHODS This retrospective cohort study recruited 102 GTS patients who underwent DBS between October 2006 and April 2022 at two national centers. Patients were divided into two age categories: children (aged < 18 years; n = 34) and adults (aged ≥ 18 years; n = 68). The longitudinal outcomes as tic symptoms were assessed by the YGTSS, and the YBOCS, BDI, and GTS-QOL were evaluated for symptoms of obsessive-compulsive disorder (OCD), depression, and quality of life, respectively. RESULTS Overall, these included patients who finished a median 60-month follow-up, with no significant difference between children and adults (p = 0.44). Overall, the YGTSS total score showed significant postoperative improvements and further improved with time (improved 45.2%, 51.6%, 55.5%, 55.6%, 57.8%, 61.4% after 6, 12, 24, 36, 48, and ≥ 60 months of follow-up compared to baseline, respectively) in all included patients (all p < 0.05). A significantly higher improvement was revealed in children than adults at ≥ 60 months of follow-up in the YGTSS scores (70.1% vs 55.9%, p = 0.043), and the time to achieve 60% improvement was significantly shorter in the children group (median 6 months vs 12 months, p = 0.013). At the last follow-up, the mean improvements were 45.4%, 48.9%, and 55.9% and 40.3%, 45.4%, and 47.9% in YBOCS, BDI, and GTS-QOL scores for children and adults, respectively, which all significantly improved compared to baseline (all p < 0.05) but without significant differences between these two groups (all p > 0.05), and the children group received significantly higher improvement in GTS-QOL scores than adults (55.9% vs. 47.9%, p = 0.049). CONCLUSIONS DBS showed acceptable long-term efficacy and safety for both children and adults with GTS. Surgeries performed for patients younger than 18 years seemed to show acceptable long-term efficacy and safety and were not associated with increased risks of loss of benefit compared to patients older than 18 at the time of surgery. However, surgeries for children should also be performed cautiously to ensure their refractoriness and safety.
Collapse
Affiliation(s)
- Yuan Gao
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Shu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Anni Wang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Shiying Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yan Ge
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, 100070, China
| | - Huimin Wang
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, 100070, China
| | - Dongmei Gao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Jian Wang
- Department of Neurosurgery, The First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China
| | - Zhiqi Mao
- Department of Neurosurgery, The First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China
| | - Hulin Zhao
- Department of Neurosurgery, The First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China
| | - Hua Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Lin Shi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Huanguang Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xin Zhang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Chong Liu
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Qiao Wang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Renpeng Li
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Kun Liang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Kayla Giovanna Brown
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zhiqiang Cui
- Department of Neurosurgery, The First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China.
| | - Chunlei Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Jianguo Zhang
- Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Fangang Meng
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
4
|
Lee J, Chang KW, Jung HH, Kim D, Chang JW, Song DH. One-year outcomes of deep brain stimulation in refractory Tourette syndrome. Psychiatry Clin Neurosci 2023; 77:605-612. [PMID: 37565663 DOI: 10.1111/pcn.13584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
AIM Deep brain stimulation (DBS) is one option for treating refractory Tourette syndrome (TS); however, it remains unclear which preoperative factors are predictive of DBS outcomes. This study investigated the efficacy of DBS targeting the anteromedial globus pallidus internus and evaluated predisposing factors affecting the outcomes of DBS in a single center in Korea. METHOD Twenty patients who had undergone DBS for refractory TS were reviewed retrospectively. Tic symptoms were followed up at 3-month intervals for up to 1 year after surgery. The Yale Global Tic Severity Scale was used to evaluate preoperative/postoperative tic symptoms. Scores from the Yale-Brown Obsessive Compulsive Scale, Beck Depression Inventory-II, and Beck Anxiety Inventory were also evaluated. RESULTS Patients with refractory TS achieved improvement in tic symptoms within 1 year after DBS. Initial responders who achieved a 35% reduction in Yale Global Tic Severity Scale total score within the first 3 months after DBS showed larger treatment effects during 1-year follow-up. Although no clinical or demographic factors were predictive of initial responses, patients with serious self-injurious behaviors tended to show delayed responses. CONCLUSION This is the first study to our knowledge to report the DBS outcomes of 20 patients with TS in a single center in Asia. Our study supports the efficacy of DBS targeting anteromedial globus pallidus internus in refractory TS with no evident serious adverse events. Initial responses after DBS seem to be a predictor of long-term outcomes after surgery.
Collapse
Affiliation(s)
- Junghan Lee
- Department of Psychiatry and Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung Won Chang
- Brain Research Institute, Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Ho Jung
- Brain Research Institute, Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dre Kim
- Iian Psychiatric Clinic, Sejong, Republic of Korea
| | - Jin Woo Chang
- Brain Research Institute, Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dong-Ho Song
- Department of Psychiatry and Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Arnts H, Coolen SE, Fernandes FW, Schuurman R, Krauss JK, Groenewegen HJ, van den Munckhof P. The intralaminar thalamus: a review of its role as a target in functional neurosurgery. Brain Commun 2023; 5:fcad003. [PMID: 37292456 PMCID: PMC10244065 DOI: 10.1093/braincomms/fcad003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 10/06/2022] [Accepted: 01/03/2023] [Indexed: 09/29/2023] Open
Abstract
The intralaminar thalamus, in particular the centromedian-parafascicular complex, forms a strategic node between ascending information from the spinal cord and brainstem and forebrain circuitry that involves the cerebral cortex and basal ganglia. A large body of evidence shows that this functionally heterogeneous region regulates information transmission in different cortical circuits, and is involved in a variety of functions, including cognition, arousal, consciousness and processing of pain signals. Not surprisingly, the intralaminar thalamus has been a target area for (radio)surgical ablation and deep brain stimulation (DBS) in different neurological and psychiatric disorders. Historically, ablation and stimulation of the intralaminar thalamus have been explored in patients with pain, epilepsy and Tourette syndrome. Moreover, DBS has been used as an experimental treatment for disorders of consciousness and a variety of movement disorders. In this review, we provide a comprehensive analysis of the underlying mechanisms of stimulation and ablation of the intralaminar nuclei, historical clinical evidence, and more recent (experimental) studies in animals and humans to define the present and future role of the intralaminar thalamus as a target in the treatment of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Hisse Arnts
- Department of Neurosurgery, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stan E Coolen
- Department of Neurosurgery, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
| | | | - Rick Schuurman
- Department of Neurosurgery, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Henk J Groenewegen
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, Amsterdam University Medical Centers, location VU University Medical Center, Amsterdam, The Netherlands
| | - Pepijn van den Munckhof
- Department of Neurosurgery, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Johnson KA, Worbe Y, Foote KD, Butson CR, Gunduz A, Okun MS. Tourette syndrome: clinical features, pathophysiology, and treatment. Lancet Neurol 2023; 22:147-158. [PMID: 36354027 PMCID: PMC10958485 DOI: 10.1016/s1474-4422(22)00303-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 05/24/2022] [Accepted: 07/11/2022] [Indexed: 11/07/2022]
Abstract
Tourette syndrome is a chronic neurodevelopmental disorder characterised by motor and phonic tics that can substantially diminish the quality of life of affected individuals. Evaluating and treating Tourette syndrome is complex, in part due to the heterogeneity of symptoms and comorbidities between individuals. The underlying pathophysiology of Tourette syndrome is not fully understood, but recent research in the past 5 years has brought new insights into the genetic variations and the alterations in neurophysiology and brain networks contributing to its pathogenesis. Treatment options for Tourette syndrome are expanding with novel pharmacological therapies and increased use of deep brain stimulation for patients with symptoms that are refractory to pharmacological or behavioural treatments. Potential predictors of patient responses to therapies for Tourette syndrome, such as specific networks modulated during deep brain stimulation, can guide clinical decisions. Multicentre data sharing initiatives have enabled several advances in our understanding of the genetics and pathophysiology of Tourette syndrome and will be crucial for future large-scale research and in refining effective treatments.
Collapse
Affiliation(s)
- Kara A Johnson
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA.
| | - Yulia Worbe
- Sorbonne University, ICM, Inserm, CNRS, Department of Neurophysiology, Hôpital Saint Antoine (DMU 6), AP-HP, Paris, France
| | - Kelly D Foote
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Christopher R Butson
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA; Department of Neurosurgery, University of Florida, Gainesville, FL, USA; J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Aysegul Gunduz
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
7
|
Lin X, Lin F, Chen H, Weng Y, Wen J, Ye Q, Chen C, Cai G. Comparison of efficacy of deep brain stimulation, repeat transcranial magnetic stimulation, and behavioral therapy in Tourette syndrome: A systematic review and Bayesian Network Meta-Analysis. Heliyon 2022; 8:e10952. [PMID: 36281376 PMCID: PMC9587297 DOI: 10.1016/j.heliyon.2022.e10952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/19/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Background Tourette syndrome (TS) is an incurable neuropsychiatric disorder. Deep brain stimulation (DBS), repeat transcranial magnetic stimulation (rTMS), and behavioral therapy (BT) are all effective treatments. However, the comparison of therapeutic effect of these three therapies is lacking. Methods A systematic literature search was conducted for randomized controlled studies (RCT). A network meta-analysis by R4.04 software according to Bayesian framework were performed. Results were meta-analyzed and network meta-analyzed to evaluate and compare the efficacy of DBS, rTMS and BT in TS patients. Results A total of 18 randomized controlled studies with 661 participants were included. The Yale Global Tic Severity Scale (YGTSS) and the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) were utilized to evaluate the symptoms of TS. All three treatments improved the tic symptoms of TS [DBS 12.11 (95%CI 7.58-16.65); rTMS 4.96 (95%CI 1.01-10.93); andBT 11.72 (95%CI 10.42-13.01)]; and obsessive-compulsive symptom [DBS 4.9 (95%CI 1.13-8.67); rTMS 5.28 (95%CI 0.21-10.77); and BT 1.61 (95%CI 0.74-2.48)]. The cumulative probability results showed that DBS had the best effect on the improvement of tic symptoms, followed by BT; and rTMS was ranked last. However, in terms of improvement of obsessional symptoms, rTMS was ranked first, DBS was ranked second, and BT was ranked last. In addition, the meta regression analysis of YGTSS in DBS, rTMS and BT has significant difference (P = 0.05). Limitation Due to the lack of quantitative indicators, we did not perform a network meta-analysis of the side effects of the three treatments. Conclusion Our study showed that DBS, rTMS, and BT are effective in TS. DBS causes the best improvement in tic symptoms, and rTMS is the most effective in improving the obsessive-compulsive symptoms.
Collapse
Affiliation(s)
- Xiaofeng Lin
- Department of Neurology, Union Hospital, Institute of Neuroscience, Institute of Clinical Neurology, Fujian Medical University, Fuzhou 350001, China,Endocrinology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Fabin Lin
- Department of Neurology, Union Hospital, Institute of Neuroscience, Institute of Clinical Neurology, Fujian Medical University, Fuzhou 350001, China,Department of Clinical Medicine, Fujian Medical University, Fuzhou 350001, China,Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Huiyun Chen
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fujian 35008, China
| | - Yanhong Weng
- Department of Neurology, Union Hospital, Institute of Neuroscience, Institute of Clinical Neurology, Fujian Medical University, Fuzhou 350001, China
| | - Junping Wen
- Endocrinology, Fujian Provincial Hospital, Fuzhou 350001, China,Corresponding author.
| | - Qinyong Ye
- Department of Neurology, Union Hospital, Institute of Neuroscience, Institute of Clinical Neurology, Fujian Medical University, Fuzhou 350001, China
| | - Chunmei Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou 350001, China,Corresponding author.
| | - Guoen Cai
- Department of Neurology, Union Hospital, Institute of Neuroscience, Institute of Clinical Neurology, Fujian Medical University, Fuzhou 350001, China,Department of Clinical Medicine, Fujian Medical University, Fuzhou 350001, China,Corresponding author.
| |
Collapse
|
8
|
Hartmann A, Atkinson-Clement C, Depienne C, Black K. Tourette syndrome research highlights from 2020. F1000Res 2022; 11:45. [PMID: 35464046 PMCID: PMC9021667 DOI: 10.12688/f1000research.75628.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/28/2022] [Indexed: 11/20/2022] Open
Abstract
We present here research from 2020 relevant to Tourette syndrome (TS). The authors briefly summarize a few reports they consider most important or interesting.
Collapse
Affiliation(s)
- Andreas Hartmann
- Department of Neurology, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France
| | | | - Christel Depienne
- Institute of Human Genetics,, University Hospital Essen, Essen, 45122, Germany
| | - Kevin Black
- Department of Psychiatry, Neurology, and Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| |
Collapse
|
9
|
Baumgartner AJ, Thompson JA, Kern DS, Ojemann SG. Novel targets in deep brain stimulation for movement disorders. Neurosurg Rev 2022; 45:2593-2613. [PMID: 35511309 DOI: 10.1007/s10143-022-01770-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/01/2021] [Accepted: 03/08/2022] [Indexed: 12/26/2022]
Abstract
The neurosurgical treatment of movement disorders, primarily via deep brain stimulation (DBS), is a rapidly expanding and evolving field. Although conventional targets including the subthalamic nucleus (STN) and internal segment of the globus pallidus (GPi) for Parkinson's disease and ventral intermediate nucleus of the thalams (VIM) for tremor provide substantial benefit in terms of both motor symptoms and quality of life, other targets for DBS have been explored in an effort to maximize clinical benefit and also avoid undesired adverse effects associated with stimulation. These novel targets primarily include the rostral zona incerta (rZI), caudal zona incerta (cZI)/posterior subthalamic area (PSA), prelemniscal radiation (Raprl), pedunculopontine nucleus (PPN), substantia nigra pars reticulata (SNr), centromedian/parafascicular (CM/PF) nucleus of the thalamus, nucleus basalis of Meynert (NBM), dentato-rubro-thalamic tract (DRTT), dentate nucleus of the cerebellum, external segment of the globus pallidus (GPe), and ventral oralis (VO) complex of the thalamus. However, reports of outcomes utilizing these targets are scattered and disparate. In order to provide a comprehensive resource for researchers and clinicians alike, we have summarized the existing literature surrounding these novel targets, including rationale for their use, neurosurgical techniques where relevant, outcomes and adverse effects of stimulation, and future directions for research.
Collapse
Affiliation(s)
| | - John A Thompson
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
- University of Colorado Hospital, 12631 East 17th Avenue, PO Box 6511, Aurora, CO, 80045, USA
| | - Drew S Kern
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
- University of Colorado Hospital, 12631 East 17th Avenue, PO Box 6511, Aurora, CO, 80045, USA
| | - Steven G Ojemann
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA.
- University of Colorado Hospital, 12631 East 17th Avenue, PO Box 6511, Aurora, CO, 80045, USA.
| |
Collapse
|
10
|
Frey J, Malaty IA. Tourette Syndrome Treatment Updates: a Review and Discussion of the Current and Upcoming Literature. Curr Neurol Neurosci Rep 2022; 22:123-142. [PMID: 35107785 PMCID: PMC8809236 DOI: 10.1007/s11910-022-01177-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW This study aims to examine the treatments currently available for Tourette syndrome (TS) and to discuss evolving therapies, spanning behavioral, pharmacologic, complementary and alternative medicine, and neuromodulation approaches. RECENT FINDINGS Behavioral therapies have undergone several modifications to improve accessibility, including transitioning to a virtual format which is particularly important in the current pandemic. There are several recent or ongoing pharmacologic studies that have shown promise including the selective D1 receptor antagonist ecopipam and various cannabinoid compounds. Adaptive DBS may enable the physiologic markers of tics to determine stimulation parameters and improve tic outcomes related to neuromodulation. In recent years, there has been a wealth of research across multiple treatment domains in the TS field. This review highlights exciting and new potential options for the future treatment of patients with TS.
Collapse
Affiliation(s)
- Jessica Frey
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Irene A Malaty
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
11
|
Szejko N, Worbe Y, Hartmann A, Visser-Vandewalle V, Ackermans L, Ganos C, Porta M, Leentjens AFG, Mehrkens JH, Huys D, Baldermann JC, Kuhn J, Karachi C, Delorme C, Foltynie T, Cavanna AE, Cath D, Müller-Vahl K. European clinical guidelines for Tourette syndrome and other tic disorders-version 2.0. Part IV: deep brain stimulation. Eur Child Adolesc Psychiatry 2022; 31:443-461. [PMID: 34605960 PMCID: PMC8940783 DOI: 10.1007/s00787-021-01881-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022]
Abstract
In 2011 the European Society for the Study of Tourette Syndrome (ESSTS) published its first European clinical guidelines for the treatment of Tourette Syndrome (TS) with part IV on deep brain stimulation (DBS). Here, we present a revised version of these guidelines with updated recommendations based on the current literature covering the last decade as well as a survey among ESSTS experts. Currently, data from the International Tourette DBS Registry and Database, two meta-analyses, and eight randomized controlled trials (RCTs) are available. Interpretation of outcomes is limited by small sample sizes and short follow-up periods. Compared to open uncontrolled case studies, RCTs report less favorable outcomes with conflicting results. This could be related to several different aspects including methodological issues, but also substantial placebo effects. These guidelines, therefore, not only present currently available data from open and controlled studies, but also include expert knowledge. Although the overall database has increased in size since 2011, definite conclusions regarding the efficacy and tolerability of DBS in TS are still open to debate. Therefore, we continue to consider DBS for TS as an experimental treatment that should be used only in carefully selected, severely affected and otherwise treatment-resistant patients.
Collapse
Affiliation(s)
- Natalia Szejko
- Department of Neurology, Medical University of Warsaw, Banacha 1a, 02-091, Warsaw, Poland.
- Department of Bioethics, Medical University of Warsaw, Banacha 1a, 02-091, Warsaw, Poland.
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, USA.
| | - Yulia Worbe
- Department on Neurophysiology, Saint Antoine Hospital, Sorbonne Université, Paris, France
- National Reference Center for Tourette Disorder, Pitié Salpetiere Hospital, Paris, France
| | - Andreas Hartmann
- Department of Neurosurgery, Pitié-Salpetriere Hospital, Sorbonne Université, Paris, France
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Linda Ackermans
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Christos Ganos
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Mauro Porta
- Department of Neurosurgery and Neurology, IRCCS Instituto Ortopedico Galeazzi, Milan, Italy
| | - Albert F G Leentjens
- Department of Psychiatry, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jan-Hinnerk Mehrkens
- Department of Neurosurgery, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Daniel Huys
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | | | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Johanniter Hospital Oberhausen, Oberhausen, Germany
| | - Carine Karachi
- National Reference Center for Tourette Disorder, Pitié Salpetiere Hospital, Paris, France
- Department of Neurosurgery, Pitié-Salpetriere Hospital, Sorbonne Université, Paris, France
- Department of Neurology, Pitié-Salpetriere Hospital, Sorbonne Université, Paris, France
| | - Cécile Delorme
- Department of Neurosurgery, Pitié-Salpetriere Hospital, Sorbonne Université, Paris, France
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Andrea E Cavanna
- Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Danielle Cath
- Department of Specialist Trainings, GGZ Drenthe Mental Health Institution, Assen, The Netherlands
- Department of Psychiatry, University Medical Center Groningen, Rijks University Groningen, Groningen, The Netherlands
| | - Kirsten Müller-Vahl
- Clinic of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| |
Collapse
|
12
|
Moussawi K, Kim MJ, Baybayan S, Wood M, Mills KA. Deep brain stimulation effect on anterior pallidum reduces motor impulsivity in Parkinson's disease. Brain Stimul 2022; 15:23-31. [PMID: 34749005 PMCID: PMC8816820 DOI: 10.1016/j.brs.2021.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/09/2021] [Accepted: 11/04/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Deep Brain Stimulation (DBS) of the subthalamic nucleus or globus pallidus internus is used to treat the motor symptoms of Parkinson's disease. The former can worsen impulsive and compulsive behaviors after controlling for the reduction of dopaminergic medications. However, the effect of pallidal DBS on such behaviors in PD patients is less clear. OBJECTIVE/HYPOTHESIS We hypothesized that greater stimulation spread to the pallidum with prefrontal connectivity would reduce motor impulsivity. METHODS Seven Parkinson's patients with stable globus pallidus internus DBS settings for 3 months, disease duration of 13 ± 1.3 years, and Montreal Cognitive Assessment of 26.8 ± 1.1 each had two stimulation settings defined based on reconstructions of lead placement and volume of tissue activation targeting either a dorsal or ventral position along the DBS electrode but still within the globus pallidus internus. Subjects performed a stop signal reaction time task with the DBS turned off vs. on in each of the defined stimulation settings, which was correlated with the degree of stimulation effect on pallidal subregions. RESULTS A shorter distance between the volume of tissue activation and the right prefrontally-connected GPi correlated with less impulsivity on the stop signal reaction time task (r = 0.69, p < 0.05). Greater volume of tissue activation overlap with the non-prefrontally-connected globus pallidus internus was associated with increased impulsivity. CONCLUSION These data can be leveraged to optimize DBS programming in PD patients with problematic impulsivity or in other disorders involving impulsive behaviors such as substance use disorders.
Collapse
Affiliation(s)
- Khaled Moussawi
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Corresponding Author: Kelly A. Mills, Johns Hopkins University School of Medicine, Dept. of Neurology, Meyer 6-181D, 600 N. Wolfe Street, Baltimore, MD 21287, Phone: 410-502-0133,
| | - Min Jae Kim
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Sydney Baybayan
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Myles Wood
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Kelly A. Mills
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Corresponding Author: Kelly A. Mills, Johns Hopkins University School of Medicine, Dept. of Neurology, Meyer 6-181D, 600 N. Wolfe Street, Baltimore, MD 21287, Phone: 410-502-0133,
| |
Collapse
|
13
|
Wehmeyer L, Schüller T, Kiess J, Heiden P, Visser-Vandewalle V, Baldermann JC, Andrade P. Target-Specific Effects of Deep Brain Stimulation for Tourette Syndrome: A Systematic Review and Meta-Analysis. Front Neurol 2021; 12:769275. [PMID: 34744993 PMCID: PMC8563609 DOI: 10.3389/fneur.2021.769275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/21/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Extended research has pointed to the efficacy of deep brain stimulation (DBS) in treatment of patients with treatment-refractory Tourette syndrome (TS). The four most commonly used DBS targets for TS include the centromedian nucleus-nucleus ventrooralis internus (CM-Voi) and the centromedian nucleus-parafascicular (CM-Pf) complexes of the thalamus, and the posteroventrolateral (pvIGPi) and the anteromedial portion of the globus pallidus internus (amGPi). Differences and commonalities between those targets need to be compared systematically. Objective: Therefore, we evaluated whether DBS is effective in reducing TS symptoms and target-specific differences. Methods: A PubMed literature search was conducted according to the PRISMA guidelines. Eligible literature was used to conduct a systematic review and meta-analysis. Results: In total, 65 studies with 376 patients were included. Overall, Yale Global Tic Severity Scale (YGTSS) scores were reduced by more than 50 in 69% of the patients. DBS also resulted in significant reductions of secondary outcome measures, including the total YGTSS, modified Rush Video-Based Tic Rating Scale (mRVRS), Yale-Brown Obsessive Compulsive Scale (YBOCS), and Becks Depression Inventory (BDI). All targets resulted in significant reductions of YGTSS scores and, with the exception of the CM-Pf, also in reduced YBOCS scores. Interestingly, DBS of pallidal targets showed increased YGTSS and YBOCS reductions compared to thalamic targets. Also, the meta-analysis including six randomized controlled and double-blinded trials demonstrated clinical efficacy of DBS for TS, that remained significant for GPi but not thalamic stimulation in two separate meta-analyses. Conclusion: We conclude that DBS is a clinically effective treatment option for patients with treatment-refractory TS, with all targets showing comparable improvement rates. Future research might focus on personalized and symptom-specific target selection.
Collapse
Affiliation(s)
- Laura Wehmeyer
- Faculty of Medicine and University Hospital Cologne, Department of Stereotactic and Functional Neurosurgery, University of Cologne, Cologne, Germany,*Correspondence: Laura Wehmeyer
| | - Thomas Schüller
- Faculty of Medicine and University Hospital Cologne, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Jana Kiess
- Faculty of Medicine and University Hospital Cologne, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Petra Heiden
- Faculty of Medicine and University Hospital Cologne, Department of Stereotactic and Functional Neurosurgery, University of Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Faculty of Medicine and University Hospital Cologne, Department of Stereotactic and Functional Neurosurgery, University of Cologne, Cologne, Germany
| | - Juan Carlos Baldermann
- Faculty of Medicine and University Hospital Cologne, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany,Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Pablo Andrade
- Faculty of Medicine and University Hospital Cologne, Department of Stereotactic and Functional Neurosurgery, University of Cologne, Cologne, Germany
| |
Collapse
|
14
|
Abstract
Tic disorders and Tourette syndrome are the most common movement disorders in children and are characterized by movements or vocalizations. Clinically, Tourette syndrome is frequently associated with comorbid psychiatric symptoms. Although dysfunction of cortical–striatal–thalamic–cortical circuits with aberrant neurotransmitter function has been considered the proximate cause of tics, the mechanism underlying this association is unclear. Recently, many studies have been conducted to elucidate the epidemiology, clinical course, comorbid symptoms, and pathophysiology of tic disorders by using laboratory studies, neuroimaging, electrophysiological testing, environmental exposure, and genetic testing. In addition, many researchers have focused on treatment for tics, including behavioral therapy, pharmacological treatment, and surgical treatment. Here, we provide an overview of recent progress on Tourette syndrome.
Collapse
Affiliation(s)
- Keisuke Ueda
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin J Black
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- Department of Radiology, Washington University School of Medicine, St Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
15
|
Marceglia S, Prenassi M, Galbiati TF, Porta M, Zekaj E, Priori A, Servello D. Thalamic Local Field Potentials Are Related to Long-Term DBS Effects in Tourette Syndrome. Front Neurol 2021; 12:578324. [PMID: 33658970 PMCID: PMC7917178 DOI: 10.3389/fneur.2021.578324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Local field potential (LFP) recordings helped to clarify the pathophysiology of Tourette syndrome (TS) and to define new strategies for deep brain stimulation (DBS) treatment for refractory TS, based on the delivery of stimulation in accordance with changes in the electrical activity of the DBS target area. However, there is little evidence on the relationship between LFP pattern and DBS outcomes in TS. Objective: To investigate the relationship between LFP oscillations and DBS effects on tics and on obsessive compulsive behavior (OCB) comorbidities. Methods: We retrospectively analyzed clinical data and LFP recordings from 17 patients treated with DBS of the centromedian-parafascicular/ventralis oralis (CM-Pf/VO) complex, and followed for more several years after DBS in the treating center. In these patients, LFPs were recorded either in the acute setting (3–5 days after DBS electrode implant) or in the chronic setting (during impulse generator replacement surgery). LFP oscillations were correlated with the Yale Global Tic Severity Scale (YGTSS) and the Yale–Brown Obsessive–Compulsive Scale (Y-BOCS) collected at baseline (before DBS surgery), 1 year after DBS, and at the last follow-up available. Results: We found that, at baseline, in the acute setting, the power of the oscillations included in the 5–15-Hz band, previously identified as TS biomarker, is correlated with the pathophysiology of tics, being significantly correlated with total YGTSS before DBS (Spearman's ρ = 0.701, p = 0.011). The power in the 5–15-Hz band was also correlated with the improvement in Y-BOCS after 1 year of DBS (Spearman's ρ = −0.587, p = 0.045), thus suggesting a relationship with the DBS effects on OCB comorbidities. Conclusions: Our observations confirm that the low-frequency (5–15-Hz) band is a significant biomarker of TS, being related to the severity of tics and, also to the long-term response on OCBs. This represents a step toward both the understanding of the mechanisms underlying DBS effects in TS and the development of adaptive DBS strategies.
Collapse
Affiliation(s)
- Sara Marceglia
- Dipartimento di Ingegneria e Architettura, Università degli Studi di Trieste, Trieste, Italy.,Unità Operativa Neurofisiopatologia, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Prenassi
- Dipartimento di Ingegneria e Architettura, Università degli Studi di Trieste, Trieste, Italy.,Unità Operativa Neurofisiopatologia, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tommaso F Galbiati
- Functional Neurosurgery Unit, Istituto di Ricovero e Cura a Carattere Scientifico Galeazzi Hospital, Milan, Italy
| | - Mauro Porta
- Functional Neurosurgery Unit, Istituto di Ricovero e Cura a Carattere Scientifico Galeazzi Hospital, Milan, Italy
| | - Edvin Zekaj
- Functional Neurosurgery Unit, Istituto di Ricovero e Cura a Carattere Scientifico Galeazzi Hospital, Milan, Italy.,"Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan Medical School, Milan, Italy
| | - Alberto Priori
- "Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan Medical School, Milan, Italy
| | - Domenico Servello
- Functional Neurosurgery Unit, Istituto di Ricovero e Cura a Carattere Scientifico Galeazzi Hospital, Milan, Italy
| |
Collapse
|
16
|
Johnson KA, Duffley G, Foltynie T, Hariz M, Zrinzo L, Joyce EM, Akram H, Servello D, Galbiati TF, Bona A, Porta M, Meng FG, Leentjens AFG, Gunduz A, Hu W, Foote KD, Okun MS, Butson CR. Basal Ganglia Pathways Associated With Therapeutic Pallidal Deep Brain Stimulation for Tourette Syndrome. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:961-972. [PMID: 33536144 DOI: 10.1016/j.bpsc.2020.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/28/2020] [Accepted: 11/14/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) targeting the globus pallidus internus (GPi) can improve tics and comorbid obsessive-compulsive behavior (OCB) in patients with treatment-refractory Tourette syndrome (TS). However, some patients' symptoms remain unresponsive, the stimulation applied across patients is variable, and the mechanisms underlying improvement are unclear. Identifying the fiber pathways surrounding the GPi that are associated with improvement could provide mechanistic insight and refine targeting strategies to improve outcomes. METHODS Retrospective data were collected for 35 patients who underwent bilateral GPi DBS for TS. Computational models of fiber tract activation were constructed using patient-specific lead locations and stimulation settings to evaluate the effects of DBS on basal ganglia pathways and the internal capsule. We first evaluated the relationship between activation of individual pathways and symptom improvement. Next, linear mixed-effects models with combinations of pathways and clinical variables were compared in order to identify the best-fit predictive models of tic and OCB improvement. RESULTS The best-fit model of tic improvement included baseline severity and the associative pallido-subthalamic pathway. The best-fit model of OCB improvement included baseline severity and the sensorimotor pallido-subthalamic pathway, with substantial evidence also supporting the involvement of the prefrontal, motor, and premotor internal capsule pathways. The best-fit models of tic and OCB improvement predicted outcomes across the cohort and in cross-validation. CONCLUSIONS Differences in fiber pathway activation likely contribute to variable outcomes of DBS for TS. Computational models of pathway activation could be used to develop novel approaches for preoperative targeting and selecting stimulation parameters to improve patient outcomes.
Collapse
Affiliation(s)
- Kara A Johnson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah; Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
| | - Gordon Duffley
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah; Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
| | - Thomas Foltynie
- Functional Neurosurgery Unit, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Marwan Hariz
- Functional Neurosurgery Unit, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom; Department of Clinical Neuroscience, Umea University, Umea, Sweden
| | - Ludvic Zrinzo
- Functional Neurosurgery Unit, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Eileen M Joyce
- Functional Neurosurgery Unit, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Harith Akram
- Functional Neurosurgery Unit, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Domenico Servello
- Neurosurgical Department, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Tommaso F Galbiati
- Neurosurgical Department, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Alberto Bona
- Neurosurgical Department, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Mauro Porta
- Tourette's Syndrome and Movement Disorders Center, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Fan-Gang Meng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Albert F G Leentjens
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Aysegul Gunduz
- Norman Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Wei Hu
- Norman Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida
| | - Kelly D Foote
- Norman Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida
| | - Christopher R Butson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah; Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah; Department of Neurology, University of Utah, Salt Lake City, Utah; Department of Neurosurgery, University of Utah, Salt Lake City, Utah; Department of Psychiatry, University of Utah, Salt Lake City, Utah.
| |
Collapse
|