1
|
Moon J, Oh E, Kim M, Kim R, Yoo D, Shin C, Lee JY, Kim JM, Koh SB, Kim M, Jeon B. A Practical Guide for Diagnostic Investigations and Special Considerations in Patients With Huntington's Disease in Korea. J Mov Disord 2025; 18:17-30. [PMID: 39725405 PMCID: PMC11824489 DOI: 10.14802/jmd.24232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024] Open
Abstract
This review provides a comprehensive framework for the diagnostic approach and management of Huntington's disease (HD) tailored to the Korean population. Key topics include genetic counseling, predictive testing, and reproductive options like preimplantation genetic testing. Strategies for assessing disease progression in premanifest HD through laboratory investigations, biofluid, and imaging biomarkers are highlighted. Special considerations for juvenile and late-onset HD, along with associated comorbidities like diabetes mellitus, hypertension, and cardiovascular abnormalities, are discussed. The guide emphasizes personalized symptom management, including pharmacotherapy, physical therapy, and nutritional support, while exploring emerging disease-modifying treatments. A multidisciplinary care model is advocated to improve outcomes for HD patients and caregivers in Korea.
Collapse
Affiliation(s)
- Jangsup Moon
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea
| | - Eungseok Oh
- Department of Neurology, Chungnam National University Hospital, Daejeon, Korea
- Department of Neurology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Minkyeong Kim
- Department of Neurology, Gyeongsang National University Hospital, Jinju, Korea
| | - Ryul Kim
- Department of Neurology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Dallah Yoo
- Department of Neurology, Kyung Hee University Hospital, Kyung Hee University School of Medicine, Seoul, Korea
| | - Chaewon Shin
- Department of Neurology, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Neurology, Chungnam National University Sejong Hospital, Sejong, Korea
| | - Jee-Young Lee
- Department of Neurology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Min Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Seong-Beom Koh
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Manho Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Beomseok Jeon
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - on behalf of the Korean Huntington’s Disease Society
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Neurology, Chungnam National University Hospital, Daejeon, Korea
- Department of Neurology, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Neurology, Gyeongsang National University Hospital, Jinju, Korea
- Department of Neurology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Neurology, Kyung Hee University Hospital, Kyung Hee University School of Medicine, Seoul, Korea
- Department of Neurology, Chungnam National University Sejong Hospital, Sejong, Korea
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Wang L, Chen W, Qian Y, So TY. Repeatability of quantitative T1rho magnetic resonance imaging in normal brain tissues at 3.0T. Phys Med 2023; 112:102641. [PMID: 37480710 DOI: 10.1016/j.ejmp.2023.102641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/21/2023] [Accepted: 07/05/2023] [Indexed: 07/24/2023] Open
Abstract
PURPOSE T1rho imaging is a promising MRI technique for imaging of brain disease. This study aimed to assess the repeatability of quantitative T1rho imaging in the normal brain grey and white matter. METHODS The study prospectively recruited 30 healthy volunteers without a history of neurological diseases or brain injury, and T1rho was performed and quantified from three imaging sessions. Repeat measures analysis of variance (ANOVA) and within-subject coefficients of variation (wCoV) was used to detect differences in T1rho values between the three scans. RESULTS The results showed low wCoVs of less than 4.3% (range 0.92-4.27%) across all the brain structures. No significant differences were observed in T1rho measurement between the three scans (p > 0.05). The amygdala and hippocampus showed the highest T1rho values of 91.79 ± 2.55 msec and 91.07 ± 2.11 msec respectively, and the palladium and putamen had the lowest values of 67.60 ± 1.84 msec and 71.83 ± 1.85 msec respectively. CONCLUSION T1rho shows high test-retest repeatability for whole brain imaging in serial imaging sessions, indicating it to be a reliable sequence for quantitative brain imaging.
Collapse
Affiliation(s)
- Lei Wang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Weitian Chen
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Yurui Qian
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Tiffany Y So
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
3
|
Schultz JL, Langbehn DR, Al-Kaylani HM, van der Plas E, Koscik TR, Epping EA, Espe-Pfeifer PB, Martin EP, Moser DJ, Magnotta VA, Nopoulos PC. Longitudinal Clinical and Biological Characteristics in Juvenile-Onset Huntington's Disease. Mov Disord 2023; 38:113-122. [PMID: 36318082 PMCID: PMC9851979 DOI: 10.1002/mds.29251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/26/2022] [Accepted: 09/29/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Juvenile-onset Huntington's disease (JOHD) is a rare form of Huntington's disease (HD) characterized by symptom onset before the age of 21 years. Observational data in this cohort is lacking. OBJECTIVES Quantify measures of disease progression for use in clinical trials of patients with JOHD. METHODS Participants who received a motor diagnosis of HD before the age of 21 were included in the Kids-JOHD study. The comparator group consisted of children and young adults who were at-risk for inheriting the genetic mutation that causes HD, but who were found to have a CAG repeat in the non-expanded range (gene non-expanded [GNE]). RESULTS Data were obtained between March 17, 2006, and February 13, 2020. There were 26 JOHD participants and 78 GNE participants who were comparable on age (16.03 vs. 14.43, respectively) and sex (53.8% female vs. 57.7% female, respectively). The mean annualized decrease in striatal volume in the JOHD group was -3.99% compared to -0.06% in the GNE (mean difference [MD], -3.93%; 95% confidence intervals [CI], [-4.98 to -2.80], FDR < 0.0001). The mean increase in the Unified Huntington's Disease Rating Scale Total Motor Score per year in the JOHD group was 7.29 points compared to a mean decrease of -0.21 point in the GNE (MD, 7.5; 95% CI, [5.71-9.28], FDR < 0·0001). CONCLUSIONS These findings demonstrate that structural brain imaging and clinical measures in JOHD may be potential biomarkers of disease progression for use in clinical trials. Collaborative efforts are required to validate these results in a larger cohort of patients with JOHD. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jordan L. Schultz
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
- Carver College of Medicine at the University of Iowa, Department of Neurology, 200 Hawkins Drive, Iowa City, IA
- University of Iowa College of Pharmacy, Division of Pharmacy Practice and Sciences, 200 Hawkins Drive, Iowa City, IA
| | - Douglas R. Langbehn
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
| | - Hend M. Al-Kaylani
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
| | - Ellen van der Plas
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
| | - Timothy R. Koscik
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
| | - Eric A. Epping
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
| | - Patricia B. Espe-Pfeifer
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
| | - Erin P. Martin
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
| | - David J. Moser
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
| | - Vincent A. Magnotta
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
- Carver College of Medicine at the University of Iowa, Department of Radiology, 200 Hawkins Drive, Iowa City, IA
| | - Peggy C. Nopoulos
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
- Carver College of Medicine at the University of Iowa, Department of Neurology, 200 Hawkins Drive, Iowa City, IA
- Stead Family Children’s Hospital at the University of Iowa, 200 Hawkins Drive, Iowa City, IA
| |
Collapse
|
4
|
Podvin S, Mosier C, Poon W, Wei E, Rossitto LA, Hook V. Dysregulation of Human Juvenile Huntington's Disease Brain Proteomes in Cortex and Putamen Involves Mitochondrial and Neuropeptide Systems. J Huntingtons Dis 2023; 12:315-333. [PMID: 38108356 DOI: 10.3233/jhd-230577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
BACKGROUND Huntington's disease (HD) is a genetic neurodegenerative disease caused by trinucleotide repeat CAG expansions in the human HTT gene. Early onset juvenile HD (JHD) in children is the most severe form of the disease caused by high CAG repeat numbers of the HTT gene. OBJECTIVE To gain understanding of human HD mechanisms hypothesized to involve dysregulated proteomes of brain regions that regulate motor and cognitive functions, this study analyzed the proteomes of human JHD cortex and putamen brain regions compared to age-matched controls. METHODS JHD and age-matched control brain tissues were assessed for CAG repeat numbers of HTT by PCR. Human brain JHD brain cortex regions of BA4 and BA6 with the putamen region (n = 5) were analyzed by global proteomics, compared to age-matched controls (n = 7). Protein interaction pathways were assessed by gene ontology (GO), STRING-db, and KEGG bioinformatics. RESULTS JHD brain tissues were heterozygous for one mutant HTT allele containing 60 to 120 CAG repeats, and one normal HTT allele with 10 to 19 CAG repeats. Proteomics data for JHD brain regions showed dysregulated mitochondrial energy pathways and changes in synaptic systems including peptide neurotransmitters. JHD compared to control proteomes of cortex and putamen displayed (a) proteins present only in JHD, (b) proteins absent in JHD, and (c) proteins that were downregulated or upregulated. CONCLUSIONS Human JHD brain cortex and putamen regions display significant dysregulation of proteomes representing deficits in mitochondrial and synaptic neurotransmission functions. These findings advance understanding of JHD brain molecular mechanisms associated with HD disabilities.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Charles Mosier
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - William Poon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Enlin Wei
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Leigh-Ana Rossitto
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Saito S. [5. Advanced Imaging Technology-T1rho-CEST Imaging]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2022; 78:95-100. [PMID: 35046227 DOI: 10.6009/jjrt.780111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shigeyoshi Saito
- Laboratory of Advanced Imaging Technology, Department of Medical Physics and Engineering, Division of Health Sciences, Osaka University Graduate School of Medicine.,Department of Advanced Medical Technology, National Cardiovascular and Cerebral Research Center
| |
Collapse
|
6
|
Special Issue: Juvenile Onset Huntington's Disease. Brain Sci 2020; 10:brainsci10090652. [PMID: 32962249 PMCID: PMC7563869 DOI: 10.3390/brainsci10090652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 11/17/2022] Open
|