1
|
Sicher AR, Liss A, Vozella V, Marsland P, Seemiller LR, Springer M, Starnes WD, Griffith KR, Smith GC, Astefanous A, Deak T, Roberto M, Varodayan FP, Crowley NA. Voluntary adolescent alcohol exposure does not robustly increase adulthood consumption of alcohol in multiple mouse and rat models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591674. [PMID: 38746266 PMCID: PMC11092607 DOI: 10.1101/2024.04.30.591674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Adolescence is a period of increased risk taking, including increased alcohol and drug use. Multiple clinical studies report a positive relationship between adolescent alcohol consumption and risk of developing an alcohol use disorder (AUD) in adulthood. However, few preclinical studies have attempted to tease apart the biological contributions of adolescent alcohol exposure, independent of other social, environmental, and stress factors, and studies that have been conducted show mixed results. Here we use several adolescent voluntary consumption of alcohol models, conducted across four labs in three institutes and with two rodent species, to investigate the ramifications of adolescent alcohol consumption on adulthood alcohol consumption in controlled, pre-clinical environments. We consistently demonstrate a lack of robust increases in adulthood alcohol consumption. This work highlights that risks seen in both human datasets and other murine drinking models may be due to unique social and environmental factors - some of which may be unique to humans.
Collapse
Affiliation(s)
- Avery R. Sicher
- Neuroscience Graduate Program, The Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Andrea Liss
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University - SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Valentina Vozella
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Paige Marsland
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University - SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Laurel R. Seemiller
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Matthew Springer
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - William D. Starnes
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Keith R. Griffith
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Grace C. Smith
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Amy Astefanous
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University - SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University - SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Florence P. Varodayan
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University - SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Nicole A. Crowley
- Neuroscience Graduate Program, The Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
2
|
Elhadi K, Daiwile AP, Cadet JL. Modeling methamphetamine use disorder and relapse in animals: short- and long-term epigenetic, transcriptional., and biochemical consequences in the rat brain. Neurosci Biobehav Rev 2023; 155:105440. [PMID: 38707245 PMCID: PMC11068368 DOI: 10.1016/j.neubiorev.2023.105440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 05/07/2024]
Abstract
Methamphetamine use disorder (MUD) is a neuropsychiatric disorder characterized by binge drug taking episodes, intervals of abstinence, and relapses to drug use even during treatment. MUD has been modeled in rodents and investigators are attempting to identify its molecular bases. Preclinical experiments have shown that different schedules of methamphetamine self-administration can cause diverse transcriptional changes in the dorsal striatum of Sprague-Dawley rats. In the present review, we present data on differentially expressed genes (DEGs) identified in the rat striatum following methamphetamine intake. These include genes involved in transcription regulation, potassium channel function, and neuroinflammation. We then use the striatal data to discuss the potential significance of the molecular changes induced by methamphetamine by reviewing concordant or discordant data from the literature. This review identified potential molecular targets for pharmacological interventions. Nevertheless, there is a need for more research on methamphetamine-induced transcriptional consequences in various brain regions. These data should provide a more detailed neuroanatomical map of methamphetamine-induced changes and should better inform therapeutic interventions against MUD.
Collapse
Affiliation(s)
- Khalid Elhadi
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224
| | - Atul P. Daiwile
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224
| |
Collapse
|
3
|
Bi-directional modulation of hyperpolarization-activated cation currents (I h) by ethanol in rat hippocampal CA3 pyramidal neurons. Neuropharmacology 2023; 227:109423. [PMID: 36690323 DOI: 10.1016/j.neuropharm.2023.109423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
It is widely acknowledged that ethanol (EtOH) can alter many neuronal functions, including synaptic signaling, firing discharge, and membrane excitability, through its interaction with multiple membrane proteins and intracellular pathways. Previous work has demonstrated that EtOH enhances the firing rate of hippocampal GABAergic interneurons and thus the presynaptic GABA release at CA1 and CA3 inhibitory synapses through a positive modulation of the hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels. Activation of HCN channels produce an inward current, commonly called Ih, which plays an essential role in generating/regulating specific neuronal activities in GABAergic interneurons and principal glutamatergic pyramidal neurons such as those in the CA3 subregion. Since the direct effect of EtOH on HCN channels expressed in CA3 pyramidal neurons was not thoroughly elucidated, we investigated the possible interaction between EtOH and HCN channels and the impact on excitability and postsynaptic integration of these neurons. Patch-clamp recordings were performed in single CA3 pyramidal neurons from acute male rat coronal hippocampal slices. Our results show that EtOH modulates HCN-mediated Ih in a concentration-dependent and bi-directional manner, with a positive modulation at lower (20 mM) and an inhibitory action at higher (60-80 mM) concentrations. The modulation of Ih by EtOH was mimicked by forskolin, antagonized by different drugs that selectively interfere with the AC/cAMP/PKA intracellular pathway, as well as by the selective HCN inhibitor ZD7288. Altogether, these data further support the evidence that HCN channels may represent an important molecular target through which EtOH may regulate neuronal activity.
Collapse
|
4
|
Munoz B, Fritz BM, Yin F, Atwood BK. HCN1 channels mediate mu opioid receptor long-term depression at insular cortex inputs to the dorsal striatum. J Physiol 2022; 600:4917-4938. [PMID: 36181477 PMCID: PMC11457701 DOI: 10.1113/jp283513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
Mu opioid receptors (MORs) are expressed in the dorsal striatum, a brain region that mediates goal-directed (via the dorsomedial striatum) and habitual (via the dorsolateral striatum, DLS) behaviours. Our previous work indicates that glutamate transmission is depressed when MORs are activated in the dorsal striatum, inducing MOR-mediated long-term synaptic depression (MOR-LTD) or short-term depression (MOR-STD), depending on the input. In the DLS, MOR-LTD is produced by MORs on anterior insular cortex (AIC) inputs and MOR-STD occurs at thalamic inputs, suggesting input-specific MOR plasticity mechanisms. Here, we evaluated the mechanisms of induction of MOR-LTD and MOR-STD in the DLS using pharmacology and optogenetics combined with patch-clamp electrophysiology. We found that cAMP/PKA signalling and protein synthesis are necessary for MOR-LTD expression, similar to previous studies of cannabinoid-mediated LTD in DLS. MOR-STD does not utilize these same mechanisms. We also demonstrated that cannabinoid-LTD occurs at AIC inputs to DLS. However, while cannabinoid-LTD requires mTOR signalling in DLS, MOR-LTD does not. We characterized the role of presynaptic HCN1 channels in MOR-LTD induction as HCN1 channels expressed in AIC are necessary for MOR-LTD expression in the DLS. These results suggest a mechanism in which MOR activation requires HCN1 to induce MOR-LTD, suggesting a new target for pharmacological modulation of synaptic plasticity, providing new opportunities to develop novel drugs to treat alcohol and opioid use disorders. KEY POINTS: Mu opioid receptor-mediated long-term depression at anterior insular cortex inputs to dorsolateral striatum involves presynaptic cAMP/PKA signalling and protein translation, similar to known mechanisms of cannabinoid long-term depression. Dorsal striatal cannabinoid long-term depression also occurs at anterior insular cortex inputs to the dorsolateral striatum. Dorsal striatal cannabinoid long-term depression requires mTOR signalling, similar to hippocampal cannabinoid long-term depression, but dorsal striatal mu opioid long-term depression does not require mTOR signalling. Mu opioid long-term depression requires presynaptic HCN1 channels at anterior insular cortex inputs to dorsolateral striatum.
Collapse
Affiliation(s)
- Braulio Munoz
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Brandon M. Fritz
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Fuqin Yin
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Brady K. Atwood
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
5
|
Sicher AR, Duerr A, Starnes WD, Crowley NA. Adolescent Alcohol and Stress Exposure Rewires Key Cortical Neurocircuitry. Front Neurosci 2022; 16:896880. [PMID: 35655755 PMCID: PMC9152326 DOI: 10.3389/fnins.2022.896880] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022] Open
Abstract
Human adolescence is a period of development characterized by wide ranging emotions and behavioral risk taking, including binge drinking (Konrad et al., 2013). These behavioral manifestations of adolescence are complemented by growth in the neuroarchitecture of the brain, including synaptic pruning (Spear, 2013) and increases in overall white matter volume (Perrin et al., 2008). During this period of profound physiological maturation, the adolescent brain has a unique vulnerability to negative perturbations. Alcohol consumption and stress exposure, both of which are heightened during adolescence, can individually and synergistically alter these neurodevelopmental trajectories in positive and negative ways (conferring both resiliency and susceptibility) and influence already changing neurotransmitter systems and circuits. Importantly, the literature is rapidly changing and evolving in our understanding of basal sex differences in the brain, as well as the interaction between biological sex and life experiences. The animal literature provides the distinctive opportunity to explore sex-specific stress- and alcohol- induced changes in neurocircuits on a relatively rapid time scale. In addition, animal models allow for the investigation of individual neurons and signaling molecules otherwise inaccessible in the human brain. Here, we review the human and rodent literature with a focus on cortical development, neurotransmitters, peptides, and steroids, to characterize the field's current understanding of the interaction between adolescence, biological sex, and exposure to stress and alcohol.
Collapse
Affiliation(s)
- Avery R. Sicher
- The Pennsylvania State University, University Park, PA, United States
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Arielle Duerr
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - William D. Starnes
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Nicole A. Crowley
- The Pennsylvania State University, University Park, PA, United States
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|