1
|
Abe T, Yamashita K, Kikuchi K, Hatai E, Fujii F, Chong PF, Sakai Y, Saitsu H, Inoue K, Togao O, Ishigami K. Diagnostic MR imaging features of hypomyelination of early myelinating structures: A case report. Neuroradiol J 2024; 37:758-760. [PMID: 38146229 PMCID: PMC11531016 DOI: 10.1177/19714009231224419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023] Open
Abstract
Hypomyelination of early myelinating structures (HEMS) has recently been defined as a new genetic disorder accompanied by clinical and MR imaging characteristics. However, no studies have focused on diffusion-weighted imaging (DWI) findings of HEMS. We would like to propose a "sheep sign," which is formed by DWI hyperintensity in the medial medullary lamina along with alternating high-low-high (HLH) intensity stripes in the posterior limb of the internal capsule. We believe the presence of the "sheep sign" on DWI in combination with alternating HLH intensity stripes may be a valuable tool for diagnosing HEMS.
Collapse
Affiliation(s)
- Tokiko Abe
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Koji Yamashita
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Kazufumi Kikuchi
- Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Eriko Hatai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Fumihiko Fujii
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Pin Fee Chong
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ken Inoue
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Japan
| | - Osamu Togao
- Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Kousei Ishigami
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Japan
| |
Collapse
|
2
|
Bettinger CM, Dulz S, Atiskova Y, Guerreiro H, Schön G, Guder P, Maier SL, Denecke J, Bley AE. Overview of Neuro-Ophthalmic Findings in Leukodystrophies. J Clin Med 2024; 13:5114. [PMID: 39274327 PMCID: PMC11396446 DOI: 10.3390/jcm13175114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/16/2024] Open
Abstract
Background: Leukodystrophies are a group of rare genetic diseases that primarily affect the white matter of the central nervous system. The broad spectrum of metabolic and pathological causes leads to manifestations at any age, most often in childhood and adolescence, and a variety of symptoms. Leukodystrophies are usually progressive, resulting in severe disabilities and premature death. Progressive visual impairment is a common symptom. Currently, no overview of the manifold neuro-ophthalmologic manifestations and visual impact of leukodystrophies exists. Methods: Data from 217 patients in the Hamburg leukodystrophy cohort were analyzed retrospectively for neuro-ophthalmologic manifestations, age of disease onset, and magnetic resonance imaging, visual evoked potential, and optical coherence tomography findings and were compared with data from the literature. Results: In total, 68% of the patients suffered from neuro-ophthalmologic symptoms, such as optic atrophy, visual neglect, strabismus, and nystagmus. Depending on the type of leukodystrophy, neuro-ophthalmologic symptoms occurred early or late during the course of the disease. Magnetic resonance imaging scans revealed pathologic alterations in the visual tract that were temporally correlated with symptoms. Conclusions: The first optical coherence tomography findings in Krabbe disease and metachromatic leukodystrophy allow retinal assessments. Comprehensive literature research supports the results of this first overview of neuro-ophthalmologic findings in leukodystrophies.
Collapse
Affiliation(s)
| | - Simon Dulz
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Yevgeniya Atiskova
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Helena Guerreiro
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Gerhard Schön
- Center of Experimental Medicine, Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Philipp Guder
- Children's Hospital, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Sarah Lena Maier
- Children's Hospital, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Jonas Denecke
- Children's Hospital, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Annette E Bley
- Children's Hospital, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
3
|
Perrier S, Gauquelin L, Bernard G. Inherited white matter disorders: Hypomyelination (myelin disorders). HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:197-223. [PMID: 39322379 DOI: 10.1016/b978-0-323-99209-1.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Hypomyelinating leukodystrophies are a subset of genetic white matter diseases characterized by insufficient myelin deposition during development. MRI patterns are used to identify hypomyelinating disorders, and genetic testing is used to determine the causal genes implicated in individual disease forms. Clinical course can range from severe, with patients manifesting neurologic symptoms in infancy or early childhood, to mild, with onset in adolescence or adulthood. This chapter discusses the most common hypomyelinating leukodystrophies, including X-linked Pelizaeus-Merzbacher disease and other PLP1-related disorders, autosomal recessive Pelizaeus-Merzbacher-like disease, and POLR3-related leukodystrophy. PLP1-related disorders are caused by hemizygous pathogenic variants in the proteolipid protein 1 (PLP1) gene, and encompass classic Pelizaeus-Merzbacher disease, the severe connatal form, PLP1-null syndrome, spastic paraplegia type 2, and hypomyelination of early myelinating structures. Pelizaeus-Merzbacher-like disease presents a similar clinical picture to Pelizaeus-Merzbacher disease, however, it is caused by biallelic pathogenic variants in the GJC2 gene, which encodes for the gap junction protein Connexin-47. POLR3-related leukodystrophy, or 4H leukodystrophy (hypomyelination, hypodontia, and hypogonadotropic hypogonadism), is caused by biallelic pathogenic variants in genes encoding specific subunits of the transcription enzyme RNA polymerase III. In this chapter, the clinical features, disease pathophysiology and genetics, imaging patterns, as well as supportive and future therapies are discussed for each disorder.
Collapse
Affiliation(s)
- Stefanie Perrier
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Laurence Gauquelin
- Division of Pediatric Neurology, Department of Pediatrics, CHUL et Centre Mère-Enfant Soleil du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada; Departments of Pediatrics and Human Genetics, McGill University, Montréal, QC, Canada.
| |
Collapse
|
4
|
Zhou X, Wang Y, He R, Liu Z, Xu Q, Guo J, Yan X, Li J, Tang B, Zeng S, Sun Q. Microdeletion in distal PLP1 enhancers causes hereditary spastic paraplegia 2. Ann Clin Transl Neurol 2023; 10:1590-1602. [PMID: 37475517 PMCID: PMC10502680 DOI: 10.1002/acn3.51848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/22/2023] Open
Abstract
OBJECTIVES Hereditary spastic paraplegia (HSP) is a genetically heterogeneous disease caused by over 70 genes, with a significant number of patients still genetically unsolved. In this study, we recruited a suspected HSP family characterized by spasticity, developmental delay, ataxia and hypomyelination, and intended to reveal its molecular etiology by whole exome sequencing (WES) and long-read sequencing (LRS) analyses. METHODS WES was performed on 13 individuals of the family to identify the causative mutations, including analyses of SNVs (single-nucleotide variants) and CNVs (copy number variants). Accurate circular consensus (CCS) long-read sequencing (LRS) was used to verify the findings of CNV analysis from WES. RESULTS SNVs analysis identified a missense variant c.195G>T (p.E65D) of MORF4L2 at Xq22.2 co-segregating in this family from WES data. Further CNVs analysis revealed a microdeletion, which was adjacent to the MORF4L2 gene, also co-segregating in this family. LRS verified this microdeletion and confirmed the deletion range (chrX: 103,690,507-103,715,018, hg38) with high resolution at nucleotide level accuracy. INTERPRETATIONS In this study, we identified an Xq22.2 microdeletion (about 24.5 kb), which contains distal enhancers of the PLP1 gene, as a likely cause of SPG2 in this family. The lack of distal enhancers may result in transcriptional repression of PLP1 in oligodendrocytes, potentially affecting its role in the maintenance of myelin, and causing SPG2 phenotype. This study has highlighted the importance of noncoding genomic alterations in the genetic etiology of SPG2.
Collapse
Affiliation(s)
- Xun Zhou
- Department of Geriatric Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yige Wang
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Runcheng He
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Zhenhua Liu
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Qian Xu
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Jifeng Guo
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Xinxiang Yan
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Jinchen Li
- Department of Geriatric Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
- Center for Medical Genetics, School of Life SciencesCentral South UniversityChangshaChina
| | - Beisha Tang
- Department of Geriatric Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Sheng Zeng
- Department of Geriatrics, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Qiying Sun
- Department of Geriatric Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| |
Collapse
|
5
|
Yao L, Zhu Z, Zhang C, Tian W, Cao L. PLP1 gene mutations cause spastic paraplegia type 2 in three families. Ann Clin Transl Neurol 2023; 10:328-338. [PMID: 36622199 PMCID: PMC10014006 DOI: 10.1002/acn3.51722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Spastic paraplegia type 2 (SPG2) is an X-linked recessive (XLR) form of hereditary spastic paraplegia (HSP) caused by mutations in proteolipid protein 1 (PLP1) gene. We described the clinical and genetic features of three unrelated families with PLP1 mutations and reviewed PLP1-related cases worldwide to summarize the genotype-phenotype correlations. METHODS The three probands were 23, 26, and 27 years old, respectively, with progressively aggravated walking difficulty as well as lower limb spasticity. Detailed physical examination showed elevated muscle tone, hyperreflexia, and Babinski signs in lower limbs. Brain MRI examinations were investigated for all cases. PLP1 mutations were identified by whole exome sequencing, followed by Sanger sequencing, family co-segregation, and phenotypic reevaluation. RESULTS A total of eight patients with SPG2 were identified in these three families. The probands additionally had cognitive impairment, urinary or fecal incontinence, ataxia, and white matter lesions (WML) in periventricular regions, with or without kinetic tremor. Three hemizygous mutations in PLP1 were identified, including c.453+159G>A, c.834A>T (p.*278C), and c.434G>A (p.W145*), of which c.834A>T was first associated with HSP. INTERPRETATION We identified three families with complicated SPG2 due to three PLP1 mutations. Our study supports the clinically inter-and intra-family heterogeneity of SPG2. The periventricular region WML and cognitive impairment are the most common characteristics. The kinetic tremor in upper limbs was observed in 2/3 families, suggesting the spectrum of PLP1-related disorders is still expanding.
Collapse
Affiliation(s)
- Li Yao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,Suzhou Hospital of Anhui Medical University, Suzhou Municipal Hospital of Anhui Province, Suzhou, 234000, China
| | - Zeyu Zhu
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chao Zhang
- Suzhou Hospital of Anhui Medical University, Suzhou Municipal Hospital of Anhui Province, Suzhou, 234000, China
| | - Wotu Tian
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Li Cao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|