1
|
Hegedűs D, Grolmusz V. The length and the width of the human brain circuit connections are strongly correlated. Cogn Neurodyn 2025; 19:21. [PMID: 39801908 PMCID: PMC11717732 DOI: 10.1007/s11571-024-10201-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/11/2024] [Accepted: 10/26/2024] [Indexed: 01/16/2025] Open
Abstract
The correlations of several fundamental properties of human brain connections are investigated in a consensus connectome, constructed from 1064 braingraphs, each on 1015 vertices, corresponding to 1015 anatomical brain areas. The properties examined include the edge length, the fiber count, or edge width, meaning the number of discovered axon bundles forming the edge and the occurrence number of the edge, meaning the number of individual braingraphs where the edge exists. By using our previously published robust braingraphs at https://braingraph.org, we have prepared a single consensus graph from the data and compared the statistical similarity of the edge occurrence numbers, edge lengths, and fiber counts of the edges. We have found a strong positive Spearman correlation between the edge occurrence numbers and the fiber count numbers, showing that statistically, the most frequent cerebral connections have the largest widths, i.e., the fiber count. We have found a negative Spearman correlation between the fiber lengths and fiber counts, showing that, typically, the shortest edges are the widest or strongest by their fiber counts. We have also found a negative Spearman correlation between the occurrence numbers and the edge lengths: it shows that typically, the long edges are infrequent, and the frequent edges are short.
Collapse
Affiliation(s)
- Dániel Hegedűs
- PIT Bioinformatics Group, Eötvös University, Budapest, H-1117 Hungary
| | - Vince Grolmusz
- PIT Bioinformatics Group, Eötvös University, Budapest, H-1117 Hungary
- Uratim Ltd., Budapest, H-1118 Hungary
| |
Collapse
|
2
|
Varga B, Grolmusz V. New Graphs at the braingraph.org Website for Studying the Aging Brain Circuitry. ARXIV 2024:arXiv:2412.01418v1. [PMID: 39679268 PMCID: PMC11643219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Human braingraphs or connectomes are widely studied in the last decade to understand the structural and functional properties of our brain. In the last several years our research group has computed and deposited thousands of human braingraphs to the braingraph.org site, by applying public structural (diffusion) MRI data from young and healthy subjects. Here we describe a recent addition to the braingraph.org site, which contains connectomes from healthy and demented subjects between 42 and 95 years of age, based on the public release of the OASIS-3 dataset. The diffusion MRI data was processed with the Connectome Mapper Toolkit v.3.1. We believe that the new addition to the braingraph.org site will become a useful resource for enlightening the aging circuitry of the human brain in healthy and diseased subjects, including those with Alzheimer's disease in several stages.
Collapse
Affiliation(s)
- Bálint Varga
- PIT Bioinformatics Group, Eötvös University, H-1117
Budapest, Hungary
| | - Vince Grolmusz
- PIT Bioinformatics Group, Eötvös University, H-1117
Budapest, Hungary
- Uratim Ltd., H-1118 Budapest, Hungary
| |
Collapse
|
3
|
Hegedűs D, Grolmusz V. Robust circuitry-based scores of structural importance of human brain areas. PLoS One 2024; 19:e0292613. [PMID: 38232101 DOI: 10.1371/journal.pone.0292613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/25/2023] [Indexed: 01/19/2024] Open
Abstract
We consider the 1015-vertex human consensus connectome computed from the diffusion MRI data of 1064 subjects. We define seven different orders on these 1015 graph vertices, where the orders depend on parameters derived from the brain circuitry, that is, from the properties of the edges (or connections) incident to the vertices ordered. We order the vertices according to their degree, the sum, the maximum, and the average of the fiber counts on the incident edges, and the sum, the maximum and the average length of the fibers in the incident edges. We analyze the similarities of these seven orders by the Spearman correlation coefficient and by their inversion numbers and have found that all of these seven orders have great similarities. In other words, if we interpret the orders as scoring of the importance of the vertices in the consensus connectome, then the scores of the vertices will be similar in all seven orderings. That is, important vertices of the human connectome typically have many neighbors connected with long and thick axonal fibers (where thickness is measured by fiber numbers), and their incident edges have high maximum and average values of length and fiber-number parameters, too. Therefore, these parameters may yield robust ways of deciding which vertices are more important in the anatomy of our brain circuitry than the others.
Collapse
Affiliation(s)
- Dániel Hegedűs
- PIT Bioinformatics Group, Eötvös University, Budapest, Hungary
| | - Vince Grolmusz
- PIT Bioinformatics Group, Eötvös University, Budapest, Hungary
- Uratim Ltd., Budapest, Hungary
| |
Collapse
|
4
|
Clark KB. Neural Field Continuum Limits and the Structure-Function Partitioning of Cognitive-Emotional Brain Networks. BIOLOGY 2023; 12:352. [PMID: 36979044 PMCID: PMC10045557 DOI: 10.3390/biology12030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/07/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023]
Abstract
In The cognitive-emotional brain, Pessoa overlooks continuum effects on nonlinear brain network connectivity by eschewing neural field theories and physiologically derived constructs representative of neuronal plasticity. The absence of this content, which is so very important for understanding the dynamic structure-function embedding and partitioning of brains, diminishes the rich competitive and cooperative nature of neural networks and trivializes Pessoa's arguments, and similar arguments by other authors, on the phylogenetic and operational significance of an optimally integrated brain filled with variable-strength neural connections. Riemannian neuromanifolds, containing limit-imposing metaplastic Hebbian- and antiHebbian-type control variables, simulate scalable network behavior that is difficult to capture from the simpler graph-theoretic analysis preferred by Pessoa and other neuroscientists. Field theories suggest the partitioning and performance benefits of embedded cognitive-emotional networks that optimally evolve between exotic classical and quantum computational phases, where matrix singularities and condensations produce degenerate structure-function homogeneities unrealistic of healthy brains. Some network partitioning, as opposed to unconstrained embeddedness, is thus required for effective execution of cognitive-emotional network functions and, in our new era of neuroscience, should be considered a critical aspect of proper brain organization and operation.
Collapse
Affiliation(s)
- Kevin B. Clark
- Cures Within Reach, Chicago, IL 60602, USA;
- Felidae Conservation Fund, Mill Valley, CA 94941, USA
- Campus and Domain Champions Program, Multi-Tier Assistance, Training, and Computational Help (MATCH) Track, National Science Foundation’s Advanced Cyberinfrastructure Coordination Ecosystem: Services and Support (ACCESS), https://access-ci.org/
- Expert Network, Penn Center for Innovation, University of Pennsylvania, Philadelphia, PA 19104, USA
- Network for Life Detection (NfoLD), NASA Astrobiology Program, NASA Ames Research Center, Mountain View, CA 94035, USA
- Multi-Omics and Systems Biology & Artificial Intelligence and Machine Learning Analysis Working Groups, NASA GeneLab, NASA Ames Research Center, Mountain View, CA 94035, USA
- Frontier Development Lab, NASA Ames Research Center, Mountain View, CA 94035, USA & SETI Institute, Mountain View, CA 94043, USA
- Peace Innovation Institute, The Hague 2511, Netherlands & Stanford University, Palo Alto, CA 94305, USA
- Shared Interest Group for Natural and Artificial Intelligence (sigNAI), Max Planck Alumni Association, 14057 Berlin, Germany
- Biometrics and Nanotechnology Councils, Institute for Electrical and Electronics Engineers (IEEE), New York, NY 10016, USA
| |
Collapse
|
5
|
Keresztes L, Szögi E, Varga B, Grolmusz V. Discovering sex and age implicator edges in the human connectome. Neurosci Lett 2022; 791:136913. [DOI: 10.1016/j.neulet.2022.136913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/07/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022]
|
6
|
Keresztes L, Szögi E, Varga B, Grolmusz V. Introducing and applying Newtonian blurring: an augmented dataset of 126,000 human connectomes at braingraph.org. Sci Rep 2022; 12:3102. [PMID: 35197486 PMCID: PMC8866411 DOI: 10.1038/s41598-022-06697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/03/2022] [Indexed: 11/09/2022] Open
Abstract
Gaussian blurring is a well-established method for image data augmentation: it may generate a large set of images from a small set of pictures for training and testing purposes for Artificial Intelligence (AI) applications. When we apply AI for non-imagelike biological data, hardly any related method exists. Here we introduce the "Newtonian blurring" in human braingraph (or connectome) augmentation: Started from a dataset of 1053 subjects from the public release of the Human Connectome Project, we first repeat a probabilistic weighted braingraph construction algorithm 10 times for describing the connections of distinct cerebral areas, then for every possible set of 7 of these graphs, delete the lower and upper extremes, and average the remaining 7 - 2 = 5 edge-weights for the data of each subject. This way we augment the 1053 graph-set to 120 [Formula: see text] 1053 = 126,360 graphs. In augmentation techniques, it is an important requirement that no artificial additions should be introduced into the dataset. Gaussian blurring and also this Newtonian blurring satisfy this goal. The resulting dataset of 126,360 graphs, each in 5 resolutions (i.e., 631,800 graphs in total), is freely available at the site https://braingraph.org/cms/download-pit-group-connectomes/ . Augmenting with Newtonian blurring may also be applicable in other non-image-related fields, where probabilistic processing and data averaging are implemented.
Collapse
Affiliation(s)
- László Keresztes
- PIT Bioinformatics Group, Eötvös University, 1117, Budapest, Hungary
| | - Evelin Szögi
- PIT Bioinformatics Group, Eötvös University, 1117, Budapest, Hungary
| | - Bálint Varga
- PIT Bioinformatics Group, Eötvös University, 1117, Budapest, Hungary
| | - Vince Grolmusz
- PIT Bioinformatics Group, Eötvös University, 1117, Budapest, Hungary.
- Uratim Ltd., 1118, Budapest, Hungary.
| |
Collapse
|
7
|
Keresztes L, Szögi E, Varga B, Grolmusz V. Identifying super-feminine, super-masculine and sex-defining connections in the human braingraph. Cogn Neurodyn 2021; 15:949-959. [PMID: 34786030 PMCID: PMC8572280 DOI: 10.1007/s11571-021-09687-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/23/2021] [Accepted: 05/29/2021] [Indexed: 11/26/2022] Open
Abstract
For more than a decade now, we can discover and study thousands of cerebral connections with the application of diffusion magnetic resonance imaging (dMRI) techniques and the accompanying algorithmic workflow. While numerous connectomical results were published enlightening the relation between the braingraph and certain biological, medical, and psychological properties, it is still a great challenge to identify a small number of brain connections closely related to those conditions. In the present contribution, by applying the 1200 Subjects Release of the Human Connectome Project (HCP) and Support Vector Machines, we identify just 102 connections out of the total number of 1950 connections in the 83-vertex graphs of 1064 subjects, which-by a simple linear test-precisely, without any error determine the sex of the subject. Next, we re-scaled the weights of the edges-corresponding to the discovered fibers-to be between 0 and 1, and, very surprisingly, we were able to identify two graph edges out of these 102, such that, if their weights are both 1, then the connectome always belongs to a female subject, independently of the other edges. Similarly, we have identified 3 edges from these 102, whose weights, if two of them are 1 and one is 0, imply that the graph belongs to a male subject-again, independently of the other edges. We call the former 2 edges superfeminine and the first two of the 3 edges supermasculine edges of the human connectome. Even more interestingly, the edge, connecting the right Pars Triangularis and the right Superior Parietal areas, is one of the 2 superfeminine edges, and it is also the third edge, accompanying the two supermasculine connections if its weight is 0; therefore, it is also a "switching" edge. Identifying such edge-sets of distinction is the unprecedented result of this work. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11571-021-09687-w.
Collapse
Affiliation(s)
- László Keresztes
- PIT Bioinformatics Group, Eötvös University, H-1117 Budapest, Hungary
| | - Evelin Szögi
- PIT Bioinformatics Group, Eötvös University, H-1117 Budapest, Hungary
| | - Bálint Varga
- PIT Bioinformatics Group, Eötvös University, H-1117 Budapest, Hungary
| | - Vince Grolmusz
- PIT Bioinformatics Group, Eötvös University, H-1117 Budapest, Hungary
- Uratim Ltd., H-1118 Budapest, Hungary
| |
Collapse
|
8
|
The braingraph.org database with more than 1000 robust human connectomes in five resolutions. Cogn Neurodyn 2021; 15:915-919. [PMID: 34603551 PMCID: PMC8448809 DOI: 10.1007/s11571-021-09670-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/03/2021] [Accepted: 02/13/2021] [Indexed: 01/18/2023] Open
Abstract
The human brain is the most complex object of study we encounter today. Mapping the neuronal-level connections between the more than 80 billion neurons in the brain is a hopeless task for science. By the recent advancement of magnetic resonance imaging (MRI), we are able to map the macroscopic connections between about 1000 brain areas. The MRI data acquisition and the subsequent algorithmic workflow contain several complex steps, where errors can occur. In the present contribution we describe and publish 1064 human connectomes, computed from the public release of the Human Connectome Project. Each connectome is available in 5 resolutions, with 83, 129, 234, 463 and 1015 anatomically labeled nodes. For error correction we follow an averaging and extreme value deleting strategy for each edge and for each connectome. The resulting 5320 braingraphs can be downloaded from the https://braingraph.org site. This dataset makes possible the access to this graphs for scientists unfamiliar with neuroimaging- and connectome-related tools: mathematicians, physicists and engineers can use their expertize and ideas in the analysis of the connections of the human brain. Brain scientists and computational neuroscientists also have a robust and large, multi-resolution set for connectomical studies.
Collapse
|