1
|
Shi Y, Tian X, Li T, Hu Y, Xie Y, Li H, Li Y, Jiang N, Tang X, Wang Y. The influence of transcranial alternating current stimulation on EEG spectral power during subsequent sleep: A randomized crossover study. Sleep Med 2025; 126:185-193. [PMID: 39689403 DOI: 10.1016/j.sleep.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/30/2024] [Accepted: 12/08/2024] [Indexed: 12/19/2024]
Abstract
OBJECTIVE To evaluate the instant impact of transcranial alternating current stimulation (tACS) on sleep brain oscillations. METHODS Thirty-six healthy subjects were randomly assigned to receive tACS and sham stimulation in a crossover design separated by a one-week washout period. After stimulation, a 2-h nap polysomnography (PSG) was performed to obtain Electroencephalogram (EEG) data and objective sleep variables, and self-reported subjective sleep parameters were collected at the end of the nap. EEG spectral analyses were conducted on the EEG data to obtain the absolute and relative power for each sleep stage during the nap. The associations between power values and objective and subjective measurements were analyzed using Spearman or Pearson correlation coefficients. RESULTS The tACS group presented higher power in slow wave activity (SWA) and delta frequency bands and lower alpha, sigma and beta power values compared to the sham group during the N2 and N3 sleep stages. SWA and delta power were positively associated with sleep duration and sleep efficiency relevant parameters; while alpha, sigma and beta power were positively associated with prolonged sleep latency and wakefulness related variables. PSG, self-reported and sleep diary measured objective and subjective sleep parameters were comparable between the tACS and the sham groups. CONCLUSION Our results support that tACS could promote sleep depth in microstructure of sleep EEG, manifesting as an increase in EEG spectral power in low frequency bands and a decrease in high frequency bands. The registration number of this study is ChiCTR2200063729.
Collapse
Affiliation(s)
- Yuan Shi
- West China School of Nursing, Sleep Medicine Center, Mental Health Center, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Xin Tian
- West China School of Nursing, Sleep Medicine Center, Mental Health Center, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Taomei Li
- West China School of Nursing, Sleep Medicine Center, Mental Health Center, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Yuexia Hu
- West China School of Nursing, Sleep Medicine Center, Mental Health Center, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Yuqing Xie
- West China School of Nursing, Sleep Medicine Center, Mental Health Center, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Huixian Li
- West China School of Nursing, Sleep Medicine Center, Mental Health Center, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Yun Li
- West China School of Nursing, Sleep Medicine Center, Mental Health Center, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, PR China; SDIC HEALTH INDUSTRY INVESTMENT CO., LTD, Beijing, PR China.
| | - Ning Jiang
- National Clinical Research Center for Geriatrics, West China Hospital, The Med-X Center for Manufacturing, Sichuan University, Chengdu, 610041, PR China.
| | - Xiangdong Tang
- West China School of Nursing, Sleep Medicine Center, Mental Health Center, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Yanyan Wang
- West China School of Nursing, Sleep Medicine Center, Mental Health Center, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
2
|
Yang S, Enkhzaya G, Zhu BH, Chen J, Wang ZJ, Kim ES, Kim NY. High-Definition Transcranial Direct Current Stimulation in the Right Ventrolateral Prefrontal Cortex Lengthens Sustained Attention in Virtual Reality. Bioengineering (Basel) 2023; 10:721. [PMID: 37370652 DOI: 10.3390/bioengineering10060721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Due to the current limitations of three-dimensional (3D) simulation graphics technology, mind wandering commonly occurs in virtual reality tasks, which has impeded it being applied more extensively. The right ventrolateral prefrontal cortex (rVLPFC) plays a vital role in executing continuous two-dimensional (2D) mental paradigms, and transcranial direct current stimulation (tDCS) over this cortical region has been shown to successfully modulate sustained 2D attention. Accordingly, we further explored the effects of electrical activation of the rVLPFC on 3D attentional tasks using anodal high-definition (HD)-tDCS. A 3D Go/No-go (GNG) task was developed to compare the after effects of real and sham brain stimulation. Specifically, GNG tasks were periodically interrupted to assess the subjective perception of attentional level, behavioral reactions were tracked and decomposed into an underlying decision cognition process, and electroencephalography data were recorded to calculate event-related potentials (ERPs) in rVLPFC. The p-values statistically indicated that HD-tDCS improved the subjective mentality, led to more cautious decisions, and enhanced neuronal discharging in rVLPFC. Additionally, the neurophysiological P300 ERP component and stimulation being active or sham could effectively predict several objective outcomes. These findings indicate that the comprehensive approach including brain stimulation, 3D mental paradigm, and cross-examined performance could significantly lengthen and robustly compare sustained 3D attention.
Collapse
Affiliation(s)
- Shan Yang
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Nonwon-gu, Seoul 01897, Republic of Korea
- NDAC Center, Department of Electronic Engineering, Kwangwoon University, Nonwon-gu, Seoul 01897, Republic of Korea
| | - Ganbold Enkhzaya
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Nonwon-gu, Seoul 01897, Republic of Korea
- NDAC Center, Department of Electronic Engineering, Kwangwoon University, Nonwon-gu, Seoul 01897, Republic of Korea
| | - Bao-Hua Zhu
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Nonwon-gu, Seoul 01897, Republic of Korea
| | - Jian Chen
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Nonwon-gu, Seoul 01897, Republic of Korea
| | - Zhi-Ji Wang
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Nonwon-gu, Seoul 01897, Republic of Korea
- Department of Pediatrics, Severance Children's Hospital, Yonsei University, Seoul 03722, Republic of Korea
| | - Eun-Seong Kim
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Nonwon-gu, Seoul 01897, Republic of Korea
| | - Nam-Young Kim
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Nonwon-gu, Seoul 01897, Republic of Korea
- NDAC Center, Department of Electronic Engineering, Kwangwoon University, Nonwon-gu, Seoul 01897, Republic of Korea
| |
Collapse
|
3
|
Effect of Acoustic fMRI-Scanner Noise on the Human Resting State. Brain Topogr 2023; 36:32-41. [PMID: 36536080 PMCID: PMC9834128 DOI: 10.1007/s10548-022-00933-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
Our knowledge about the human resting state is predominantly based on either electroencephalographic (EEG) or functional magnetic resonance imaging (fMRI) methods. While EEG recordings can be performed in seated posture in quiet conditions, the fMRI environment presents a substantial contrast with supine and restricted posture in a narrow tube that is filled with acoustic scanner noise (ASN) at a chainsaw-like volume level. However, the influence of these diverging conditions on resting-state brain activation is neither well studied nor broadly discussed. In order to promote data as a source of sharper hypotheses for future studies, we investigated alterations in EEG-frequency-band power (delta, theta, alpha, beta, gamma) and spatial power distribution as well as cortical vigilance measures in different postures and ASN surroundings over the course of time. Participants (N = 18) underwent three consecutive resting-state EEG recordings with a fixed posture and ASN setting sequence; seated, supine, and supine with ASN (supnoise) using an MRI simulator. The results showed that compared to seated, supnoise, the last instance within the posture sequence, was characterized by lower power and altered spatial power distribution in all assessed frequency bands. This might also have been an effect of time alone. In delta, theta, alpha, and beta, the power of supnoise was also reduced compared to supine, as well as the corresponding distribution maps. The vigilance analysis revealed that in supine and supnoise, the highest and lowest vigilance stages were more dominant compared to the seated and earliest posture condition within the sequence. Hence, our results demonstrate that the differences in recording settings and progress of time are related to changes in cortical arousal and vigilance regulation, findings that should be taken into account more profoundly for hypothesis generation as well as analytic strategies in future resting-state studies.
Collapse
|
4
|
Lee YJ, Kim BJ, Lee CS, Cha B, Lee SJ, Choi JW, Lim E, Kang N, Lee D. Application of Transcranial Direct Current Stimulation in Sleep Disturbances. CHRONOBIOLOGY IN MEDICINE 2022; 4:141-151. [DOI: 10.33069/cim.2022.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 01/03/2025]
Abstract
Sleep disturbances are common across all age groups, and they encompass a broad range of impairments of daytime functioning and comorbid various clinical conditions. However, current treatment methods for sleep disturbances have several limitations. As the ‘top-down’ pathway is known to play an important role in sleep-wake regulation, and as neuronal activity abnormalities have been reported as a potential pathological mechanism of sleep disturbances, the use of non-invasive brain stimulation—such as transcranial direct current stimulation (tDCS) in treating sleep disturbances—has emerged. In the present review, we first explain the mechanism of tDCS, and we also introduce recent studies that have applied tDCS to sleep disorders, along with other sleep-related tDCS studies. In conclusion, many studies have achieved improvements in sleep state, although some of these studies have reported inconsistent effects of tDCS according to the protocol and the conditions used. Further studies are needed to explore the optimal protocols to use when applying tDCS in each sleep disturbance and to enhance the evidence on the clinical efficacy of tDCS.
Collapse
|
5
|
Hoedlmoser K, Peigneux P, Rauchs G. Recent advances in memory consolidation and information processing during sleep. J Sleep Res 2022; 31:e13607. [DOI: 10.1111/jsr.13607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/20/2022]
Affiliation(s)
- Kerstin Hoedlmoser
- Department of Psychology, Centre for Cognitive Neuroscience (CCNS), Laboratory for “Sleep, Cognition and Consciousness Research” University of Salzburg Salzburg Austria
| | - Philippe Peigneux
- UR2NF – Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN – Centre for Research in Cognition and Neurosciences and UNI – ULB Neuroscience Institute Bruxelles Belgium
| | - Géraldine Rauchs
- UNICAEN, INSERM, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders”, Institut Blood and Brain @ Caen‐Normandie Normandie Univ Caen France
| |
Collapse
|
6
|
Affiliation(s)
- Simon Ruch
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University Hospital and University of Tuebingen, Germany
| | - Michael Valiadis
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University Hospital and University of Tuebingen, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University Hospital and University of Tuebingen, Germany
| |
Collapse
|