1
|
Szabo C. Role of cystathionine-β-synthase and hydrogen sulfide in down syndrome. Neurotherapeutics 2025:e00584. [PMID: 40187942 DOI: 10.1016/j.neurot.2025.e00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/15/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025] Open
Abstract
Down syndrome (DS) is a genetic condition where the person affected by it is born with an additional - full or partial - copy of chromosome 21. DS presents with characteristic morphological features and is associated with a wide range of biochemical alterations and maladaptations. Cystathionine-β-synthase (CBS) - one of the key mammalian enzymes responsible for the biogenesis of the gaseous transmitter hydrogen sulfide (H2S) - is located on chromosome 21, and people with DS exhibit a significant upregulation of this enzyme in their brain and other organs. Even though 3-mercaptopyruvate sulfurtransferase - another key mammalian enzyme responsible for the biogenesis of H2S and of reactive polysulfides - is not located on chromosome 21, there is also evidence for the upregulation of this enzyme in DS cells. The hypothesis that excess H2S in DS impairs mitochondrial function and cellular bioenergetics was first proposed in the 1990s and has been substantiated and expanded upon over the past 25 years. DS cells are in a state of metabolic suppression due to H2S-induced, reversible inhibition of mitochondrial Complex IV activity. The impairment of aerobic ATP generation in DS cells is partially compensated by an upregulation of glycolysis. The DS-associated metabolic impairment can be reversed by pharmacological CBS inhibition or CBS silencing. In rodent models of DS, CBS upregulation and H2S overproduction contribute to the development of cognitive dysfunction, alter brain electrical activity, and promote reactive gliosis: pharmacological inhibition or genetic correction of CBS overactivation reverses these alterations. CBS can be considered a preclinically validated drug target for the experimental therapy of DS.
Collapse
Affiliation(s)
- Csaba Szabo
- Section of Pharmacology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Switzerland.
| |
Collapse
|
2
|
Hashizume R, Wakita S, Sawada H, Takebayashi SI, Kitabatake Y, Miyagawa Y, Hirokawa YS, Imai H, Kurahashi H. Trisomic rescue via allele-specific multiple chromosome cleavage using CRISPR-Cas9 in trisomy 21 cells. PNAS NEXUS 2025; 4:pgaf022. [PMID: 39967679 PMCID: PMC11832276 DOI: 10.1093/pnasnexus/pgaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/07/2025] [Indexed: 02/20/2025]
Abstract
Human trisomy 21, responsible for Down syndrome, is the most prevalent genetic cause of cognitive impairment and remains a key focus for prenatal and preimplantation diagnosis. However, research directed toward eliminating supernumerary chromosomes from trisomic cells is limited. The present study demonstrates that allele-specific multiple chromosome cleavage by clustered regularly interspaced palindromic repeats Cas9 can achieve trisomy rescue by eliminating the target chromosome from human trisomy 21 induced pluripotent stem cells and fibroblasts. Unlike previously reported allele-nonspecific strategies, we have developed a comprehensive allele-specific (AS) Cas9 target sequence extraction method that efficiently removes the target chromosome. The temporary knockdown of DNA damage response genes increases the chromosome loss rate, while chromosomal rescue reversibly restores gene signatures and ameliorates cellular phenotypes. Additionally, this strategy proves effective in differentiated, nondividing cells. We anticipate that an AS approach will lay the groundwork for more sophisticated medical interventions targeting trisomy 21.
Collapse
Affiliation(s)
- Ryotaro Hashizume
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
- Department of Genomic Medicine, Mie University Hospital, Tsu, Mie 514-8507, Japan
| | - Sachiko Wakita
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Hirofumi Sawada
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Shin-ichiro Takebayashi
- Laboratory of Molecular and Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Yasuji Kitabatake
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshitaka Miyagawa
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Yoshifumi S Hirokawa
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Hiroshi Imai
- Department of Genomic Medicine, Mie University Hospital, Tsu, Mie 514-8507, Japan
- Pathology Division, Mie University Hospital, Tsu, Mie 514-8507, Japan
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan
| |
Collapse
|
3
|
Huang T, Lam XJ, Lim CT, Jusoh N, Fakurazi S, Cheah PS, Ling KH. Understanding perspectives and research trends in Down syndrome neuropathogenesis: A bibliometric analysis. JOURNAL OF INTELLECTUAL DISABILITIES : JOID 2024:17446295241299160. [PMID: 39533897 DOI: 10.1177/17446295241299160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Down syndrome (DS), characterised by compromised brain development and intellectual challenges, often manifests Alzheimer's disease (AD) -like symptoms. Utilising the Web of Science Core Collection (WOSCC) database from January 1, 2000, to July 31, 2023, we conducted a comprehensive bibliometric analysis using VOSviewer, CiteSpace, and the R package "bibliometrix." Analyses included co-authorship, co-citation, co-occurrence, cooperative network, reference, and keyword burst citation. Analysing 5,082 papers, the U.S. demonstrated prominence with the highest number of research organisations and citations. Keyword analysis revealed promising research areas, including "Alzheimer's disease," "development," "inflammation," and "neurogenesis". This 22-year survey of the brain with trisomy 21 research unveils key trends, contributors, and focal areas in DS neuropathogenesis. Notably, Alzheimer 's-related genes and proteins play a pervasive role in DS neuropathological processes across patients' lifespans. The study contributes foundational knowledge for advancing research and care in the DS neuropathogenesis domain.
Collapse
Affiliation(s)
- Tan Huang
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | - Xin-Jieh Lam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | - Chong-Teik Lim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | - Norhazlin Jusoh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
- Malaysian Research Institute on Ageing (MyAgeing®), Universiti Putra Malaysia, Malaysia
| |
Collapse
|
4
|
Brandauer J, Receno CN, Anyaoku C, Cooke LE, Schwarzer HM, DeRuisseau KC, Cunningham CM, DeRuisseau LR. Senescent hearts from male Ts65Dn mice exhibit preserved function but altered size and nicotinamide adenine dinucleotide pathway signaling. Am J Physiol Regul Integr Comp Physiol 2024; 326:R176-R183. [PMID: 38047317 PMCID: PMC11283890 DOI: 10.1152/ajpregu.00164.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/30/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Down syndrome (DS) is associated with congenital heart defects at birth, but cardiac function has not been assessed at older ages. We used the Ts65Dn mouse, a model of DS, to quantify heart structure and function with echocardiography in 18-mo male Ts65Dn and wild-type (WT) mice. Heart weight, nicotinamide adenine dinucleotide (NAD) signaling, and mitochondrial (citrate synthase) activity were investigated, as these pathways may be implicated in the cardiac pathology of DS. The left ventricle was smaller in Ts65Dn versus WT, as well as the anterior wall thickness of the left ventricle during both diastole (LVAW_d; mm) and systole (LVAW_s; mm) as assessed by echocardiography. Other functional metrics were similar between groups including left ventricular area end systole (mm2), left ventricular area end diastole (mm2), left ventricular diameter end systole (mm), left ventricular diameter end diastole (mm), isovolumetric relaxation time (ms), mitral valve atrial peak velocity (mm/s), mitral valve early peak velocity (mm/s), ratio of atrial and early peak velocities (E/A), heart rate (beats/min), ejection fraction (%), and fractional shortening (%). Nicotinamide phosphoribosyltransferase (NAMPT) protein expression, NAD concentration, and tissue weight were lower in the left ventricle of Ts65Dn versus WT mice. Sirtuin 3 (SIRT3) protein expression and citrate synthase activity were not different between groups. Although cardiac function was generally preserved in male Ts65Dn, the altered heart size and bioenergetic disturbances may contribute to differences in aging for DS.
Collapse
Affiliation(s)
- Josef Brandauer
- Health Sciences Department, Gettysburg College, Gettysburg, Pennsylvania, United States
| | - Candace N Receno
- Department of Exercise Science and Athletic Training, Ithaca College, Ithaca, New York, United States
| | - Cynthia Anyaoku
- Health Sciences Department, Gettysburg College, Gettysburg, Pennsylvania, United States
| | - Lauren E Cooke
- Health Sciences Department, Gettysburg College, Gettysburg, Pennsylvania, United States
| | - Hannalyn M Schwarzer
- Health Sciences Department, Gettysburg College, Gettysburg, Pennsylvania, United States
| | - Keith C DeRuisseau
- Department of Basic Sciences, University of Health Sciences and Pharmacy, St. Louis, Missouri, United States
| | - Caitlin M Cunningham
- Department of Computer Science, Mathematics, and Statistics, Le Moyne College, Syracuse, New York, United States
| | - Lara R DeRuisseau
- Department of Basic Sciences, University of Health Sciences and Pharmacy, St. Louis, Missouri, United States
| |
Collapse
|
5
|
Erdogan MA, Turk M, Doganay GD, Sever IH, Ozkul B, Sogut I, Eroglu E, Uyanikgil Y, Erbas O. Prenatal SARS-CoV-2 Spike Protein Exposure Induces Autism-Like Neurobehavioral Changes in Male Neonatal Rats. J Neuroimmune Pharmacol 2023; 18:573-591. [PMID: 37889404 DOI: 10.1007/s11481-023-10089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
Recent research on placental, embryo, and brain organoids suggests that the COVID-19 virus may potentially affect embryonic organs, including the brain. Given the established link between SARS-CoV-2 spike protein and neuroinflammation, we sought to investigate the effects of exposure to this protein during pregnancy. We divided pregnant rats into three groups: Group 1 received a 1 ml/kg saline solution, Group 2 received 150 μg/kg adjuvant aluminum hydroxide (AAH), and Group 3 received 40 μg/kg spike protein + 150 μg/kg AAH at 10 and 14 days of gestation. On postnatal day 21 (P21), we randomly separated 60 littermates (10 male-female) into control, AAH-exposed, and spike protein-exposed groups. At P50, we conducted behavioral analyses on these mature animals and performed MR spectroscopy. Subsequently, all animals were sacrificed, and their brains were subject to biochemical and histological analysis. Our findings indicate that male rats exposed to the spike protein displayed a higher rate of impaired performance on behavioral studies, including the three-chamber social test, passive avoidance learning analysis, open field test, rotarod test, and novelty-induced cultivation behavior, indicative of autistic symptoms. Exposure to the spike protein (male) induced gliosis and neuronal cell death in the CA1-CA3 regions of the hippocampus and cerebellum. The spike protein-exposed male rats exhibited significantly greater levels of malondialdehyde (MDA), tumor necrosis factor alpha (TNF-α), interleukin-17 (IL-17), nuclear factor kappa B (NF-κB), and lactate and lower levels of brain-derived neurotrophic factor (BDNF) than the control group. Our study suggests a potential association between prenatal exposure to COVID-19 spike protein and neurodevelopmental problems, such as ASD. These findings highlight the importance of further research into the potential effects of the COVID-19 virus on embryonic and fetal development and the potential long-term consequences for neurodevelopment.
Collapse
Affiliation(s)
- Mumin Alper Erdogan
- Faculty of Medicine, Department of Physiology, Izmir Katip Celebi University, Izmir, Turkey.
| | - Miray Turk
- Graduate School, Department of Molecular Biology-Genetics and Biotechnology, Istanbul Technical University, 34469, Istanbul, Turkey
| | - Gizem Dinler Doganay
- Graduate School, Department of Molecular Biology-Genetics and Biotechnology, Istanbul Technical University, 34469, Istanbul, Turkey
- Faculty of Science and Letters, Department of Molecular Biology and Genetics, Istanbul Technical University, 34469, Istanbul, Turkey
| | - Ibrahim Halil Sever
- Faculty of Medicine, Department of Radiology, Demiroğlu Bilim University, Istanbul, Turkey
| | - Bahattin Ozkul
- School of Medicine, Department of Radiology, Istanbul Atlas University, Istanbul, Turkey
| | - Ibrahim Sogut
- Faculty of Medicine, Department of Biochemistry, Demiroğlu Bilim University, Istanbul, Turkey
| | - Ebru Eroglu
- Faculty of Medicine, Department of Histology and Embryology, Ege University, Izmir, Turkey
| | - Yigit Uyanikgil
- Faculty of Medicine, Department of Histology and Embryology, Ege University, Izmir, Turkey
| | - Oytun Erbas
- Faculty of Medicine, Department of Physiology, Demiroğlu Bilim University, Istanbul, Turkey
| |
Collapse
|
6
|
Valenti D, Vacca RA. Brain Mitochondrial Bioenergetics in Genetic Neurodevelopmental Disorders: Focus on Down, Rett and Fragile X Syndromes. Int J Mol Sci 2023; 24:12488. [PMID: 37569863 PMCID: PMC10419900 DOI: 10.3390/ijms241512488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Mitochondria, far beyond their prominent role as cellular powerhouses, are complex cellular organelles active as central metabolic hubs that are capable of integrating and controlling several signaling pathways essential for neurological processes, including neurogenesis and neuroplasticity. On the other hand, mitochondria are themselves regulated from a series of signaling proteins to achieve the best efficiency in producing energy, in establishing a network and in performing their own de novo synthesis or clearance. Dysfunctions in signaling processes that control mitochondrial biogenesis, dynamics and bioenergetics are increasingly associated with impairment in brain development and involved in a wide variety of neurodevelopmental disorders. Here, we review recent evidence proving the emerging role of mitochondria as master regulators of brain bioenergetics, highlighting their control skills in brain neurodevelopment and cognition. We analyze, from a mechanistic point of view, mitochondrial bioenergetic dysfunction as causally interrelated to the origins of typical genetic intellectual disability-related neurodevelopmental disorders, such as Down, Rett and Fragile X syndromes. Finally, we discuss whether mitochondria can become therapeutic targets to improve brain development and function from a holistic perspective.
Collapse
Affiliation(s)
- Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
7
|
Tan KL, Lee HC, Cheah PS, Ling KH. Mitochondrial Dysfunction in Down Syndrome: From Pathology to Therapy. Neuroscience 2023; 511:1-12. [PMID: 36496187 DOI: 10.1016/j.neuroscience.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/07/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Mitochondrial dysfunctions have been described in Down syndrome (DS) caused by either partial or full trisomy of chromosome 21 (HSA21). Mitochondria play a crucial role in various vital functions in eukaryotic cells, especially in energy production, calcium homeostasis and programmed cell death. The function of mitochondria is primarily regulated by genes encoded in the mitochondrion and nucleus. Many genes on HSA21 are involved in oxidative phosphorylation (OXPHOS) and regulation of mitochondrial functions. This review highlights the HSA21 dosage-sensitive nuclear-encoded mitochondrial genes associated with overexpression-related phenotypes seen in DS. This includes impaired mitochondrial dynamics, structural defects and dysregulated bioenergetic profiles such as OXPHOS deficiency and reduced ATP production. Various therapeutic approaches for modulating energy deficits in DS, effects and molecular mechanism of gene therapy and drugs that exert protective effects through modulation of mitochondrial function and attenuation of oxidative stress in DS cells were discussed. It is prudent that improving DS pathophysiological conditions or quality of life may be feasible by targeting something as simple as cellular mitochondrial biogenesis and function.
Collapse
Affiliation(s)
- Kai-Leng Tan
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Han-Chung Lee
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Pike-See Cheah
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - King-Hwa Ling
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Carrier M, Dolhan K, Bobotis BC, Desjardins M, Tremblay MÈ. The implication of a diversity of non-neuronal cells in disorders affecting brain networks. Front Cell Neurosci 2022; 16:1015556. [PMID: 36439206 PMCID: PMC9693782 DOI: 10.3389/fncel.2022.1015556] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
In the central nervous system (CNS) neurons are classically considered the functional unit of the brain. Analysis of the physical connections and co-activation of neurons, referred to as structural and functional connectivity, respectively, is a metric used to understand their interplay at a higher level. A myriad of glial cell types throughout the brain composed of microglia, astrocytes and oligodendrocytes are key players in the maintenance and regulation of neuronal network dynamics. Microglia are the central immune cells of the CNS, able to affect neuronal populations in number and connectivity, allowing for maturation and plasticity of the CNS. Microglia and astrocytes are part of the neurovascular unit, and together they are essential to protect and supply nutrients to the CNS. Oligodendrocytes are known for their canonical role in axonal myelination, but also contribute, with microglia and astrocytes, to CNS energy metabolism. Glial cells can achieve this variety of roles because of their heterogeneous populations comprised of different states. The neuroglial relationship can be compromised in various manners in case of pathologies affecting development and plasticity of the CNS, but also consciousness and mood. This review covers structural and functional connectivity alterations in schizophrenia, major depressive disorder, and disorder of consciousness, as well as their correlation with vascular connectivity. These networks are further explored at the cellular scale by integrating the role of glial cell diversity across the CNS to explain how these networks are affected in pathology.
Collapse
Affiliation(s)
- Micaël Carrier
- Neurosciences Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Kira Dolhan
- Department of Psychology, University of Victoria, Victoria, BC, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | | | - Michèle Desjardins
- Department of Physics, Physical Engineering and Optics, Université Laval, Québec City, QC, Canada
- Oncology Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Neurosciences Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Marie-Ève Tremblay,
| |
Collapse
|