1
|
Song H, Yang A, Wang Y, Xu R, Hu W. Potential roles of inhalation aromatherapy on stress-induced depression by inhibiting inflammation in the peripheral olfactory system. Neurochem Int 2025; 186:105967. [PMID: 40158533 DOI: 10.1016/j.neuint.2025.105967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
According to principles of Traditional Chinese Medicine, the nose is the passage for exogenous evil to invade the body, while essential or volatile oils extracted from herbs have the effects of dispelling melancholy, repelling foulness, and resuscitation with aromatics. Inhalation aromatherapy can target the brain and has a potential therapeutic effect on mood disorders. However, in particular, the mechanism of the effect of inhalation aromatherapy on the olfactory mucosa (OM) of the nasal cavity at the peripheral level, the first step in olfactory detection, where olfactory sensory neurons (OSNs) relay information to brain for signal processing, remains unclear. Here, we examined the roles of inhalation aromatherapy with compound essential oils derived from Bergamot, Peppermint and Rosa rugose on chronic unpredictable mild stress (CUMS)-induced depression and explored potential therapeutic targets in the peripheral OM. We found that inhalation aromatherapy effectively ameliorated CUMS-induced depression and olfactory dysfunction in rats. Strikingly, inhalation aromatherapy improved pathological changes, significantly reduced apoptosis levels, and promoted olfactory neurogenesis in the OM, which may contribute to the beneficial effects on the olfactory function of depressed rats. Further, inhalation aromatherapy significantly may reverse inflammation levels in the OM through Sirt1/FKBP5/GR/NF-κB signaling pathway, and prevented neuroinflammation in other parts of the olfactory system such as the hippocampus and prefrontal cortex, which may play a role in the olfactory impairments in rats with depression. Collectively, we have demonstrated that inhalation aromatherapy could efficiently prevent the local inflammatory responses in the OM of CUMS depression model rats. These findings provide new insights into the treatment of depression with aromatherapy, as well as new concept for the identification of novel antidepressant strategies.
Collapse
Affiliation(s)
- Hongxiu Song
- Laboratory Animal Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Rheumatology, Nanjing Hospital of Chinese Medicine, Nanjing, 210022, China; Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Aihong Yang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yang Wang
- Laboratory Animal Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Rui Xu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Wei Hu
- Department of Rheumatology, Nanjing Hospital of Chinese Medicine, Nanjing, 210022, China; Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
2
|
Xie Y, Wang S, Cha X, Li F, Xu Z, Wu J, Liu H, Ren W. Aging and chronic inflammation: impacts on olfactory dysfunction-a comprehensive review. Cell Mol Life Sci 2025; 82:199. [PMID: 40355677 PMCID: PMC12069206 DOI: 10.1007/s00018-025-05637-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/04/2025] [Accepted: 02/23/2025] [Indexed: 05/14/2025]
Abstract
Olfactory dysfunction (OD) is a common nasal disease, particularly prevalent among the elderly population, significantly impacting the affected individuals' quality of life. This review focuses on the influence of aging and chronic inflammation on olfactory dysfunction, presenting insights from both the peripheral and central olfactory systems. By exploring the molecular mechanisms and pathological changes underlying the occurrence of olfactory dysfunction in relation to age-related diseases and chronic inflammation conditions, we aim to provide a comprehensive theoretical foundation for further research and offer valuable insights for more effective treatment of olfactory dysfunction.
Collapse
Affiliation(s)
- Yingqi Xie
- Department of Otolaryngology, The Second Affiliated Hospital of the Naval Medical University, Shanghai Changzheng Hospital, Shanghai, China
| | - Shenglei Wang
- Department of Otolaryngology, The Second Affiliated Hospital of the Naval Medical University, Shanghai Changzheng Hospital, Shanghai, China
| | - Xudong Cha
- Department of Otolaryngology, The Second Affiliated Hospital of the Naval Medical University, Shanghai Changzheng Hospital, Shanghai, China
| | - Fengzhen Li
- Department of Otolaryngology, The Second Affiliated Hospital of the Naval Medical University, Shanghai Changzheng Hospital, Shanghai, China
| | - Zengyi Xu
- Department of Otolaryngology, The Second Affiliated Hospital of the Naval Medical University, Shanghai Changzheng Hospital, Shanghai, China
| | - Jian Wu
- Department of Otolaryngology, The Second Affiliated Hospital of the Naval Medical University, Shanghai Changzheng Hospital, Shanghai, China.
| | - Huanhai Liu
- Department of Otolaryngology, The Second Affiliated Hospital of the Naval Medical University, Shanghai Changzheng Hospital, Shanghai, China.
| | - Wenwen Ren
- Department of Otolaryngology, The Second Affiliated Hospital of the Naval Medical University, Shanghai Changzheng Hospital, Shanghai, China.
| |
Collapse
|
3
|
Li Y, Liu M, Zhang R, Wang Y, Liu J. Long COVID-19-related and non-COVID-19 postviral olfactory dysfunction a comparative MRI study focusing on the olfactory cleft and bulbs. Front Neurol 2025; 15:1535699. [PMID: 39882367 PMCID: PMC11774702 DOI: 10.3389/fneur.2024.1535699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
Objective To compare the magnetic resonance imaging (MRI) features of the olfactory cleft (OC) and olfactory bulbs (OBs) in patients with long COVID-19-related (LCOD) and non-COVID-19 postviral olfactory dysfunction (NCPVOD) to explore mechanisms underlying persistent olfactory dysfunction. Methods This retrospective analysis included patients diagnosed with LCOD or NCPVOD at the China-Japan Friendship Hospital between February 2023 and July 2024. All patients underwent olfactory psychophysical testing (Sniffin' Sticks), a visual analogue scale (VAS) for olfactory function, and high-resolution MRI scans of the olfactory pathway. MRI features, including OC opacity, OB morphology, OB volume, and olfactory sulcus depth, were compared between groups. Correlations between MRI findings and olfactory test scores were assessed. Results Seventy patients were included (35 LCOD, 35 NCPVOD). LCOD patients had significantly higher OC opacity scores than NCPVOD patients (p < 0.001). No significant differences were found in OB morphology, abnormal OB signals, OB volume reduction, or distances between OBs and surrounding structures (p > 0.05). LCOD patients had significantly greater right olfactory sulcus depth than NCPVOD patients (p = 0.026), with negative correlation to age (r = -0.25, p = 0.04). OB volumes positively correlated with TDI and VAS scores. Conclusion LCOD patients exhibited greater OC opacity than NCPVOD patients, suggesting OC inflammation may contribute to persistent olfactory dysfunction. Treating inflammation in the OC could improve long-term olfactory outcomes. OB volume reduction was common in both groups.
Collapse
Affiliation(s)
- Yifan Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Otolaryngology-Head and Neck Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Mengfan Liu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Otolaryngology-Head and Neck Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Ruoqi Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Otolaryngology-Head and Neck Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Yibei Wang
- Department of Otolaryngology-Head and Neck Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jianfeng Liu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Otolaryngology-Head and Neck Surgery, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
4
|
Liao W, Wang Y, Wang L, Li J, Huang D, Cheng W, Luan P. The current status and challenges of olfactory dysfunction study in Alzheimer's Disease. Ageing Res Rev 2024; 100:102453. [PMID: 39127444 DOI: 10.1016/j.arr.2024.102453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Olfactory functioning involves multiple cognitive processes and the coordinated actions of various neural systems. Any disruption at any stage of this process may result in olfactory dysfunction, which is consequently widely used to predict the onset and progression of diseases, such as Alzheimer's Disease (AD). Although the underlying mechanisms have not yet been fully unraveled, apparent changes were observed in olfactory brain areas form patients who suffer from AD by means of medical imaging and electroencephalography (EEG). Olfactory dysfunction holds significant promise in detecting AD during the preclinical stage preceding mild cognitive impairment (MCI). Owing to the strong specificity, olfactory tests are prevalently applied for screening in community cohorts. And combining olfactory tests with other biomarkers may further establish an optimal model for AD prediction in studies of specific olfactory dysfunctions and improve the sensitivity and specificity of early AD diagnosis.
Collapse
Affiliation(s)
- Wanchen Liao
- Department of Alzheimer's Disease Clinical Research Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Yulin Wang
- Department of Alzheimer's Disease Clinical Research Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Lei Wang
- Department of Alzheimer's Disease Clinical Research Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Jun Li
- Department of Alzheimer's Disease Clinical Research Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Dongqing Huang
- Department of Alzheimer's Disease Clinical Research Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Weibin Cheng
- Department of Alzheimer's Disease Clinical Research Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Ping Luan
- Department of Alzheimer's Disease Clinical Research Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| |
Collapse
|
5
|
Zhang Y. Advances in Social Cognitive and Affective Neuroscience: Ten Highly Cited Articles Published in Brain Sciences in 2022-2023. Brain Sci 2024; 14:460. [PMID: 38790439 PMCID: PMC11118003 DOI: 10.3390/brainsci14050460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
In the realm of Social Cognitive and Affective Neuroscience, researchers employ a variety of methods to address theoretical and practical questions that focus on the intricate interplay between social perception, cognition, and emotion across diverse populations and contexts [...].
Collapse
Affiliation(s)
- Yang Zhang
- Department of Speech-Language-Hearing Sciences & Center for Neurobehavioral Development, University of Minnesota, Twin Cities, MN 55455, USA
| |
Collapse
|
6
|
Libreros-Jiménez HM, Manzo J, Rojas-Durán F, Aranda-Abreu GE, García-Hernández LI, Coria-Ávila GA, Herrera-Covarrubias D, Pérez-Estudillo CA, Toledo-Cárdenas MR, Hernández-Aguilar ME. On the Cranial Nerves. NEUROSCI 2024; 5:8-38. [PMID: 39483811 PMCID: PMC11523702 DOI: 10.3390/neurosci5010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 11/03/2024] Open
Abstract
The twelve cranial nerves play a crucial role in the nervous system, orchestrating a myriad of functions vital for our everyday life. These nerves are each specialized for particular tasks. Cranial nerve I, known as the olfactory nerve, is responsible for our sense of smell, allowing us to perceive and distinguish various scents. Cranial nerve II, or the optic nerve, is dedicated to vision, transmitting visual information from the eyes to the brain. Eye movements are governed by cranial nerves III, IV, and VI, ensuring our ability to track objects and focus. Cranial nerve V controls facial sensations and jaw movements, while cranial nerve VII, the facial nerve, facilitates facial expressions and taste perception. Cranial nerve VIII, or the vestibulocochlear nerve, plays a critical role in hearing and balance. Cranial nerve IX, the glossopharyngeal nerve, affects throat sensations and taste perception. Cranial nerve X, the vagus nerve, is a far-reaching nerve, influencing numerous internal organs, such as the heart, lungs, and digestive system. Cranial nerve XI, the accessory nerve, is responsible for neck muscle control, contributing to head movements. Finally, cranial nerve XII, the hypoglossal nerve, manages tongue movements, essential for speaking, swallowing, and breathing. Understanding these cranial nerves is fundamental in comprehending the intricate workings of our nervous system and the functions that sustain our daily lives.
Collapse
Affiliation(s)
| | - Jorge Manzo
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Mexico; (J.M.); (F.R.-D.); (G.E.A.-A.); (L.I.G.-H.); (G.A.C.-Á.); (D.H.-C.); (C.A.P.-E.); (M.R.T.-C.)
| | - Fausto Rojas-Durán
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Mexico; (J.M.); (F.R.-D.); (G.E.A.-A.); (L.I.G.-H.); (G.A.C.-Á.); (D.H.-C.); (C.A.P.-E.); (M.R.T.-C.)
| | - Gonzalo E Aranda-Abreu
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Mexico; (J.M.); (F.R.-D.); (G.E.A.-A.); (L.I.G.-H.); (G.A.C.-Á.); (D.H.-C.); (C.A.P.-E.); (M.R.T.-C.)
| | - Luis I García-Hernández
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Mexico; (J.M.); (F.R.-D.); (G.E.A.-A.); (L.I.G.-H.); (G.A.C.-Á.); (D.H.-C.); (C.A.P.-E.); (M.R.T.-C.)
| | - Genaro A Coria-Ávila
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Mexico; (J.M.); (F.R.-D.); (G.E.A.-A.); (L.I.G.-H.); (G.A.C.-Á.); (D.H.-C.); (C.A.P.-E.); (M.R.T.-C.)
| | - Deissy Herrera-Covarrubias
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Mexico; (J.M.); (F.R.-D.); (G.E.A.-A.); (L.I.G.-H.); (G.A.C.-Á.); (D.H.-C.); (C.A.P.-E.); (M.R.T.-C.)
| | - César A Pérez-Estudillo
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Mexico; (J.M.); (F.R.-D.); (G.E.A.-A.); (L.I.G.-H.); (G.A.C.-Á.); (D.H.-C.); (C.A.P.-E.); (M.R.T.-C.)
| | - María Rebeca Toledo-Cárdenas
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Mexico; (J.M.); (F.R.-D.); (G.E.A.-A.); (L.I.G.-H.); (G.A.C.-Á.); (D.H.-C.); (C.A.P.-E.); (M.R.T.-C.)
| | - María Elena Hernández-Aguilar
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Mexico; (J.M.); (F.R.-D.); (G.E.A.-A.); (L.I.G.-H.); (G.A.C.-Á.); (D.H.-C.); (C.A.P.-E.); (M.R.T.-C.)
| |
Collapse
|
7
|
Genetzaki S, Nikolaidis V, Markou K, Konstantinidis I. Olfactory training with four and eight odors: comparison with clinical testing and olfactory bulb volumetrics. Eur Arch Otorhinolaryngol 2024; 281:497-502. [PMID: 37924364 PMCID: PMC10764551 DOI: 10.1007/s00405-023-08283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/09/2023] [Indexed: 11/06/2023]
Abstract
PURPOSE Post-infectious olfactory dysfunction (PIOD) is one of the most common causes of olfactory impairment but has limited treatment options. Recently, olfactory training (OT) has been considered an effective treatment method; however, several questions have arisen regarding its optimal scheme. The aim of this study was to assess whether an OT scheme with 8 odors is more effective than the classic OT scheme with 4 odors by comparing psychophysical test results and olfactory bulb (OB) volumetrics. METHODS In this prospective cohort study, 72 patients with PIOD were included. The patients followed either the classic 4-odor OT scheme (COT; n = 34 patients) or an extended 8-odor scheme (EOT; n = 38 patients) for 16 weeks. All patients underwent olfactory testing with a Sniffin'Sticks battery test at 0, 8, and 16 weeks. Of the patients, 38 underwent brain magnetic resonance imaging for OB volumetric assessment before and after treatment. RESULTS The comparison of the olfactory test results did not show any significant difference between the two study groups, in agreement with the OB volumetrics. The convex OB showed better test results than the non-convex OB, with significantly better improvement after treatment regardless of OT type. The EOT group presented significantly better adherence than the COT group. CONCLUSION The number of odors did not appear to play a significant role in the effect of the OT. However, the training scheme with more than four odors showed better adherence among the patients in a long-term treatment plan. The shape of the OB may have prognostic value in clinical assessment and warrants further investigation.
Collapse
Affiliation(s)
- Sotiria Genetzaki
- 2nd ORL Academic Department, Aristotle University, Thessaloniki, Greece
| | | | | | | |
Collapse
|
8
|
Alvites R, Caine A, Cherubini GB, Prada J, Varejão ASP, Maurício AC. The Olfactory Bulb in Companion Animals-Anatomy, Physiology, and Clinical Importance. Brain Sci 2023; 13:brainsci13050713. [PMID: 37239185 DOI: 10.3390/brainsci13050713] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
The Olfactory Bulb is a component of the Olfactory System, in which it plays an essential role as an interface between the peripheral components and the cerebral cortex responsible for olfactory interpretation and discrimination. It is in this element that the first selective integration of olfactory stimuli occurs through a complex cell interaction that forwards the received olfactory information to higher cortical centers. Considering its position in the organizational hierarchy of the olfactory system, it is now known that changes in the Olfactory Bulb can lead to olfactory abnormalities. Through imaging techniques, it was possible to establish relationships between the occurrence of changes secondary to brain aging and senility, neurodegenerative diseases, head trauma, and infectious diseases with a decrease in the size of the Olfactory Bulb and in olfactory acuity. In companion animals, this relationship has also been identified, with observations of relations between the cranial conformation, the disposition, size, and shape of the Olfactory Bulb, and the occurrence of structural alterations associated with diseases with different etiologies. However, greater difficulty in quantitatively assessing olfactory acuity in animals and a manifestly smaller number of studies dedicated to this topic maintain a lack of concrete and unequivocal results in this field of veterinary sciences. The aim of this work is to revisit the Olfactory Bulb in companion animals in all its dimensions, review its anatomy and histological characteristics, physiological integration in the olfactory system, importance as a potential early indicator of the establishment of specific pathologies, as well as techniques of imaging evaluation for its in vivo clinical exploration.
Collapse
Affiliation(s)
- Rui Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Instituto Universitário de Ciências da Saúde (CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Abby Caine
- Dick White Referrals, Station Farm, London Road, Six Mile Bottom, Cambridgeshire CB8 0UH, UK
| | - Giunio Bruto Cherubini
- Department of Veterinary Sciences, Veterinary Teaching Hospital "Mario Modenato", University of Pisa, Via Livornese Lato Monte, San Piero a Grado, 56122 Pisa, Italy
| | - Justina Prada
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Centro de Ciência Animal e Veterinária (CECAV), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Artur Severo P Varejão
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Centro de Ciência Animal e Veterinária (CECAV), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
9
|
Menzel S, Konstantinidis I, Valentini M, Battaglia P, Turri-Zanoni M, Sileo G, Monti G, Castelnuovo PGM, Hummel T, Macchi A. Surgical Approaches for Possible Positions of an Olfactory Implant to Stimulate the Olfactory Bulb. ORL J Otorhinolaryngol Relat Spec 2023; 85:253-263. [PMID: 36996786 PMCID: PMC10627492 DOI: 10.1159/000529563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 01/29/2023] [Indexed: 04/01/2023]
Abstract
INTRODUCTION Current scientific developments seem to allow for an "olfactory implant" in analogy to cochlear implants. However, the position and surgical approaches for electrical stimulation of the olfactory system are unclear. METHODS In a human anatomic cadaver study, we investigated different endoscopic approaches to electrically stimulate the olfactory bulb (OB) based on the following considerations: (1) the stimulating electrode should be close to the OB. (2) The surgical procedure should be as non-invasive and safe as possible and (3) as easy as possible for an experienced ENT surgeon. RESULTS In summary, the endoscopic intracranial positioning of the electrode via a widened ostium of the fila olfactoria or a frontal sinus surgery like a Draf IIb procedure is a good option in terms of patients' risk, degree of difficulty for ENT surgeons, and position to the OB. Endoscopic intranasal positioning appeared to be the best option in terms of patient risk and the degree of difficulty for ENT surgeons. Although a bigger approach to the OB using a drill and the combined intranasal endoscopic and external approach enabled a close placement of the electrode to the OB, they do not seem relevant in practice due to their higher invasiveness. CONCLUSION The study suggested that an intranasal positioning of a stimulating electrode is possible, with placements beneath the cribriform plate, extra- or intracranially, applying elegant surgical techniques with low or medium risk to the patient and a close placement to OB.
Collapse
Affiliation(s)
- Susanne Menzel
- Smell and Taste Clinic, Department of Otorhinolaryngology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Iordanis Konstantinidis
- Smell and Taste Clinic, 2nd ORL Academic Department, Aristotle University, Thessaloniki, Greece
| | - Marco Valentini
- Division of Otorhinolaryngology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Paolo Battaglia
- Division of Otorhinolaryngology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Mario Turri-Zanoni
- Division of Otorhinolaryngology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giorgio Sileo
- Division of Otorhinolaryngology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giulia Monti
- Division of Otorhinolaryngology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | | | - Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Alberto Macchi
- Division of Otorhinolaryngology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
10
|
Konstantinidis I. Managing Post-traumatic Olfactory Disorders. CURRENT OTORHINOLARYNGOLOGY REPORTS 2022. [DOI: 10.1007/s40136-022-00431-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Abstract
Purpose of Review
This study aims to summarize and critically review recent literature on management of post-traumatic olfactory dysfunction (PTOD) with emphasis on the diagnostic procedure and treatment options.
Recent Findings
Magnetic resonance imaging and olfactory testing are the basis of the diagnostic procedure. Time of diagnosis is critical as the most improvement occurs within the first year after trauma. Olfactory training and oral steroids seem to be a relatively evidence-based therapeutic option but with non-optimal results. Surgery has a limited place in the management of PTOD. Promising future options could be the development of olfactory implants and transplantation of olfactory epithelium or stem cells.
Summary
PTOD management is challenging as it has several pathogenetic mechanisms and relatively poor prognosis. Patients with olfactory impairment and head trauma have diminished quality of life, and increased risk for harmful events and development of depression. Thus, clinicians should not only focus to therapeutic options but equally to appropriate counseling to their patients in order to decrease risks of personal injury and improve their daily life.
Collapse
|
11
|
Comparative Neuroanatomical Study of the Main Olfactory Bulb in Domestic and Wild Canids: Dog, Wolf and Red Fox. Animals (Basel) 2022; 12:ani12091079. [PMID: 35565506 PMCID: PMC9106054 DOI: 10.3390/ani12091079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The study of the morphological, physiological and molecular changes associated with the domestication process has been one of the most interesting unresolved neuroanatomical issues. The olfactory system deserves special attention since both wild and domestic canids are macrosmatic mammals with very high olfactory capacities. Nevertheless, the question remains open as to whether domestication involuted the sense of smell in domestic dogs. Further, there is a lack of comparative morphological information on the olfactory bulb, the first structure integrating olfactory sensory information in the brain. To provide comparative information on the domestication process, we studied the olfactory bulb of dogs and their two most important wild ancestors: the wolf and the fox. The study was carried out by macroscopic dissection and histological and immunohistochemical techniques and has allowed us to verify, first of all, that the three species present olfactory bulbs corresponding to a macrosmatic animal, but that there are noticeable differences not only in size, which was already known, but also in the cellularity and intensity of the immunohistochemical pattern characteristic of each species. These variations point to a reduction of the olfactory system as a consequence of the selection pressure associated with the domestication of animals. Abstract The sense of smell plays a fundamental role in mammalian survival. There is a considerable amount of information available on the vomeronasal system of both domestic and wild canids. However, much less information is available on the canid main olfactory system, particularly at the level of the main olfactory bulb. Comparative study of the neuroanatomy of wild and domestic canids provides an excellent model for understanding the effects of selection pressure associated with domestication. A comprehensive histological (hematoxylin–eosin, Nissl, Tolivia and Gallego’s Trichrome stains), lectin (UEA, LEA) and immunohistochemical (Gαo, Gαi2, calretinin, calbindin, olfactory marker protein, glial fibrillary acidic protein, microtubule-associated protein 2) study of the olfactory bulbs of the dog, fox and wolf was performed. Our study found greater macroscopic development of the olfactory bulb in both the wolf and fox compared to the dog. At the microscopic level, all three species show a well-developed pattern of lamination and cellularity typical of a macrosmatic animal. However, greater development of cellularity in the periglomerular and mitral layers of wild canids is characteristic. Likewise, the immunohistochemical study shows comparable results between the three species, but with a noticeably higher expression of markers in wild canids. These results suggest that the reduction in encephalization experienced in dogs due to domestication also corresponds to a lower degree of morphological and neurochemical differentiation of the olfactory bulb.
Collapse
|