1
|
García-Atienza P, Sancho E, Ferrando MD, Armenta S. Danio rerio embryo as in vivo model for the evaluation of the toxicity and metabolism of pyrovalerone cathinones. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117174. [PMID: 39423504 DOI: 10.1016/j.ecoenv.2024.117174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
The objective of the present manuscript was the evaluation of the toxicity and metabolism of the second generation of pyrovalerone cathinones (α-PHP, α-PHPiP, 4-MePPP and TH-PVP), using an early zebrafish (Danio rerio) larvae as in vivo model. Pyrovalerone cathinones LC50 were determined after 24, 48, 72 and 96 h of exposure. TH-PVP proved to be the most toxic cathinone, whereas 4-MePPP was the least toxic. During acute exposure to pyrovalerone cathinones the main signs of toxicity exhibited by survivors were pericardial edema, yolk sac in embryos, bradycardia, delay in the hatching, malformations, and larvae without touch response. Afterwards, a short-term non-lethal experiment (24 h) was performed with early zebrafish larvae (72 h) for each of the selected compounds. The produced metabolites were tentatively identified by liquid chromatography-high resolution mass spectrometry (LC-HRMS) and the metabolic pathways were proposed. The results showed that hydroxylation and dihydroxylation can be considered the main metabolic pathways, although depending of the cathinone studied, other metabolites can be found.
Collapse
Affiliation(s)
- P García-Atienza
- Analytical Chemistry Department, Universitat de València, 50th Dr. Moliner St, Burjassot 46100, Spain
| | - E Sancho
- Cellular Biology, Functional Biology and Physical Anthropology Department, Universitat de València, 50th Dr. Moliner St, Burjassot 46100, Spain.
| | - M D Ferrando
- Cellular Biology, Functional Biology and Physical Anthropology Department, Universitat de València, 50th Dr. Moliner St, Burjassot 46100, Spain
| | - S Armenta
- Analytical Chemistry Department, Universitat de València, 50th Dr. Moliner St, Burjassot 46100, Spain.
| |
Collapse
|
2
|
Jeon KO, Kim OH, Seo SY, Yun J, Jang CG, Lim RN, Kim TW, Yang CH, Yoon SS, Jang EY. The psychomotor, reinforcing, and discriminative stimulus effects of synthetic cathinone mexedrone in male mice and rats. Eur J Pharmacol 2024; 969:176466. [PMID: 38431243 DOI: 10.1016/j.ejphar.2024.176466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
The chronic use of the novel synthetic cathinone mexedrone, like other psychoactive drugs, can be considered addictive, with a high potential for abuse and the ability to cause psychological dependence in certain users. However, little is known about the neurobehavioral effects of mexedrone in association with its potential for abuse. We investigated the abuse potential for mexedrone abuse through multiple behavioral tests. In addition, serotonin transporter (SERT) levels were measured in the synaptosome of the dorsal striatum, and serotonin (5-HT) levels were measured in the dorsal striatum of acute mexedreone (50 mg/kg)-treated mice. To clarify the neuropharmacological mechanisms underlying the locomotor response of mexedrone, the 5-HT2A receptor antagonist M100907 (0.5 or 1.0 mg/kg) was administered prior to the acute injection of mexedrone in the locomotor activity experiment in mice. Mexedrone (10-50 mg/kg) produced a significant place preference in mice and mexedrone (0.1-0.5 mg/kg/infusion) maintained self-administration behavior in rats in a dose-dependent manner. In the drug discrimination experiment, mexedrone (5.6-32 mg/kg) was fully substituted for the discriminative stimulus effects of cocaine in rats. Mexedrone increased locomotor activity, and these effects were reversed by pretreatment with M100907. Acute mexedrone significantly increased c-Fos expression in the dorsal striatum and decreased SERT levels in the synaptosome of the dorsal striatum of mice, resulting in an elevation of 5-HT levels. Taken together, our results provide the possibility that mexedrone has abuse potential, which might be mediated, at least in part, by the activation of the serotonergic system in the dorsal striatum.
Collapse
Affiliation(s)
- Kyung Oh Jeon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea; Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Oc-Hee Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Su Yeon Seo
- Korean Medicine (KM) Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ri-Na Lim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Tae Wan Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Chae Ha Yang
- Department of Physiology, College of Korean Medicine, Daegu Haany University, 136 Sincheondong-ro, Suseong-gu, Daegu, 42158, Republic of Korea
| | - Seong Shoon Yoon
- Department of Physiology, College of Korean Medicine, Daegu Haany University, 136 Sincheondong-ro, Suseong-gu, Daegu, 42158, Republic of Korea.
| | - Eun Young Jang
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
3
|
Alanazi IM, Alzahrani AR, Alsaad MA, Moqeem AL, Hamdi AM, Taher MM, Watson DG, Helen Grant M. The effect of mephedrone on human neuroblastoma and astrocytoma cells. Saudi Pharm J 2024; 32:102011. [PMID: 38454918 PMCID: PMC10918268 DOI: 10.1016/j.jsps.2024.102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Mephedrone is an illegal drug that is used recreationally. Few studies have been conducted to investigate the mechanisms by which mephedrone is harming cells. In this research, we investigated the effect of mephedrone using toxicology coupled with LC-MS/MS based metabolomics in the two CNS derived cell lines. Methods of assessment such as neutral red (NR) assay, dimethylthiazolyl diphenyltetrazolium bromide (MTT), lactose dehydrogenase (LDH) measurement, and morphology were performed to identify the effect on cell viability and to identify the best concentration to be used in a metabolomics study. A concentration of 100 μM of mephedrone was used in the metabolomic experiment because at this concentration mephedrone had induced several intracellular changes. Although there no clear indicators of cellular damage caused by mephedrone. In astrocytes there was a clear indication that cell membrane function might be impaired by depletion of ether lipids.
Collapse
Affiliation(s)
- Ibrahim M. Alanazi
- Department of Pharmacology and Toxicology, College of Medicine, Umm Al-Qura University, Al-Abidiyah, P.O.Box 13578, Makkah 21955, Saudi Arabia
| | - Abdullah R. Alzahrani
- Department of Pharmacology and Toxicology, College of Medicine, Umm Al-Qura University, Al-Abidiyah, P.O.Box 13578, Makkah 21955, Saudi Arabia
| | - Mohammad A. Alsaad
- Department of Parasitology, College of Medicine, Umm AL Qura University, Al-Abidiyah, P.O.Box 13578, Makkah 21955, Saudi Arabia
| | - Abdulaziz L. Moqeem
- Home Health Care,Directorate of Health Affairs Jeddah, Ministry of Health, P.O.Box11176, Ryiadh, Saudi Arabia
| | - Abdulmohsen M. Hamdi
- Home Health Care,Directorate of Health Affairs Jeddah, Ministry of Health, P.O.Box11176, Ryiadh, Saudi Arabia
| | - Mohiuddin M. Taher
- Science and Technology Unit, Deanship of Scientific Research, and Department of Medical Genetics, College of Medicine, Umm-Al-Qura University, Makkah, Saudi Arabia
| | - David G. Watson
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - M. Helen Grant
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G4 0NW, UK
| |
Collapse
|
4
|
Ameliorative Processes of Beta-Carotene in Streptozotocin-Induced Diabetic Vascular Dementia in Rats. Processes (Basel) 2022. [DOI: 10.3390/pr10071324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Beta-carotene (BC) is a precursor of vitamin A and an excellent antioxidant. It protects the vascular system. Vascular dementia (VaD) is one of the aging disorders causing memory dysfunction. The available medicines for the management of VaD are limited. The present study aimed to evaluate the ameliorative effect of BC in streptozotocin (STZ)-induced diabetic VaD in rats. Diabetic VaD was induced through the administration of nicotinamide (NA, 50 mg/kg; i.p.) and STZ (50 mg/kg; i.p.). The test compound BC (50 and 100 mg/kg; p.o.) and reference compound donepezil (1 mg/kg; p.o.) were administered for 15 consecutive days. Cognitive changes were assessed by transfer latency (TL) using the elevated plus maze (EPM) test. The changes in acetylcholinesterase (AChE) activity were estimated in the septohippocampal system of rat brains. The administration of STZ caused significant changes in cognitive functions (increased TL) as compared to the normal group. BC ameliorated the anxiety-related cognitive behavior and neurotransmitter (elevated AChE) changes provoked by diabetic VaD. Therefore, BC could be a potential therapeutic candidate in the management of VaD.
Collapse
|