1
|
Dieterich-Hartwell R. Interpersonal synchrony in dance/movement therapy: Neural underpinnings for individuals with dementia. J Alzheimers Dis 2025:JAD240239. [PMID: 39093071 DOI: 10.3233/jad-240239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Rising global levels of dementia including Alzheimer's disease call for the treatment of both cognitive and psychosocial deficits of this population. While there is no cure for dementia, the progression can be slowed, and symptoms eased. The positive effects of exercise and dance have been documented as has interpersonal synchrony. Dance/movement therapy uses kinesthetic empathy, attunement, and mirroring to communicate, synchronize, and connect with clients, salient for a population that often struggles with loneliness and isolation. Here I offer a perspective on how dance/movement therapy promotes the social functions and neural underpinning of interpersonal synchrony, possibly providing neuroprotection for this population.
Collapse
|
2
|
Cheng S, Wang J, Luo R, Hao N. Brain to brain musical interaction: A systematic review of neural synchrony in musical activities. Neurosci Biobehav Rev 2024; 164:105812. [PMID: 39029879 DOI: 10.1016/j.neubiorev.2024.105812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/02/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
The use of hyperscanning technology has revealed the neural mechanisms underlying multi-person interaction in musical activities. However, there is currently a lack of integration among various research findings. This systematic review aims to provide a comprehensive understanding of the social dynamics and brain synchronization in music activities through the analysis of 32 studies. The findings illustrate a strong correlation between inter-brain synchronization (IBS) and various musical activities, with the frontal, central, parietal, and temporal lobes as the primary regions involved. The application of hyperscanning not only advances theoretical research but also holds practical significance in enhancing the effectiveness of music-based interventions in therapy and education. The review also utilizes Predictive Coding Models (PCM) to provide a new perspective for interpreting neural synchronization in music activities. To address the limitations of current research, future studies could integrate multimodal data, adopt novel technologies, use non-invasive techniques, and explore additional research directions.
Collapse
Affiliation(s)
- Shate Cheng
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| | - Jiayi Wang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| | - Ruiyi Luo
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| | - Ning Hao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| |
Collapse
|
3
|
Heng JG, Zhang J, Bonetti L, Lim WPH, Vuust P, Agres K, Chen SHA. Understanding music and aging through the lens of Bayesian inference. Neurosci Biobehav Rev 2024; 163:105768. [PMID: 38908730 DOI: 10.1016/j.neubiorev.2024.105768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
Bayesian inference has recently gained momentum in explaining music perception and aging. A fundamental mechanism underlying Bayesian inference is the notion of prediction. This framework could explain how predictions pertaining to musical (melodic, rhythmic, harmonic) structures engender action, emotion, and learning, expanding related concepts of music research, such as musical expectancies, groove, pleasure, and tension. Moreover, a Bayesian perspective of music perception may shed new insights on the beneficial effects of music in aging. Aging could be framed as an optimization process of Bayesian inference. As predictive inferences refine over time, the reliance on consolidated priors increases, while the updating of prior models through Bayesian inference attenuates. This may affect the ability of older adults to estimate uncertainties in their environment, limiting their cognitive and behavioral repertoire. With Bayesian inference as an overarching framework, this review synthesizes the literature on predictive inferences in music and aging, and details how music could be a promising tool in preventive and rehabilitative interventions for older adults through the lens of Bayesian inference.
Collapse
Affiliation(s)
- Jiamin Gladys Heng
- School of Computer Science and Engineering, Nanyang Technological University, Singapore.
| | - Jiayi Zhang
- Interdisciplinary Graduate Program, Nanyang Technological University, Singapore; School of Social Sciences, Nanyang Technological University, Singapore; Centre for Research and Development in Learning, Nanyang Technological University, Singapore
| | - Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus, Aalborg, Denmark; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, United Kingdom; Department of Psychiatry, University of Oxford, United Kingdom; Department of Psychology, University of Bologna, Italy
| | | | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus, Aalborg, Denmark
| | - Kat Agres
- Centre for Music and Health, National University of Singapore, Singapore; Yong Siew Toh Conservatory of Music, National University of Singapore, Singapore
| | - Shen-Hsing Annabel Chen
- School of Social Sciences, Nanyang Technological University, Singapore; Centre for Research and Development in Learning, Nanyang Technological University, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; National Institute of Education, Nanyang Technological University, Singapore.
| |
Collapse
|
4
|
Konrad K, Gerloff C, Kohl SH, Mehler DMA, Mehlem L, Volbert EL, Komorek M, Henn AT, Boecker M, Weiss E, Reindl V. Interpersonal neural synchrony and mental disorders: unlocking potential pathways for clinical interventions. Front Neurosci 2024; 18:1286130. [PMID: 38529267 PMCID: PMC10962391 DOI: 10.3389/fnins.2024.1286130] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/30/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Interpersonal synchronization involves the alignment of behavioral, affective, physiological, and brain states during social interactions. It facilitates empathy, emotion regulation, and prosocial commitment. Mental disorders characterized by social interaction dysfunction, such as Autism Spectrum Disorder (ASD), Reactive Attachment Disorder (RAD), and Social Anxiety Disorder (SAD), often exhibit atypical synchronization with others across multiple levels. With the introduction of the "second-person" neuroscience perspective, our understanding of interpersonal neural synchronization (INS) has improved, however, so far, it has hardly impacted the development of novel therapeutic interventions. Methods To evaluate the potential of INS-based treatments for mental disorders, we performed two systematic literature searches identifying studies that directly target INS through neurofeedback (12 publications; 9 independent studies) or brain stimulation techniques (7 studies), following PRISMA guidelines. In addition, we narratively review indirect INS manipulations through behavioral, biofeedback, or hormonal interventions. We discuss the potential of such treatments for ASD, RAD, and SAD and using a systematic database search assess the acceptability of neurofeedback (4 studies) and neurostimulation (4 studies) in patients with social dysfunction. Results Although behavioral approaches, such as engaging in eye contact or cooperative actions, have been shown to be associated with increased INS, little is known about potential long-term consequences of such interventions. Few proof-of-concept studies have utilized brain stimulation techniques, like transcranial direct current stimulation or INS-based neurofeedback, showing feasibility and preliminary evidence that such interventions can boost behavioral synchrony and social connectedness. Yet, optimal brain stimulation protocols and neurofeedback parameters are still undefined. For ASD, RAD, or SAD, so far no randomized controlled trial has proven the efficacy of direct INS-based intervention techniques, although in general brain stimulation and neurofeedback methods seem to be well accepted in these patient groups. Discussion Significant work remains to translate INS-based manipulations into effective treatments for social interaction disorders. Future research should focus on mechanistic insights into INS, technological advancements, and rigorous design standards. Furthermore, it will be key to compare interventions directly targeting INS to those targeting other modalities of synchrony as well as to define optimal target dyads and target synchrony states in clinical interventions.
Collapse
Affiliation(s)
- Kerstin Konrad
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany
| | - Christian Gerloff
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany
- Department of Applied Mathematics and Theoretical Physics, Cambridge Centre for Data-Driven Discovery, University of Cambridge, Cambridge, United Kingdom
| | - Simon H. Kohl
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany
| | - David M. A. Mehler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- School of Psychology, Cardiff University Brain Research Imaging Center (CUBRIC), Cardiff University, Cardiff, United Kingdom
| | - Lena Mehlem
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
| | - Emily L. Volbert
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
| | - Maike Komorek
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
| | - Alina T. Henn
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
| | - Maren Boecker
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- Institute of Medical Psychology and Medical Sociology, University Hospital RWTH, Aachen, Germany
| | - Eileen Weiss
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- Institute of Medical Psychology and Medical Sociology, University Hospital RWTH, Aachen, Germany
| | - Vanessa Reindl
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- Department of Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
5
|
Shamay-Tsoory SG, Marton-Alper IZ, Markus A. Post-interaction neuroplasticity of inter-brain networks underlies the development of social relationship. iScience 2024; 27:108796. [PMID: 38292433 PMCID: PMC10825012 DOI: 10.1016/j.isci.2024.108796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/01/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Inter-brain coupling has been increasingly recognized for its role in supporting connectedness during social communication. Here we investigate whether inter-brain coupling is plastic and persists beyond the offset of social interaction, facilitating the emergence of social closeness. Dyads were concurrently scanned using functional near infrared spectroscopy (fNIRS) while engaging in a task that involved movement synchronization. To assess post-interaction neuroplasticity, participants performed a baseline condition with no interaction before and after the interaction. The results reveal heightened inter-brain coupling in neural networks comprising the inferior frontal gyrus (IFG) and dorsomedial prefrontal cortex in the post-task compared to the pre-task baseline. Critically, the right IFG emerged as a highly connected hub, with post-task inter-brain coupling in this region predicting the levels of motivation to connect socially. We suggest that post-interactions inter-brain coupling may reflect consolidation of socially related cues, underscoring the role of inter-brain plasticity in fundamental aspects of relationship development.
Collapse
Affiliation(s)
- Simone G. Shamay-Tsoory
- Department of Psychology, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), Haifa, Israel
| | | | - Andrey Markus
- Department of Psychology, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), Haifa, Israel
| |
Collapse
|
6
|
Hakim U, De Felice S, Pinti P, Zhang X, Noah JA, Ono Y, Burgess PW, Hamilton A, Hirsch J, Tachtsidis I. Quantification of inter-brain coupling: A review of current methods used in haemodynamic and electrophysiological hyperscanning studies. Neuroimage 2023; 280:120354. [PMID: 37666393 DOI: 10.1016/j.neuroimage.2023.120354] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023] Open
Abstract
Hyperscanning is a form of neuroimaging experiment where the brains of two or more participants are imaged simultaneously whilst they interact. Within the domain of social neuroscience, hyperscanning is increasingly used to measure inter-brain coupling (IBC) and explore how brain responses change in tandem during social interaction. In addition to cognitive research, some have suggested that quantification of the interplay between interacting participants can be used as a biomarker for a variety of cognitive mechanisms aswell as to investigate mental health and developmental conditions including schizophrenia, social anxiety and autism. However, many different methods have been used to quantify brain coupling and this can lead to questions about comparability across studies and reduce research reproducibility. Here, we review methods for quantifying IBC, and suggest some ways moving forward. Following the PRISMA guidelines, we reviewed 215 hyperscanning studies, across four different brain imaging modalities: functional near-infrared spectroscopy (fNIRS), functional magnetic resonance (fMRI), electroencephalography (EEG) and magnetoencephalography (MEG). Overall, the review identified a total of 27 different methods used to compute IBC. The most common hyperscanning modality is fNIRS, used by 119 studies, 89 of which adopted wavelet coherence. Based on the results of this literature survey, we first report summary statistics of the hyperscanning field, followed by a brief overview of each signal that is obtained from each neuroimaging modality used in hyperscanning. We then discuss the rationale, assumptions and suitability of each method to different modalities which can be used to investigate IBC. Finally, we discuss issues surrounding the interpretation of each method.
Collapse
Affiliation(s)
- U Hakim
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom.
| | - S De Felice
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom; Department of Psychology, University of Cambridge, United Kingdom
| | - P Pinti
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom; Centre for Brain and Cognitive Development, Birkbeck, University of London, London, United Kingdom
| | - X Zhang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - J A Noah
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Y Ono
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki, Kanagawa, Japan
| | - P W Burgess
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - A Hamilton
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - J Hirsch
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom; Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States; Departments of Neuroscience and Comparative Medicine, Yale School of Medicine, New Haven, CT, United States; Yale University, Wu Tsai Institute, New Haven, CT, United States
| | - I Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
7
|
Maidhof C, Müller V, Lartillot O, Agres K, Bloska J, Asano R, Odell-Miller H, Fachner J. Intra- and inter-brain coupling and activity dynamics during improvisational music therapy with a person with dementia: an explorative EEG-hyperscanning single case study. Front Psychol 2023; 14:1155732. [PMID: 37842703 PMCID: PMC10570426 DOI: 10.3389/fpsyg.2023.1155732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
Objective Real-life research into the underlying neural dynamics of improvisational music therapy, used with various clinical populations, is largely lacking. This single case study explored within-session differences in musical features and in within- and between-brain coupling between a Person with Dementia (PwD) and a music therapist during a music therapy session. Methods Dual-EEG from a music therapist and a PwD (male, 31 years) was recorded. Note density, pulse clarity and synchronicity were extracted from audio-visual data. Three music therapists identified moments of interest and no interest (MOI/MONI) in two drum improvisations. The Integrative Coupling Index, reflecting time-lagged neural synchronization, and musical features were compared between the MOI and MONI. Results Between-brain coupling of 2 Hz activity was increased during the MOI, showing anteriority of the therapist's neural activity. Within-brain coupling for the PwD was stronger from frontal and central areas during the MOI, but within-brain coupling for the therapist was stronger during MONI. Differences in musical features indicated that both acted musically more similar to one another during the MOI. Conclusion Within-session differences in neural synchronization and musical features highlight the dynamic nature of music therapy. Significance The findings contribute to a better understanding of social and affective processes in the brain and (interactive) musical behaviors during specific moments in a real-life music therapy session. This may provide insights into the role of such moments for relational-therapeutic processes.
Collapse
Affiliation(s)
- Clemens Maidhof
- Cambridge Institute for Music Therapy Research, Anglia Ruskin University, Cambridge, United Kingdom
- Josef Ressel Centre for Personalized Music Therapy, University of Applied Sciences IMC Krems, Krems an der Donau, Austria
| | - Viktor Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Olivier Lartillot
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
| | - Kat Agres
- Yong Siew Toh Conservatory of Music, National University of Singapore, Singapore, Singapore
- Centre for Music and Health, National University of Singapore, Singapore, Singapore
| | - Jodie Bloska
- Cambridge Institute for Music Therapy Research, Anglia Ruskin University, Cambridge, United Kingdom
| | - Rie Asano
- Institute of Musicology, University of Cologne, Cologne, Germany
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
| | - Helen Odell-Miller
- Cambridge Institute for Music Therapy Research, Anglia Ruskin University, Cambridge, United Kingdom
| | - Jörg Fachner
- Cambridge Institute for Music Therapy Research, Anglia Ruskin University, Cambridge, United Kingdom
- Josef Ressel Centre for Personalized Music Therapy, University of Applied Sciences IMC Krems, Krems an der Donau, Austria
| |
Collapse
|
8
|
Gibbs HJ, Czepiel A, Egermann H. Physiological synchrony and shared flow state in Javanese gamelan: positively associated while improvising, but not for traditional performance. Front Psychol 2023; 14:1214505. [PMID: 37663327 PMCID: PMC10469686 DOI: 10.3389/fpsyg.2023.1214505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
The experience of shared flow refers to the optimal balance between challenge and ability for a given task, resulting from interpersonal action in a group situation. The performance of Javanese gamelan is an ideal setting to investigate shared flow, due to the requirement that all performers on varying instrumental parts work harmoniously, allowing for shared flow and its native equivalent, ngeli. To minimise the disruption of flow, while still measuring it continuously, one way to assess a person's state is by measuring physiological responses of the sympathetic (i.e., fight-or-flight) system, namely heart rate and skin conductance. Flow has been related to physiological signatures, and shared actions in music-making have been related to synchronised physiology. However, to our knowledge, no study yet has directly investigated the links between shared physiology and shared flow. Therefore, this study aimed to assess the associations between flow states, physiological synchrony, and Javanese gamelan playing. Subsequently, we tested for differences between advanced and beginner groups playing traditional gamelan pieces and improvising. Firstly, a factor analysis revealed a two-factor solution of Awareness and Absorption for self-reported shared flow. Next, using inter-subject correlation to assess synchrony and circular shuffling to infer significance, we found a greater proportion of significance in traditional playing compared to improvised playing for the experienced group, and the opposite for the beginner group. Lastly, linear mixed models revealed largely positive associations between synchronised physiology and shared flow during improvised playing, and negative associations during traditional playing, regardless of experience levels. This study demonstrates methodological possibilities for the quantitative study of shared flow in music-making contexts, and potential differences in shared flow experience in improvised and traditional, or prescribed, playing.
Collapse
Affiliation(s)
- Hannah Jennet Gibbs
- York Music Psychology Group, Music, Science and Technology Research Cluster, School of Arts and Creative Technologies, University of York, York, United Kingdom
| | - Anna Czepiel
- Department of Music, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Hauke Egermann
- Institute for Music and Musicology, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
9
|
Chen WG, Iversen JR, Kao MH, Loui P, Patel AD, Zatorre RJ, Edwards E. Music and Brain Circuitry: Strategies for Strengthening Evidence-Based Research for Music-Based Interventions. J Neurosci 2022; 42:8498-8507. [PMID: 36351825 PMCID: PMC9665917 DOI: 10.1523/jneurosci.1135-22.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
The neuroscience of music and music-based interventions (MBIs) is a fascinating but challenging research field. While music is a ubiquitous component of every human society, MBIs may encompass listening to music, performing music, music-based movement, undergoing music education and training, or receiving treatment from music therapists. Unraveling the brain circuits activated and influenced by MBIs may help us gain better understanding of the therapeutic and educational values of MBIs by gathering strong research evidence. However, the complexity and variety of MBIs impose unique research challenges. This article reviews the recent endeavor led by the National Institutes of Health to support evidence-based research of MBIs and their impact on health and diseases. It also highlights fundamental challenges and strategies of MBI research with emphases on the utilization of animal models, human brain imaging and stimulation technologies, behavior and motion capturing tools, and computational approaches. It concludes with suggestions of basic requirements when studying MBIs and promising future directions to further strengthen evidence-based research on MBIs in connections with brain circuitry.SIGNIFICANCE STATEMENT Music and music-based interventions (MBI) engage a wide range of brain circuits and hold promising therapeutic potentials for a variety of health conditions. Comparative studies using animal models have helped in uncovering brain circuit activities involved in rhythm perception, while human imaging, brain stimulation, and motion capture technologies have enabled neural circuit analysis underlying the effects of MBIs on motor, affective/reward, and cognitive function. Combining computational analysis, such as prediction method, with mechanistic studies in animal models and humans may unravel the complexity of MBIs and their effects on health and disease.
Collapse
Affiliation(s)
- Wen Grace Chen
- Division of Extramural Research, National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland, 20892
| | | | - Mimi H Kao
- Tufts University, Medford, Massachusetts 02155
| | - Psyche Loui
- Northeastern University, Boston, Massachusetts 02115
| | | | - Robert J Zatorre
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A2B4, Canada
| | - Emmeline Edwards
- Division of Extramural Research, National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland, 20892
| |
Collapse
|
10
|
Schiavo R. The Co-Construction of an Elegant Ending-Polyphonic Musical Intervention in Palliative Care: A Case Study. Behav Sci (Basel) 2022; 12:392. [PMID: 36285961 PMCID: PMC9598736 DOI: 10.3390/bs12100392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023] Open
Abstract
The complexity of creative processes, within which human nature pines and finds itself, reflects a state of relational emergency. The weak structure of our multicultural system gives us a series of behavioral flaws, denouncing our inability to welcome diversity and treasure it. In the search for the way out, using the metaphor of polyphony is increasingly frequent. However, since the term Polyphony is borrowed from musical language, it would be necessary to experience it concretely, and this usually does not happen. Those musicians who aspire to be artists in helping relationships should constantly train themselves in this sense and force themselves to make their ability understood externally, helping those who for reasons of life find themselves experiencing the limit. The field of palliative care is probably the most suitable socio-cultural setting for getting in touch with the personal (mis)interpretations, idiosyncrasies, and pain of those who feel close to the end. To their aid, the aesthetic criterion advances. Making sacred the unifying experience of loss and finiteness turns into an educational process moreover therapeutic, in the co-construction of an elegant "finale" able to reach the heart and intelligence of those who remain.
Collapse
Affiliation(s)
- Raffaele Schiavo
- Art Research Education, Hospice Palliative Care Unit, Rizza Hospital, ASP 8 (National Health Service), 96100 Siracusa, Italy
| |
Collapse
|
11
|
Sened H, Zilcha-Mano S, Shamay-Tsoory S. Inter-brain plasticity as a biological mechanism of change in psychotherapy: A review and integrative model. Front Hum Neurosci 2022; 16:955238. [PMID: 36092652 PMCID: PMC9458846 DOI: 10.3389/fnhum.2022.955238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022] Open
Abstract
Recent models of psychopathology and psychotherapy highlight the importance of interpersonal factors. The current review offers a biological perspective on these interpersonal processes by examining inter-brain synchrony-the coupling of brain activity between people interacting with one another. High inter-brain synchrony is associated with better relationships in therapy and in daily life, while deficits in the ability to achieve inter-brain synchrony are associated with a variety of psychological and developmental disorders. The review suggests that therapy improves patients' ability to achieve such synchrony through inter-brain plasticity-a process by which recurring exposure to high inter-brain synchrony leads to lasting change in a person's overall ability to synchronize. Therapeutic sessions provide repeated situations with high inter-brain synchrony. This can lead to a long-term increase in the ability to synchronize, first with the therapist, then generalized to other interpersonal relationships, ultimately leading to symptom reduction. The proposed inter-brain plasticity model offers a novel biological framework for understanding relational change in psychotherapy and its links to various forms of psychopathology and provides testable hypotheses for future research. Understanding this mechanism may help improve existing psychotherapy methods and develop new ones.
Collapse
Affiliation(s)
- Haran Sened
- Department of Psychology, University of Haifa, Haifa, Israel
| | | | | |
Collapse
|