1
|
Karimian-Jazi K, Enbergs N, Golubtsov E, Schregel K, Ungermann J, Fels-Palesandro H, Schwarz D, Sturm V, Kernbach JM, Batra D, Ippen FM, Pflüger I, von Knebel Doeberitz N, Heiland S, Bunse L, Platten M, Winkler F, Wick W, Paech D, Bendszus M, Breckwoldt MO. Differentiating Glioma Recurrence and Pseudoprogression by APTw CEST MRI. Invest Radiol 2025; 60:414-422. [PMID: 39644107 DOI: 10.1097/rli.0000000000001145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
OBJECTIVES Recurrent glioma is highly treatment resistant due to its metabolic, cellular, and molecular heterogeneity and invasiveness. Tumor monitoring by conventional MRI has shortcomings to assess these key glioma characteristics. Recent studies introduced chemical exchange saturation transfer for metabolic imaging in oncology and assessed its diagnostic value for newly diagnosed glioma. This prospective study investigates amide proton transfer-weighted (APTw) MRI at 3 T as an imaging biomarker to elucidate the molecular heterogeneity and invasion patterns of recurrent glioma in comparison to pseudoprogression (PsPD). MATERIALS AND METHODS We performed a monocenter, prospective trial and screened 371 glioma patients who received tumor monitoring between August 2021 and March 2024 at our institution. The study included IDH wildtype astrocytoma and IDH mutant astrocytoma and oligodendroglioma, graded according to the WHO 2021 classification. Patients had received clinical standard of care treatment including surgical resection and radiochemotherapy prior to study inclusion. Patients were monitored by 3 monthly MRI follow-up imaging, and response assessment was performed according to the RANO criteria. Within this cohort, we identified 30 patients who presented with recurrent glioma and 12 patients with PsPD. In addition to standard anatomical sequences (FLAIR and T1-w Gd-enhanced sequences), MRI included APTw imaging. After sequence co-registration, semiautomated segmentation was performed of the FLAIR lesion, CE lesion, resection cavity, and the contralateral normal-appearing white matter, and APTw signals were quantified in these regions of interest. RESULTS APTw values were highest in solid, Gd-enhancing tumor parts as compared with the nonenhancing FLAIR lesion (APTw: 1.99% vs 1.36%, P = 0.001), whereas there were no detectable APTw alterations in the normal-appearing white matter (APTw: 0.005%, P < 0.001 compared with FLAIR). Patients with progressive disease had higher APTw levels compared with patients with PsPD (APTw: 1.99% vs 1.26%, P = 0.008). Chemical exchange saturation transfer identified heterogeneity within the FLAIR lesion that was not detectable by conventional sequences. There were also focal APTw signal peaks within contrast enhancing lesions as putative metabolic hotspots within recurrent glioma. The resection cavity developed an APTw increase at recurrence that was not detectable prior to recurrence nor in patients with PsPD (APTw before recurrence: 0.6% vs 2.68% at recurrence, P = 0.03). CONCLUSIONS Our study shows that APTw imaging can differentiate PD and PsPD. We identify previously undetectable imaging patterns during glioma recurrence, which include alterations within resection cavity associated with disease progression. Our work highlights the clinical potential of APTw imaging for glioma monitoring and further establishes it as an imaging biomarker in neuro-oncology.
Collapse
Affiliation(s)
- Kianush Karimian-Jazi
- From the Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany (K.K.-J., N.E., E.G., K.S., J.U., H.F.-P., D.S., V.S., J.M.K., I.P., S.H., M.B., M.O.B.); Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany (K.K.-J., F.W., W.W.); Department of Neurology, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), Heidelberg, Germany (D.B., F.M.I., F.W., W.W.); DKTK, DKFZ, Clinical Cooperation Unit Neuropathology, Heidelberg, Germany (F.M.I.); Division of Radiology, DKFZ, Heidelberg, Germany (N.V., D.P.); Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, DKTK, DKFZ, Heidelberg, Germany (L.B., M.P., M.O.B.); Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany (L.B., M.P.); Division of Neuroradiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (D.P.); and Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany (D.P.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Wach J, Vychopen M, Güresir E. Prognostic revalidation of RANO categories for extent of resection in glioblastoma: a reconstruction of individual patient data. J Neurooncol 2025; 172:515-525. [PMID: 39992571 PMCID: PMC11968501 DOI: 10.1007/s11060-025-04950-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 01/22/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND The RANO classification for glioblastoma defines resection categories based on volumetric tumor assessments, aiming to standardize outcomes related to extent of resection (EOR). This study revalidates the prognostic impact of RANO classes by reconstructing individual patient data (IPD). METHODS A systematic review and meta-analysis were performed, including three studies comprising 580 glioblastoma patients. Included studies reported or allowed conversion to RANO classes for glioblastoma resection extent, with detailed OS data and numbers at risk. Overall survival (OS) data were extracted from Kaplan-Meier survival curves, and IPD were reconstructed using Digitizelt and the R package IPDfromKM. Survival analyses were conducted using Kaplan-Meier estimates and Cox regression models. RESULTS Median follow-up was 15.6 months (IQR: 10.1-28.8). Patients undergoing supramaximal resection (RANO class 1, n = 163) had the highest median OS (35.6 months; 95% CI: 30.9-40.4), significantly outperforming non-class 1 resections (median OS: 13.9 months; 95% CI: 13.0-14.7; p < 0.001). Subgroup analysis revealed superior OS for class 2a (19.0 months) over class 2b (14.1 months; p < 0.001), while class 3 and 4 resections demonstrated progressively poorer outcomes. Hazard ratios consistently favored class 1 versus all other classes (HR: 0.28; 95% CI: 0.23-0.37). CONCLUSIONS Supramaximal (class 1) resection provides a significant survival benefit in glioblastoma, underscoring its critical role in surgical management. The RANO classification stratifies resection outcomes effectively, supporting its use as a prognostic tool. These findings advocate for resection strategies targeting maximal tumor removal.
Collapse
Affiliation(s)
- Johannes Wach
- Department of Neurosurgery, University Hospital Leipzig, 04103, Leipzig, Germany.
- Comprehensive Cancer Center Central Germany, Partner Site Leipzig, 04103, Leipzig, Germany.
- Department of Neurosurgery, University Hospital Leipzig Leipzig University, Liebigstraße 20, 04103, Leipzig, Germany.
| | - Martin Vychopen
- Department of Neurosurgery, University Hospital Leipzig, 04103, Leipzig, Germany
- Comprehensive Cancer Center Central Germany, Partner Site Leipzig, 04103, Leipzig, Germany
| | - Erdem Güresir
- Department of Neurosurgery, University Hospital Leipzig, 04103, Leipzig, Germany
- Comprehensive Cancer Center Central Germany, Partner Site Leipzig, 04103, Leipzig, Germany
| |
Collapse
|
3
|
Chen JS, Young JS, Berger MS. Current and Future Applications of 5-Aminolevulinic Acid in Neurosurgical Oncology. Cancers (Basel) 2025; 17:1332. [PMID: 40282508 PMCID: PMC12025619 DOI: 10.3390/cancers17081332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
Maximal safe surgical resection is the gold standard in brain tumor surgery. Fluorescence-guided surgery (FGS) is one of many intraoperative techniques that have been designed with the intention of accomplishing this goal. 5-aminolevulinic acid (5-ALA) is one of the main fluorophores that facilitates FGS in neurosurgical oncology. Multiple different types of brain tumors can take in and metabolize 5-ALA into protoporphyrin IX (PpIX) through the mitochondria heme biosynthesis pathway. PpIX then selectively accumulates in brain tumor cells due to decreased ferrochelatase activity and emits red fluorescence (630-720 nm) when excited with blue light (375-440 nm). This mechanism allows neurosurgeons to better visualize tumor burden and increase extent of resection while preserving non-cancerous brain parenchyma and, specifically, eloquent white matter tracts, if combined with mapping techniques, thereby minimizing morbidity while improving survival. While 5-ALA use is well established in the treatment of high-grade gliomas, its applicability in recurrent high-grade and non-enhancing IDH-mutant low-grade gliomas, as well as non-glial tumors, is less established or limited by certain features of their cellular and molecular biology. This review aims to discuss the current landscape of 5-ALA utility across the diverse range of brain tumors, practical considerations that optimize its current use in neurosurgery, modern clinical limitations of 5-ALA, and how its application can be expanded by combining its use with other techniques that overcome current limitations.
Collapse
Affiliation(s)
| | | | - Mitchel S. Berger
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA; (J.-S.C.); (J.S.Y.)
| |
Collapse
|
4
|
Häger W, Toma-Dașu I, Astaraki M, Lazzeroni M. Role of modeled high-grade glioma cell invasion and survival on the prediction of tumor progression after radiotherapy. Phys Med Biol 2025; 70:065017. [PMID: 40043359 DOI: 10.1088/1361-6560/adbcf4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
Objective.Glioblastoma (GBM) prognosis remains poor despite progress in radiotherapy and imaging techniques. Tumor recurrence has been attributed to the widespread tumor invasion of normal tissue. Since the complete extension of invasion is undetectable on imaging, it is not deliberately treated. To improve the treatment outcome, models have been developed to predict tumor invasion based standard imaging data. This study aimed to investigate whether a tumor invasion model, together with the predicted number of surviving cells after radiotherapy, could predict tumor progression post-treatment.Approach.A tumor invasion model was applied to 56 cases of GBMs treated with radiotherapy. The invasion was quantified as the volume encompassed by the 100 cells mm-3isocontour (V100). A new metric, cell-volume-product, was defined as the product of the volume with cell density greater than a threshold value (in cells mm-3), and the number of surviving cells within that volume, post-treatment. Tumor progression was assessed at 20 ± 10 d and 90 ± 20 d after treatment. Correlations between the disease progression and the gross tumor volume (GTV),V100, and cell-volume-product, were determined using receiver operating characteristic curves.Main results.For the early follow-up time, the correlation between GTV and tumor progression was not statistically significant (p= 0.684). However, statistically significant correlations with progression were found betweenV100and cell-volume-product with a cell threshold of 10-6cells mm-3with areas-under-the-curve of 0.69 (p= 0.023) and 0.66 (p= 0.045), respectively. No significant correlations were found for the late follow-up time.Significance.Modeling tumor spread otherwise undetectable on conventional imaging, as well as radiobiological model predictions of cell survival after treatment, may provide useful information regarding the likelihood of tumor progression at an early follow-up time point, which could potentially lead to improved treatment decisions for patients with GBMs.
Collapse
Affiliation(s)
- Wille Häger
- Department of Physics, Stockholm University, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | - Iuliana Toma-Dașu
- Department of Physics, Stockholm University, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | - Mehdi Astaraki
- Department of Biomedical Engineering and Health Systems, Royal Institute of Technology, Huddinge, Sweden
- Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | - Marta Lazzeroni
- Department of Physics, Stockholm University, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
5
|
Azizova A, Prysiazhniuk Y, Wamelink IJHG, Cakmak M, Kaya E, Wesseling P, de Witt Hamer PC, Verburg N, Petr J, Barkhof F, Keil VC. Preoperative prediction of diffuse glioma type and grade in adults: a gadolinium-free MRI-based decision tree. Eur Radiol 2025; 35:1242-1254. [PMID: 39425768 PMCID: PMC11836213 DOI: 10.1007/s00330-024-11140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/23/2024] [Accepted: 09/22/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVES To develop a gadolinium-free MRI-based diagnosis prediction decision tree (DPDT) for adult-type diffuse gliomas and to assess the added value of gadolinium-based contrast agent (GBCA) enhanced images. MATERIALS AND METHODS This study included preoperative grade 2-4 adult-type diffuse gliomas (World Health Organization 2021) scanned between 2010 and 2021. The DPDT, incorporating eleven GBCA-free MRI features, was developed using 18% of the dataset based on consensus readings. Diagnosis predictions involved grade (grade 2 vs. grade 3/4) and molecular status (isocitrate dehydrogenase (IDH) and 1p/19q). GBCA-free diagnosis was predicted using DPDT, while GBCA-enhanced diagnosis included post-contrast images. The accuracy of these predictions was assessed by three raters with varying experience levels in neuroradiology using the test dataset. Agreement analyses were applied to evaluate the prediction performance/reproducibility. RESULTS The test dataset included 303 patients (age (SD): 56.7 (14.2) years, female/male: 114/189, low-grade/high-grade: 54/249, IDH-mutant/wildtype: 82/221, 1p/19q-codeleted/intact: 34/269). Per-rater GBCA-free predictions achieved ≥ 0.85 (95%-CI: 0.80-0.88) accuracy for grade and ≥ 0.75 (95%-CI: 0.70-0.80) for molecular status, while GBCA-enhanced predictions reached ≥ 0.87 (95%-CI: 0.82-0.90) and ≥ 0.77 (95%-CI: 0.71-0.81), respectively. No accuracy difference was observed between GBCA-free and GBCA-enhanced predictions. Group inter-rater agreement was moderate for GBCA-free (0.56 (95%-CI: 0.46-0.66)) and substantial for GBCA-enhanced grade prediction (0.68 (95%-CI: 0.58-0.78), p = 0.008), while substantial for both GBCA-free (0.75 (95%-CI: 0.69-0.80) and GBCA-enhanced (0.77 (95%-CI: 0.71-0.82), p = 0.51) molecular status predictions. CONCLUSION The proposed GBCA-free diagnosis prediction decision tree performed well, with GBCA-enhanced images adding little to the preoperative diagnostic accuracy of adult-type diffuse gliomas. KEY POINTS Question Given health and environmental concerns, is there a gadolinium-free imaging protocol to preoperatively evaluate gliomas comparable to the gadolinium-enhanced standard practice? Findings The proposed gadolinium-free diagnosis prediction decision tree for adult-type diffuse gliomas performed well, and gadolinium-enhanced MRI demonstrated only limited improvement in diagnostic accuracy. Clinical relevance Even inexperienced raters effectively classified adult-type diffuse gliomas using the gadolinium-free diagnosis prediction decision tree, which, until further validation, can be used alongside gadolinium-enhanced images to respect standard practice, despite this study showing that gadolinium-enhanced images hardly improved diagnostic accuracy.
Collapse
Affiliation(s)
- Aynur Azizova
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine Department, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Yeva Prysiazhniuk
- Charles University, The Second Faculty of Medicine, Department of Pathophysiology, Prague, Czech Republic
- Motol University Hospital, Prague, Czech Republic
| | - Ivar J H G Wamelink
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine Department, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Marcus Cakmak
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine Department, Amsterdam, The Netherlands
- Vrije Universiteit Amsterdam, University Medical Center, Amsterdam, The Netherlands
| | - Elif Kaya
- Ankara Yıldırım Beyazıt University, Faculty of Medicine, Ankara, Turkey
| | - Pieter Wesseling
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Pathology, Amsterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Laboratory for Childhood Cancer Pathology, Utrecht, The Netherlands
| | - Philip C de Witt Hamer
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Niels Verburg
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Jan Petr
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine Department, Amsterdam, The Netherlands
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Frederik Barkhof
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine Department, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Center for Medical Image Computing, University College London, London, UK
| | - Vera C Keil
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine Department, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Bhandari D, Bakhit M, Hayashi Y, Hiruta R, Saito K, Mori K, Fujii M. Development and Validation of a Multimodal Optico-Radiological Image System for Neurosurgical Guidance: A Proof of Concept. Cureus 2025; 17:e81310. [PMID: 40296936 PMCID: PMC12036804 DOI: 10.7759/cureus.81310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Introduction Advancements in neurosurgery have integrated imaging modalities like fluorescence imaging and neuronavigation to enhance tumor resection and functional preservation. However, aligning intra-operative optical data, such as 5-aminolaevulinic acid (5-ALA) fluorescence and direct cortical stimulation (DCS) tags, with radiological images remains challenging due to brain shift. To address this, we developed the Multimodal Optico-Radiological Image (MORI) platform, a proof-of-concept system integrating intra-operative optical imaging with MRI/CT for improved surgical visualization. Methods We evaluated MORI in 19 brain tumor surgeries near eloquent or deep-seated areas. The system comprised (1) optical image capture, (2) 3D surface reconstruction from stereo optical images, (3) registration of optical and radiological images using the iterative closest point (ICP) algorithm, and (4) visualization. Accuracy was validated by measuring registration errors between anatomical landmarks. Results MORI reconstructed 3D brain surfaces, integrating fluorescence and functional mapping with MRI. The system achieved an average registration error of 2.2 mm across 10 cases. Case studies demonstrated precise overlay of DCS tags onto MRI for eloquent area localization and 5-ALA fluorescence for tumor margin delineation. Additionally, MORI converted conventional 2D surgical videos into a 4D surgical record for timeline-based integration. Conclusion MORI enhances neurosurgical precision by dynamically integrating optical and radiological imaging. Future advancements, such as automation and surgical microscope integration, could refine it into a robust navigation tool, improving intra-operative decision-making, surgical education, and patient outcomes while advancing neurosurgical research.
Collapse
Affiliation(s)
- Dilip Bhandari
- Department of Neurosurgery, Graduate School of Medicine, Fukushima Medical University, Fukushima, JPN
| | - Mudathir Bakhit
- Department of Neurosurgery, Fukushima Medical University, Fukushima, JPN
| | - Yuichiro Hayashi
- Department of Intelligent Systems, Graduate School of Informatics, Nagoya University, Nagoya, JPN
| | - Ryo Hiruta
- Department of Neurosurgery, Fukushima Medical University, Fukushima, JPN
| | - Kiyoshi Saito
- Department of Neurosurgery, Fukushima Rōsai Hospital, Iwaki, JPN
| | - Kensaku Mori
- Department of Intelligent Systems, Graduate School of Informatics, Nagoya University, Nagoya, JPN
| | - Masazumi Fujii
- Department of Neurosurgery, Fukushima Medical University, Fukushima, JPN
| |
Collapse
|
7
|
Pogosbekyan E, Zakharova N, Batalov A, Shevchenko A, Fadeeva L, Bykanov A, Tyurina A, Chekhonin I, Galstyan S, Pitskhelauri D, Pronin I, Usachev D. Individual Brain Tumor Invasion Mapping Based on Diffusion Kurtosis Imaging. Sovrem Tekhnologii Med 2025; 17:81-90. [PMID: 40071079 PMCID: PMC11892574 DOI: 10.17691/stm2025.17.1.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Indexed: 03/14/2025] Open
Abstract
The aim of the investigation is to develop and implement an algorithm for image analysis in brain tumors (glioblastoma and metastasis) based on diffusion kurtosis MRI images (DKI) for the assessment of anisotropic changes in brain tissues in the directions from the tumor to the intact (as shown by the standard MRI data) white matter, which will enable generating individual tumor invasion maps. Materials and Methods A healthy volunteer and two patients (one with glioblastoma and the other with a single metastasis of small cell lung cancer) were examined by DKI obtaining 12 parametric kurtosis maps for each participant. Results During the investigation, we have developed an algorithm of DKI analysis and plotting the profile of tissue parameters in the direction from the tumor towards the unaffected white matter according to the data of standard MRI. Changes of the DKI indicators along the trajectories built using the proposed algorithm in the perifocal zone of glioblastoma and metastasis have been compared in this work. We obtained not only changes in the parameters (gradients in trajectory plots) but also a visual reflection (on color maps) of a known pathomorphology of the process - no significant gradients of DKI parameters were detected in the perifocal metastasis edema, since there was a pure vasogenic edema and no infiltrative component. In glioblastoma, gradients of DKI parameters were found not only in the zone of perifocal edema but beyond the zone of MR signal as well, which is believed to reflect diffusion disorders along the white matter fibers and different degrees of brain tissue infiltration by glioblastoma cells. Conclusion The developed algorithm of DKI analysis in brain tumors makes it possible to determine the degree of changes in the tissue microstructure in the perifocal zone of brain glioblastoma relative to the metastasis. The study aimed at obtaining individual maps of tumor invasion, which will be applied in planning neurosurgical and radiation treatment and for predicting directions of further growth of malignant gliomas.
Collapse
Affiliation(s)
- E.L. Pogosbekyan
- Medical Physicist, Department of Neuroradiology; N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia
| | - N.E. Zakharova
- MD, DSc, Professor of the Russian Academy of Sciences, Chief Researcher, Department of Neuroradiology; N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia
| | - A.I. Batalov
- MD, PhD, Researcher, Department of Neuroradiology; N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia
| | - A.M. Shevchenko
- Radiologist, Department of Neuroradiology; N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia
| | - L.M. Fadeeva
- Leading Engineer, Department of Neuroradiology; N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia
| | - A.E. Bykanov
- MD, PhD, Researcher, Neurosurgery Department No.7; N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia
| | - A.N. Tyurina
- MD, PhD, Researcher, Department of Neuroradiology; N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia
| | - I.V. Chekhonin
- MD, PhD, Radiologist, Department of Neuroradiology; N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia
| | - S.A. Galstyan
- Pathologist, Department of Pathology; N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia
| | - D.I. Pitskhelauri
- MD, DSc, Professor, Head of Neurosurgery Department No.7; N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia
| | - I.N. Pronin
- MD, DSc, Professor, Academician of the Russian Academy of Sciences, Head of the Department of Neuroradiology; N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia
| | - D.Yu. Usachev
- MD, DSc, Professor, Academician of the Russian Academy of Sciences, Director; N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia
| |
Collapse
|
8
|
Courot H, Rigal E, Adib N, Criton M, Cookson A, Fauvel B, Presumey J. In Vitro Evaluation of Genetically Unmodified Ligand-Armed Allogeneic Natural Killer Cells to Treat EGFR-Positive Glioblastoma. Cells 2025; 14:254. [PMID: 39996727 PMCID: PMC11854314 DOI: 10.3390/cells14040254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/29/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025] Open
Abstract
Glioblastomas (GBMs) are lethal brain tumors in which EGFR gene amplification or mutation is frequently detected and is associated with poor prognosis. The standard of care is maximal resection followed by chemotherapy and radiation. Over the last twenty years, marginal improvements in patient survival have been achieved mainly through surgical techniques and the more accurate use of radiation. In this study, umbilical cord blood-derived and expanded human allogeneic natural killer (eNK) cells were pre-complexed to an Fc-engineered anti-EGFR monoclonal antibody (Pin-EGFR) to create Pin-EGFR-armed eNK cells. Pin-EGFR-armed eNK cells showed in vitro persistence of mAb anchoring. This arming process mediated specific, rapid and potent NK cell-redirected cytotoxicity against GBM cell lines and patient-derived cells in models consistent with the pathophysiological conditions of GBM. These results demonstrate the potential of Pin-EGFR-armed eNK cells to be an effective therapy against GBM cell lines in vitro. This product represents a promising strategy to directly target residual tumor tissue remaining at and beyond the resection margins immediately following GBM surgery to improve patient care.
Collapse
|
9
|
Kalluri AL, Lee JH, Lucas CHG, Rincon-Torroella J, Bettegowda C. Implications of molecular classifications in glioma surgery. J Neurooncol 2025; 171:559-569. [PMID: 39532825 DOI: 10.1007/s11060-024-04883-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE The incorporation of molecular markers into neuro-oncology has transformed our understanding of adult diffuse gliomas. While surgical resection is the mainstay of treatment for many patients with gliomas, surgical management strategies warrant re-exploration in the context of characteristic molecular profiles. METHODS We reviewed the neurosurgical and neuro-oncological literature for studies investigating surgery in molecularly defined cohorts of adult diffuse gliomas. RESULTS We discuss key molecular markers associated with the three subtypes of adult diffuse glioma: glioblastoma IDH-wildtype, astrocytoma IDH-mutant, and oligodendroglioma IDH-mutant and 1p/19q codeleted. We additionally discuss surgical strategies and extent of resection in these tumors, framing them in the context of key molecular alterations. Finally, we briefly discuss the practical utility of molecular markers in guiding surgical decision making. CONCLUSION Molecular markers in gliomas are of growing relevance to surgical intervention. Advancements in preoperative and intraoperative molecular diagnostics will increase the utility of molecular biomarkers in informing surgical decision-making for patients with gliomas.
Collapse
Affiliation(s)
- Anita L Kalluri
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joyce H Lee
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Calixto-Hope G Lucas
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Shibahara I, Handa H, Kiga T, Kumabe T. Occipital Lobectomy Utilizing Parieto-Occipital Fissure: Two-Dimensional Operative Video. World Neurosurg 2025; 193:145-146. [PMID: 39510172 DOI: 10.1016/j.wneu.2024.10.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
Occipital lobectomy is a widely accepted procedure for treatment of occipital gliomas and occipital lobe epilepsy,1,2 but its technical nuances are not well discussed. Anatomically, the occipital lobe, also known as the cuneus or visual area, is an isolated region in terms of vascular supply. The terminal branches of posterior cerebral arteries, including parieto-occipital and calcarine arteries,3-6 are the major vessels supplying this region. The parieto-occipital fissure (POF) comprises the anterior border of the occipital lobe and has been identified as a useful landmark for glioma invasion and tumor resection.7-13 In recent years, glioma surgery focused on achieving an extent of resection beyond gross total resection.14-16 Therefore, focusing on the POF during occipital lobectomy enables handling feeding arteries before tumor resection and accurately defining the resection boundaries beyond the contrast-enhanced lesion, considering the highly invasive nature of glioblastoma. A right-handed 57-year-old man presented with left homonymous hemianopsia. Radiological assessment demonstrated a highly vascular tumor with random enhancement in the right occipital lobe, suggestive of glioblastoma. Computed tomography angiography indicated that the parieto-occipital arteries ran anteriorly to the tumor, and the calcarine artery was identified as the main feeder of the tumor. The surgical procedure involved the dissection of the entire POF along with the parieto-occipital artery and early coagulation of the calcarine artery (Video 1). Postoperative magnetic resonance imaging confirmed the occipital lobectomy with the POF as the anterior border of the resection cavity. The patient exhibited no new neurological deficits postoperatively.
Collapse
Affiliation(s)
- Ichiyo Shibahara
- Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Japan.
| | - Hajime Handa
- Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Takashi Kiga
- Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Toshihiro Kumabe
- Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
11
|
Goethe E, Rao G. Supramarginal Resection of Glioblastoma: A Review. Neurosurg Clin N Am 2025; 36:83-89. [PMID: 39542552 DOI: 10.1016/j.nec.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
This article discusses the evidence supporting the resection of glioblastoma beyond the borders of contrast-enhancing tumor. While several techniques for this have been described, including a so-called FLAIRectomy, lobectomy, or via the use of adjuncts such as fluorescence or intraoperative MRI, the optimal extent of additional resection has yet to be established. Many authors have noted a survival benefit with supramarginal resection without significant additional morbidity.
Collapse
Affiliation(s)
- Eric Goethe
- Department of Neurosurgery, Baylor College of Medicine, 7200 Cambridge Street, Houston, TX 77030, USA
| | - Ganesh Rao
- Department of Neurosurgery, Baylor College of Medicine, 7200 Cambridge Street, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Azizova A, Wamelink IJHG, Prysiazhniuk Y, Cakmak M, Kaya E, Petr J, Barkhof F, Keil VC. Human performance in predicting enhancement quality of gliomas using gadolinium-free MRI sequences. J Neuroimaging 2024; 34:673-693. [PMID: 39300683 DOI: 10.1111/jon.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND AND PURPOSE To develop and test a decision tree for predicting contrast enhancement quality and shape using precontrast magnetic resonance imaging (MRI) sequences in a large adult-type diffuse glioma cohort. METHODS Preoperative MRI scans (development/optimization/test sets: n = 31/38/303, male = 17/22/189, mean age = 52/59/56.7 years, high-grade glioma = 22/33/249) were retrospectively evaluated, including pre- and postcontrast T1-weighted, T2-weighted, fluid-attenuated inversion recovery, and diffusion-weighted imaging sequences. Enhancement prediction decision tree (EPDT) was developed using development and optimization sets, incorporating four imaging features: necrosis, diffusion restriction, T2 inhomogeneity, and nonenhancing tumor margins. EPDT accuracy was assessed on a test set by three raters of variable experience. True enhancement features (gold standard) were evaluated using pre- and postcontrast T1-weighted images. Statistical analysis used confusion matrices, Cohen's/Fleiss' kappa, and Kendall's W. Significance threshold was p < .05. RESULTS Raters 1, 2, and 3 achieved overall accuracies of .86 (95% confidence interval [CI]: .81-.90), .89 (95% CI: .85-.92), and .92 (95% CI: .89-.95), respectively, in predicting enhancement quality (marked, mild, or no enhancement). Regarding shape, defined as the thickness of enhancing margin (solid, rim, or no enhancement), accuracies were .84 (95% CI: .79-.88), .88 (95% CI: .84-.92), and .89 (95% CI: .85-.92). Intrarater intergroup agreement comparing predicted and true enhancement features consistently reached substantial levels (≥.68 [95% CI: .61-.75]). Interrater comparison showed at least moderate agreement (group: ≥.42 [95% CI: .36-.48], pairwise: ≥.61 [95% CI: .50-.72]). Among the imaging features in the EPDT, necrosis assessment displayed the highest intra- and interrater consistency (≥.80 [95% CI: .73-.88]). CONCLUSION The proposed EPDT has high accuracy in predicting enhancement patterns of gliomas irrespective of rater experience.
Collapse
Affiliation(s)
- Aynur Azizova
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Ivar J H G Wamelink
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Yeva Prysiazhniuk
- Second Faculty of Medicine, Department of Pathophysiology, Charles University, Prague, Czech Republic
- Motol University Hospital, Prague, Czech Republic
| | - Marcus Cakmak
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands
- University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Elif Kaya
- Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Türkiye
| | - Jan Petr
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands
- Brain Imaging, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Center for Medical Image Computing, University College London, London, UK
| | - Vera C Keil
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Imaging, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Würtemberger U, Rau A, Diebold M, Becker L, Hohenhaus M, Beck J, Reinacher PC, Erny D, Reisert M, Urbach H, Demerath T. Advanced diffusion MRI provides evidence for altered axonal microstructure and gradual peritumoral infiltration in GBM in comparison to brain metastases. Clin Neuroradiol 2024; 34:703-711. [PMID: 38683350 PMCID: PMC11339137 DOI: 10.1007/s00062-024-01416-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE In contrast to peritumoral edema in metastases, GBM is histopathologically characterized by infiltrating tumor cells within the T2 signal alterations. We hypothesized that depending on the distance from the outline of the contrast-enhancing tumor we might reveal imaging evidence of gradual peritumoral infiltration in GBM and predominantly vasogenic edema around metastases. We thus investigated the gradual change of advanced diffusion metrics with the peritumoral zone in metastases and GBM. METHODS In 30 patients with GBM and 28 with brain metastases, peritumoral T2 hyperintensity was segmented in 33% partitions based on the total volume beginning at the enhancing tumor margin and divided into inner, middle and outer zones. Diffusion Tensor Imaging (DTI)-derived fractional anisotropy and mean diffusivity as well as Diffusion Microstructure Imaging (DMI)-based parameters Dax-intra, Dax-extra, V‑CSF and V-intra were employed to assess group-wise differences between inner and outer zones as well as within-group gradients between the inner and outer zones. RESULTS In metastases, fractional anisotropy and Dax-extra were significantly reduced in the inner zone compared to the outer zone (FA p = 0.01; Dax-extra p = 0.03). In GBM, we noted a reduced Dax-extra and significantly lower intraaxonal volume fraction (Dax-extra p = 0.008, V‑intra p = 0.006) accompanied by elevated axial intraaxonal diffusivity in the inner zone (p = 0.035). Between-group comparison of the outer to the inner zones revealed significantly higher gradients in metastases over GBM for FA (p = 0.04) as well as the axial diffusivity in the intra- (p = 0.02) and extraaxonal compartment (p < 0.001). CONCLUSION Our findings provide evidence of gradual alterations within the peritumoral zone of brain tumors. These are compatible with predominant (vasogenic) edema formation in metastases, whereas our findings in GBM are in line with an axonal destructive component in the immediate peritumoral area and evidence of tumor cell infiltration with accentuation in the tumor's vicinity.
Collapse
Affiliation(s)
- U Würtemberger
- Department of Neuroradiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.
- Dept. of Neuroradiology, University Medical Center Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany.
| | - A Rau
- Department of Neuroradiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Department of Diagnostic and Interventional Radiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - M Diebold
- Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - L Becker
- Department of Neuroradiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - M Hohenhaus
- Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - J Beck
- Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - P C Reinacher
- Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Fraunhofer Institute for Laser Technology, 52074, Aachen, Germany
| | - D Erny
- Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - M Reisert
- Department of Medical Physics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Department of Stereotactic and Functional Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - H Urbach
- Department of Neuroradiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - T Demerath
- Department of Neuroradiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| |
Collapse
|
14
|
Aleid AM, Alrasheed AS, Aldanyowi SN, Almalki SF. Advanced magnetic resonance imaging for glioblastoma: Oncology-radiology integration. Surg Neurol Int 2024; 15:309. [PMID: 39246787 PMCID: PMC11380898 DOI: 10.25259/sni_498_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
Background Aggressive brain tumors like glioblastoma multiforme (GBM) pose a poor prognosis. While magnetic resonance imaging (MRI) is crucial for GBM management, distinguishing it from other lesions using conventional methods can be difficult. This study explores advanced MRI techniques better to understand GBM properties and their link to patient outcomes. Methods We studied MRI scans of 157 GBM surgery patients from January 2020 to March 2024 to extract radiomic features and analyze the impact of fluid-attenuated inversion recovery (FLAIR) resection on survival using statistical methods, proportional hazards regression, and Kaplan-Meier survival analysis. Results Predictive models achieved high accuracy (area under the curve of 0.902) for glioma-grade prediction. FLAIR abnormality resection significantly improved survival, while diffusion-weighted image best-depicted tumor infiltration. Glioblastoma infiltration was best seen with advanced MRI compared to metastasis. Glioblastomas showed distinct features, including irregular shape, margins, and enhancement compared to metastases, which were oval or round, with clear edges and even contrast, and extensive peritumoral changes. Conclusion Advanced radiomic and machine learning analysis of MRI can provide noninvasive glioma grading and characterization of tumor properties with clinical relevance. Combining advanced neuroimaging with histopathology may better integrate oncology and radiology for optimized glioblastoma management. However, further studies are needed to validate these findings with larger datasets and assess additional MRI sequences and radiomic features.
Collapse
Affiliation(s)
| | | | - Saud Nayef Aldanyowi
- Department of Surgery, College of Medicine, King Faisal University, AlAhsa, Saudi Arabia
| | - Sami Fadhel Almalki
- Department of Surgery, College of Medicine, King Faisal University, AlAhsa, Saudi Arabia
| |
Collapse
|
15
|
Vindstad BE, Skjulsvik AJ, Pedersen LK, Berntsen EM, Solheim OS, Ingebrigtsen T, Reinertsen I, Johansen H, Eikenes L, Karlberg AM. Histomolecular Validation of [ 18F]-FACBC in Gliomas Using Image-Localized Biopsies. Cancers (Basel) 2024; 16:2581. [PMID: 39061219 PMCID: PMC11275162 DOI: 10.3390/cancers16142581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Gliomas have a heterogeneous nature, and identifying the most aggressive parts of the tumor and defining tumor borders are important for histomolecular diagnosis, surgical resection, and radiation therapy planning. This study evaluated [18F]-FACBC PET for glioma tissue classification. METHODS Pre-surgical [18F]-FACBC PET/MR images were used during surgery and image-localized biopsy sampling in patients with high- and low-grade glioma. TBR was compared to histomolecular results to determine optimal threshold values, sensitivity, specificity, and AUC values for the classification of tumor tissue. Additionally, PET volumes were determined in patients with glioblastoma based on the optimal threshold. [18F]-FACBC PET volumes and diagnostic accuracy were compared to ce-T1 MRI. In total, 48 biopsies from 17 patients were analyzed. RESULTS [18F]-FACBC had low uptake in non-glioblastoma tumors, but overall higher sensitivity and specificity for the classification of tumor tissue (0.63 and 0.57) than ce-T1 MRI (0.24 and 0.43). Additionally, [18F]-FACBC TBR was an excellent classifier for IDH1-wildtype tumor tissue (AUC: 0.83, 95% CI: 0.71-0.96). In glioblastoma patients, PET tumor volumes were on average eight times larger than ce-T1 MRI volumes and included 87.5% of tumor-positive biopsies compared to 31.5% for ce-T1 MRI. CONCLUSION The addition of [18F]-FACBC PET to conventional MRI could improve tumor classification and volume delineation.
Collapse
Affiliation(s)
- Benedikte Emilie Vindstad
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7030 Trondheim, Norway
| | - Anne Jarstein Skjulsvik
- Department of Pathology, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7030 Trondheim, Norway
| | - Lars Kjelsberg Pedersen
- Department of Neurosurgery, Ophthalmology and Otorhinolaryngology, University Hospital of North Norway, 9019 Tromsø, Norway
| | - Erik Magnus Berntsen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7030 Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
| | - Ole Skeidsvoll Solheim
- Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
- Department of Neuroscience, Norwegian University of Science and Technology, 7030 Trondheim, Norway
| | - Tor Ingebrigtsen
- Department of Neurosurgery, Ophthalmology and Otorhinolaryngology, University Hospital of North Norway, 9019 Tromsø, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway
| | - Ingerid Reinertsen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7030 Trondheim, Norway
- Department of Health Research, SINTEF Digital, 7034 Trondheim, Norway
| | - Håkon Johansen
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
| | - Live Eikenes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7030 Trondheim, Norway
| | - Anna Maria Karlberg
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7030 Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
| |
Collapse
|
16
|
Chang C, Chavarro VS, Gerstl JVE, Blitz SE, Spanehl L, Dubinski D, Valdes PA, Tran LN, Gupta S, Esposito L, Mazzetti D, Gessler FA, Arnaout O, Smith TR, Friedman GK, Peruzzi P, Bernstock JD. Recurrent Glioblastoma-Molecular Underpinnings and Evolving Treatment Paradigms. Int J Mol Sci 2024; 25:6733. [PMID: 38928445 PMCID: PMC11203521 DOI: 10.3390/ijms25126733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Glioblastoma is the most common and lethal central nervous system malignancy with a median survival after progression of only 6-9 months. Major biochemical mechanisms implicated in glioblastoma recurrence include aberrant molecular pathways, a recurrence-inducing tumor microenvironment, and epigenetic modifications. Contemporary standard-of-care (surgery, radiation, chemotherapy, and tumor treating fields) helps to control the primary tumor but rarely prevents relapse. Cytoreductive treatment such as surgery has shown benefits in recurrent glioblastoma; however, its use remains controversial. Several innovative treatments are emerging for recurrent glioblastoma, including checkpoint inhibitors, chimeric antigen receptor T cell therapy, oncolytic virotherapy, nanoparticle delivery, laser interstitial thermal therapy, and photodynamic therapy. This review seeks to provide readers with an overview of (1) recent discoveries in the molecular basis of recurrence; (2) the role of surgery in treating recurrence; and (3) novel treatment paradigms emerging for recurrent glioblastoma.
Collapse
Affiliation(s)
- Christopher Chang
- Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
| | - Velina S. Chavarro
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
| | - Jakob V. E. Gerstl
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
| | - Sarah E. Blitz
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Lennard Spanehl
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Department of Neurosurgery, University of Rostock, 18055 Rostock, Germany; (D.D.); (F.A.G.)
| | - Daniel Dubinski
- Department of Neurosurgery, University of Rostock, 18055 Rostock, Germany; (D.D.); (F.A.G.)
| | - Pablo A. Valdes
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Lily N. Tran
- Division of Biology and Medicine, Brown University, Providence, RI 02912, USA;
| | - Saksham Gupta
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Luisa Esposito
- Department of Medicine and Surgery, Unicamillus University, 00131 Rome, Italy;
| | - Debora Mazzetti
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
| | - Florian A. Gessler
- Department of Neurosurgery, University of Rostock, 18055 Rostock, Germany; (D.D.); (F.A.G.)
| | - Omar Arnaout
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Timothy R. Smith
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Gregory K. Friedman
- Division of Pediatrics, Neuro-Oncology Section, MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Pierpaolo Peruzzi
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
17
|
Yilmaz MT, Kahvecioglu A, Yedekci FY, Yigit E, Ciftci GC, Kertmen N, Zorlu F, Yazici G. Comparison of different target volume delineation strategies based on recurrence patterns in adjuvant radiotherapy for glioblastoma. Neurooncol Pract 2024; 11:275-283. [PMID: 38737611 PMCID: PMC11085836 DOI: 10.1093/nop/npae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Background Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC) recommendations are commonly used guidelines for adjuvant radiotherapy in glioblastoma. In our institutional protocol, we delineate T2-FLAIR alterations as gross target volume (GTV) with reduced clinical target volume (CTV) margins. We aimed to present our oncologic outcomes and compare the recurrence patterns and planning parameters with EORTC and RTOG delineation strategies. Methods Eighty-one patients who received CRT between 2014 and 2021 were evaluated retrospectively. EORTC and RTOG delineations performed on the simulation computed tomography and recurrence patterns and planning parameters were compared between delineation strategies. Statistical Package for the Social Sciences (SPSS) version 23.0 (IBM, Armonk, NY, USA) was utilized for statistical analyses. Results Median overall survival and progression-free survival were 21 months and 11 months, respectively. At a median 18 month follow-up, of the 48 patients for whom recurrence pattern analysis was performed, recurrence was encompassed by only our institutional protocol's CTV in 13 (27%) of them. For the remaining 35 (73%) patients, recurrence was encompassed by all separate CTVs. In addition to the 100% rate of in-field recurrence, the smallest CTV and lower OAR doses were obtained by our protocol. Conclusions The current study provides promising results for including the T2-FLAIR alterations to the GTV with smaller CTV margins with impressive survival outcomes without any marginal recurrence. The fact that our protocol did not result in larger irradiated brain volume is further encouraging in terms of toxicity.
Collapse
Affiliation(s)
- Melek Tugce Yilmaz
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Alper Kahvecioglu
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Fazli Yagiz Yedekci
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ecem Yigit
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Gokcen Coban Ciftci
- Radiology Department, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Neyran Kertmen
- Department of Medical Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Faruk Zorlu
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Gozde Yazici
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
18
|
De Fazio E, Pittarello M, Gans A, Ghosh B, Slika H, Alimonti P, Tyler B. Intrinsic and Microenvironmental Drivers of Glioblastoma Invasion. Int J Mol Sci 2024; 25:2563. [PMID: 38473812 PMCID: PMC10932253 DOI: 10.3390/ijms25052563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Gliomas are diffusely infiltrating brain tumors whose prognosis is strongly influenced by their extent of invasion into the surrounding brain tissue. While lower-grade gliomas present more circumscribed borders, high-grade gliomas are aggressive tumors with widespread brain infiltration and dissemination. Glioblastoma (GBM) is known for its high invasiveness and association with poor prognosis. Its low survival rate is due to the certainty of its recurrence, caused by microscopic brain infiltration which makes surgical eradication unattainable. New insights into GBM biology at the single-cell level have enabled the identification of mechanisms exploited by glioma cells for brain invasion. In this review, we explore the current understanding of several molecular pathways and mechanisms used by tumor cells to invade normal brain tissue. We address the intrinsic biological drivers of tumor cell invasion, by tackling how tumor cells interact with each other and with the tumor microenvironment (TME). We focus on the recently discovered neuronal niche in the TME, including local as well as distant neurons, contributing to glioma growth and invasion. We then address the mechanisms of invasion promoted by astrocytes and immune cells. Finally, we review the current literature on the therapeutic targeting of the molecular mechanisms of invasion.
Collapse
Affiliation(s)
- Emerson De Fazio
- Department of Medicine, Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy; (E.D.F.); (P.A.)
| | - Matilde Pittarello
- Department of Medicine, Humanitas University School of Medicine, 20089 Rozzano, Italy;
| | - Alessandro Gans
- Department of Neurology, University of Milan, 20122 Milan, Italy;
| | - Bikona Ghosh
- School of Medicine and Surgery, Dhaka Medical College, Dhaka 1000, Bangladesh;
| | - Hasan Slika
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| | - Paolo Alimonti
- Department of Medicine, Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy; (E.D.F.); (P.A.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| |
Collapse
|
19
|
Tanaka T, Tamura R, Takei J, Morimoto Y, Teshigawara A, Yamamoto Y, Imai R, Kuranari Y, Tohmoto K, Hasegawa Y, Akasaki Y, Murayama Y, Miyake K, Sasaki H. An exploratory prospective phase II study of preoperative neoadjuvant bevacizumab and temozolomide for newly diagnosed glioblastoma. J Neurooncol 2024; 166:557-567. [PMID: 38291182 PMCID: PMC10876816 DOI: 10.1007/s11060-023-04544-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/13/2023] [Indexed: 02/01/2024]
Abstract
PURPOSE This multi-institutional phase I/II study was conducted to confirm the safety and explore the clinical utility of preoperative Bevacizumab (Bev) for newly diagnosed glioblastoma (GB). METHODS Patients were enrolled based on magnetic resonance imaging (MRI) findings typically suggestive of GB. Preoperative Bev and temozolomide (TMZ) were administered at doses of 10 mg/kg on day 0 and 150 mg/m2 on days 1-5, respectively. Surgical resection was performed between days 21 and 30, inclusive. The safety and efficacy were evaluated in a total of 15 cases by progression-free survival (PFS), changes in tumor volume, Karnofsky Performance Scale (KPS) and Mini-Mental State Examination (MMSE) scores after preoperative therapy. RESULTS Tumor resection was performed on a mean of day 23.7. Pathological diagnosis was GB, isocitrate dehydrogenase (IDH)-wildtype in 14 cases and GB, IDH-mutant in 1 case. Severe adverse events possibly related to preoperative Bev and TMZ were observed in 2 of the 15 patients, as wound infection and postoperative hematoma and thrombocytopenia. KPS and MMSE scores were significantly improved with preoperative therapy. Tumor volume was decreased in all but one case on T1-weighted imaging with contrast-enhancement (T1CE) and in all cases on fluid-attenuated inversion recovery, with mean volume decrease rates of 36.2% and 54.0%, respectively. Median PFS and overall survival were 9.5 months and 16.5 months, respectively. CONCLUSION Preoperative Bev and TMZ is safe as long as the instructions are followed. The strategy might be useful for GB in some patients, not only reducing tumor burden, but also improving patient KPS preoperatively. TRIAL REGISTRATION NUMBER UMIN000025579, jRCT1031180233 https://jrct.niph.go.jp/latest-detail/jRCT1031180233 . Registration Date: Jan. 16, 2017.
Collapse
Affiliation(s)
- Toshihide Tanaka
- Department of Neurosurgery, Jikei University School of Medicine Kashiwa-shi Hospital, 163-1 Kashiwa-shi, Kashiwa, Chiba, 277-8567, Japan.
- Department of Neurosurgery, Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | - Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinano-machi, Shijuku-ku, Tokyo, 160-8582, Japan
| | - Jun Takei
- Department of Neurosurgery, Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Yukina Morimoto
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinano-machi, Shijuku-ku, Tokyo, 160-8582, Japan
| | - Akihiko Teshigawara
- Department of Neurosurgery, Jikei University School of Medicine Kashiwa-shi Hospital, 163-1 Kashiwa-shi, Kashiwa, Chiba, 277-8567, Japan
| | - Yohei Yamamoto
- Department of Neurosurgery, Jikei University School of Medicine Daisan Hospital, 4-11-1 Izumi-honcho, Komae-shi, Tokyo, 201-8601, Japan
| | - Ryotaro Imai
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinano-machi, Shijuku-ku, Tokyo, 160-8582, Japan
| | - Yuki Kuranari
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinano-machi, Shijuku-ku, Tokyo, 160-8582, Japan
| | - Kyoichi Tohmoto
- Department of Neurosurgery, Jikei University School of Medicine Kashiwa-shi Hospital, 163-1 Kashiwa-shi, Kashiwa, Chiba, 277-8567, Japan
| | - Yuzuru Hasegawa
- Department of Neurosurgery, Jikei University School of Medicine Kashiwa-shi Hospital, 163-1 Kashiwa-shi, Kashiwa, Chiba, 277-8567, Japan
| | - Yasuharu Akasaki
- Department of Neurosurgery, Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Yuichi Murayama
- Department of Neurosurgery, Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Keisuke Miyake
- Department of Neurosurgery, Kagawa University Graduate School of Medicine, 1750-1 Ikedo, Miki-cho, Kida-gun, Kagawa, 761-0793, Japan
| | - Hikaru Sasaki
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinano-machi, Shijuku-ku, Tokyo, 160-8582, Japan.
- Department of Neurosurgery, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa-shi, Chiba, 272-8513, Japan.
| |
Collapse
|
20
|
Koga SF, Hodges WB, Adamyan H, Hayes T, Fecci PE, Tsvankin V, Pradilla G, Hoang KB, Lee IY, Sankey EW, Codd PJ, Huie D, Zacharia BE, Verma R, Baboyan VG. Preoperative validation of edema-corrected tractography in neurosurgical practice: translating surgeon insights into novel software implementation. Front Neurol 2024; 14:1322815. [PMID: 38259649 PMCID: PMC10801029 DOI: 10.3389/fneur.2023.1322815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Background Peritumoral edema alters diffusion anisotropy, resulting in false negatives in tractography reconstructions negatively impacting surgical decision-making. With supratotal resections tied to survival benefit in glioma patients, advanced diffusion modeling is critical to visualize fibers within the peritumoral zone to prevent eloquent fiber transection thereafter. A preoperative assessment paradigm is therefore warranted to systematically evaluate multi-subject tractograms along clinically meaningful parameters. We propose a novel noninvasive surgically-focused survey to evaluate the benefits of a tractography algorithm for preoperative planning, subsequently applied to Synaptive Medical's free-water correction algorithm developed for clinically feasible single-shell DTI data. Methods Ten neurosurgeons participated in the study and were presented with patient datasets containing histological lesions of varying degrees of edema. They were asked to compare standard (uncorrected) tractography reconstructions overlaid onto anatomical images with enhanced (corrected) reconstructions. The raters assessed the datasets in terms of overall data quality, tract alteration patterns, and the impact of the correction on lesion definition, brain-tumor interface, and optimal surgical pathway. Inter-rater reliability coefficients were calculated, and statistical comparisons were made. Results Standard tractography was perceived as problematic in areas proximal to the lesion, presenting with significant tract reduction that challenged assessment of the brain-tumor interface and of tract infiltration. With correction applied, significant reduction in false negatives were reported along with additional insight into tract infiltration. Significant positive correlations were shown between favorable responses to the correction algorithm and the lesion-to-edema ratio, such that the correction offered further clarification in increasingly edematous and malignant lesions. Lastly, the correction was perceived to introduce false tracts in CSF spaces and - to a lesser degree - the grey-white matter interface, highlighting the need for noise mitigation. As a result, the algorithm was modified by free-water-parameterizing the tractography dataset and introducing a novel adaptive thresholding tool for customizable correction guided by the surgeon's discretion. Conclusion Here we translate surgeon insights into a clinically deployable software implementation capable of recovering peritumoral tracts in edematous zones while mitigating artifacts through the introduction of a novel and adaptive case-specific correction tool. Together, these advances maximize tractography's clinical potential to personalize surgical decisions when faced with complex pathologies.
Collapse
Affiliation(s)
- Sebastian F Koga
- Franciscan Missionaries of Our Lady Health System, Baton Rouge, LA, United States
| | | | | | - Tim Hayes
- Synaptive Medical Inc., Toronto, ON, Canada
| | - Peter E Fecci
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Vadim Tsvankin
- Colorado Brain and Spine Institute, Englewood, CO, United States
| | - Gustavo Pradilla
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Kimberly B Hoang
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Ian Y Lee
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, United States
| | - Eric W Sankey
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Patrick J Codd
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - David Huie
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Brad E Zacharia
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA, United States
| | - Ragini Verma
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
- Cohen Veterans Bioscience, New York, NY, United States
| | | |
Collapse
|
21
|
van den Elshout R, Ariëns B, Blaauboer J, Meijer FJA, van der Kolk AG, Esmaeili M, Scheenen TWJ, Henssen DJHA. Quantification of perineural satellitosis in pretreatment glioblastoma with structural MRI and a diffusion tensor imaging template. Neurooncol Adv 2024; 6:vdad168. [PMID: 38196738 PMCID: PMC10776201 DOI: 10.1093/noajnl/vdad168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Background Survival outcomes for glioblastoma (GBM) patients remain unfavorable, and tumor recurrence is often observed. Understanding the radiological growth patterns of GBM could aid in improving outcomes. This study aimed to examine the relationship between contrast-enhancing tumor growth direction and white matter, using an image registration and deformation strategy. Methods In GBM patients 2 pretreatment scans (diagnostic and neuronavigation) were gathered retrospectively, and coregistered to a template and diffusion tensor imaging (DTI) atlas. The GBM lesions were segmented and coregistered to the same space. Growth vectors were derived and divided into vector populations parallel (Φ = 0-20°) and perpendicular (Φ = 70-90°) to white matter. To test for statistical significance between parallel and perpendicular groups, a paired samples Student's t-test was performed. O6-methylguanine-DNA methyltransferase (MGMT) methylation status and its correlation to growth rate were also tested using a one-way ANOVA test. Results For 78 GBM patients (mean age 61 years ± 13 SD, 32 men), the included GBM lesions showed a predominant preference for perineural satellitosis (P < .001), with a mean percentile growth of 30.8% (95% CI: 29.6-32.0%) parallel (0° < |Φ| < 20°) to white matter. Perpendicular tumor growth with respect to white matter microstructure (70° < |Φ| < 90°) showed to be 22.7% (95% CI: 21.3-24.1%) of total tumor growth direction. Conclusions The presented strategy showed that tumor growth direction in pretreatment GBM patients correlated with white matter architecture. Future studies with patient-specific DTI data are required to verify the accuracy of this method prospectively to identify its usefulness as a clinical metric in pre and posttreatment settings.
Collapse
Affiliation(s)
- Rik van den Elshout
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Benthe Ariëns
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost Blaauboer
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frederick J A Meijer
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anja G van der Kolk
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Morteza Esmaeili
- Department of Diagnostic Imaging, Akershus University Hospital, Lørenskog, Norway
- Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway
| | - Tom W J Scheenen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dylan J H A Henssen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
22
|
Young JS, Morshed RA, Hervey-Jumper SL, Berger MS. The surgical management of diffuse gliomas: Current state of neurosurgical management and future directions. Neuro Oncol 2023; 25:2117-2133. [PMID: 37499054 PMCID: PMC10708937 DOI: 10.1093/neuonc/noad133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Indexed: 07/29/2023] Open
Abstract
After recent updates to the World Health Organization pathological criteria for diagnosing and grading diffuse gliomas, all major North American and European neuro-oncology societies recommend a maximal safe resection as the initial management of a diffuse glioma. For neurosurgeons to achieve this goal, the surgical plan for both low- and high-grade gliomas should be to perform a supramaximal resection when feasible based on preoperative imaging and the patient's performance status, utilizing every intraoperative adjunct to minimize postoperative neurological deficits. While the surgical approach and technique can vary, every effort must be taken to identify and preserve functional cortical and subcortical regions. In this summary statement on the current state of the field, we describe the tools and technologies that facilitate the safe removal of diffuse gliomas and highlight intraoperative and postoperative management strategies to minimize complications for these patients. Moreover, we discuss how surgical resections can go beyond cytoreduction by facilitating biological discoveries and improving the local delivery of adjuvant chemo- and radiotherapies.
Collapse
Affiliation(s)
- Jacob S Young
- Department of Neurological Surgery, University of California, San Francisco, USA
| | - Ramin A Morshed
- Department of Neurological Surgery, University of California, San Francisco, USA
| | | | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, USA
| |
Collapse
|
23
|
Cahill DP, Dunn GP. Considering the extent of resection in diffuse glioma. Neuro Oncol 2023; 25:2134-2135. [PMID: 37675941 PMCID: PMC10708926 DOI: 10.1093/neuonc/noad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Indexed: 09/08/2023] Open
Affiliation(s)
- Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gavin P Dunn
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Lemarié A, Lubrano V, Delmas C, Lusque A, Cerapio JP, Perrier M, Siegfried A, Arnauduc F, Nicaise Y, Dahan P, Filleron T, Mounier M, Toulas C, Cohen-Jonathan Moyal E. The STEMRI trial: Magnetic resonance spectroscopy imaging can define tumor areas enriched in glioblastoma stem-like cells. SCIENCE ADVANCES 2023; 9:eadi0114. [PMID: 37922359 PMCID: PMC10624352 DOI: 10.1126/sciadv.adi0114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/03/2023] [Indexed: 11/05/2023]
Abstract
Despite maximally safe resection of the magnetic resonance imaging (MRI)-defined contrast-enhanced (CE) central tumor area and chemoradiotherapy, most patients with glioblastoma (GBM) relapse within a year in peritumoral FLAIR regions. Magnetic resonance spectroscopy imaging (MRSI) can discriminate metabolic tumor areas with higher recurrence potential as CNI+ regions (choline/N-acetyl-aspartate index >2) can predict relapse sites. As relapses are mainly imputed to glioblastoma stem-like cells (GSCs), CNI+ areas might be GSC enriched. In this prospective trial, 16 patients with GBM underwent MRSI/MRI before surgery/chemoradiotherapy to investigate GSC content in CNI-/+ biopsies from CE/FLAIR. Biopsy and derived-GSC characterization revealed a FLAIR/CNI+ sample enrichment in GSC and in gene signatures related to stemness, DNA repair, adhesion/migration, and mitochondrial bioenergetics. FLAIR/CNI+ samples generate GSC-enriched neurospheres faster than FLAIR/CNI-. Parameters assessing biopsy GSC content and time-to-neurosphere formation in FLAIR/CNI+ were associated with worse patient outcome. Preoperative MRI/MRSI would certainly allow better resection and targeting of FLAIR/CNI+ areas, as their GSC enrichment can predict worse outcomes.
Collapse
Affiliation(s)
- Anthony Lemarié
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- UFR Santé, Université de Toulouse III–Paul Sabatier, Toulouse, France
| | - Vincent Lubrano
- TONIC, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Toulouse Neuro Imaging Center, Toulouse, France
- CHU de Toulouse, Neurosurgery Department, Toulouse, France
| | - Caroline Delmas
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Claudius Regaud, IUCT-Oncopole, Interface Department, Toulouse, France
| | - Amélie Lusque
- Institut Claudius Regaud, IUCT-Oncopole, Biostatistics and Health Data Science Unit, Toulouse, France
| | - Juan-Pablo Cerapio
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Marion Perrier
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Aurore Siegfried
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- CHU de Toulouse, Anatomopathology Department, Toulouse, France
| | - Florent Arnauduc
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- UFR Santé, Université de Toulouse III–Paul Sabatier, Toulouse, France
| | - Yvan Nicaise
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- UFR Santé, Université de Toulouse III–Paul Sabatier, Toulouse, France
| | - Perrine Dahan
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Thomas Filleron
- Institut Claudius Regaud, IUCT-Oncopole, Biostatistics and Health Data Science Unit, Toulouse, France
| | - Muriel Mounier
- Institut Claudius Regaud, IUCT-Oncopole, Clinical Trials Office, Toulouse, France
| | - Christine Toulas
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Claudius Regaud, IUCT-Oncopole, Cancer Biology Department, Molecular Oncology Division, Toulouse, France
| | - Elizabeth Cohen-Jonathan Moyal
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- UFR Santé, Université de Toulouse III–Paul Sabatier, Toulouse, France
- Institut Claudius Regaud, IUCT-Oncopole, Radiation Oncology Department, Toulouse, France
| |
Collapse
|
25
|
Lasocki A, Roberts-Thomson SJ, Gaillard F. Radiogenomics of adult intracranial gliomas after the 2021 World Health Organisation classification: a review of changes, challenges and opportunities. Quant Imaging Med Surg 2023; 13:7572-7581. [PMID: 37969636 PMCID: PMC10644132 DOI: 10.21037/qims-22-1365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/29/2023] [Indexed: 11/17/2023]
Abstract
The classification of diffuse gliomas has undergone substantial changes over the last decade, starting with the 2016 World Health Organisation (WHO) classification, which introduced the importance of molecular markers for glioma diagnosis, in particular, isocitrate dehydrogenase (IDH) status and 1p/19-codeletion. This has spurred research into the correlation of imaging features with the key molecular markers, known as "radiogenomics" or "imaging genomics". Radiogenomics has a variety of possible benefits, including supplementing immunohistochemistry to refine the histological diagnosis and overcoming some of the limitations of the histological assessment. The recent 2021 WHO classification has introduced a variety of changes and continues the trend of increasing the importance of molecular markers in the diagnosis. Key changes include a formal distinction between adult- and paediatric-type diffuse gliomas, the addition of new diagnostic entities, refinements to the nomenclature for IDH-mutant (IDHmut) and IDH-wildtype (IDHwt) gliomas, a shift to grading within tumour types, and the addition of molecular markers as a determinant of tumour grade in addition to phenotype. These changes provide both challenges and opportunities for the field of radiogenomics, which are discussed in this review. This includes implications for the interpretation of research performed prior to the 2021 classification, based on the shift to first classifying gliomas based on genotype ahead of grade, as well as opportunities for future research and priorities for clinical integration.
Collapse
Affiliation(s)
- Arian Lasocki
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Radiology, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Frank Gaillard
- Department of Radiology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Radiology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| |
Collapse
|
26
|
Dimov D, Brainman D, Berger B, Coras R, Grote A, Simon M. The role of cytoreductive surgery in multifocal/multicentric glioblastomas. J Neurooncol 2023; 164:447-459. [PMID: 37697210 PMCID: PMC10522503 DOI: 10.1007/s11060-023-04410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/26/2023] [Indexed: 09/13/2023]
Abstract
PURPOSE Multifocal/multicentric glioblastomas (mGBM) account for up to 20% of all newly diagnosed glioblastomas. The present study investigates the impact of cytoreductive surgery on survival and functional outcomes in patients with mGBM. METHODS We retrospectively reviewed clinical and imaging data of 71 patients with newly diagnosed primary (IDH1 wildtype) mGBM who underwent operative treatment in 2015-2020 at the authors' institution. Multicentric/multifocal growth was defined by the presence of ≥ 2 contrast enhancing lesions ≥ 1 cm apart from each other. RESULTS 36 (50.7%) patients had a resection and 35 (49.3%) a biopsy procedure. MGMT status, age, preoperative KPI and NANO scores as well as the postoperative KPI and NANO scores did not differ significantly between resected and biopsied cases. Median overall survival was 6.4 months and varied significantly with the extent of resection (complete resection of contrast enhancing tumor: 13.6, STR: 6.4, biopsy: 3.4 months; P = 0.043). 21 (58.3%) of resected vs. only 12 (34.3%) of biopsied cases had radiochemotherapy (p = 0.022). Multivariate analysis revealed chemo- and radiotherapy and also (albeit with smaller hazard ratios) extent of resection (resection vs. biopsy) and multicentric growth as independent predictors of patient survival. Involvement of eleoquent brain regions, as well as neurodeficit rates and functional outcomes did not vary significantly between the biopsy and the resection cohorts. CONCLUSION Resective surgery in mGBM is associated with better survival. This benefit seems to relate prominently to an increased number of patients being able to tolerate effective adjuvant therapies after tumor resections. In addition, cytoreductive surgery may have a survival impact per se.
Collapse
Affiliation(s)
- Diyan Dimov
- Department of Neurosurgery, Evangelisches Klinikum Bethel, Universitätsklinikum OWL, Bielefeld, Germany
| | - Daniel Brainman
- Department of Neurosurgery, Evangelisches Klinikum Bethel, Universitätsklinikum OWL, Bielefeld, Germany
| | - Björn Berger
- Department of Neuroradiology, Evangelisches Klinikum Bethel, Universitätsklinikum OWL, Bielefeld, Germany
| | - Roland Coras
- Department of Neuropathology, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander Grote
- Department of Neurosurgery, Evangelisches Klinikum Bethel, Universitätsklinikum OWL, Bielefeld, Germany
- Department of Neurosurgery, Universitätsklinikum Giessen und Marburg, Marburg, Germany
| | - Matthias Simon
- Department of Neurosurgery, Evangelisches Klinikum Bethel, Universitätsklinikum OWL, Bielefeld, Germany.
| |
Collapse
|
27
|
Kaisman-Elbaz T, Xiao T, Grabowski MM, Barnett GH, Mohammadi AM. The Impact of Extent of Ablation on Survival of Patients With Newly Diagnosed Glioblastoma Treated With Laser Interstitial Thermal Therapy: A Large Single-Institutional Cohort. Neurosurgery 2023; 93:427-435. [PMID: 36861990 DOI: 10.1227/neu.0000000000002430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/03/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Upfront laser interstitial thermal therapy (LITT) can be used as part of the treatment paradigm in difficult-to-access newly diagnosed glioblastoma multiforme (ndGBM) cases. The extent of ablation, though, is not routinely quantified; thus, its specific effect on patients' oncological outcomes is unclear. OBJECTIVE To methodically measure the extent of ablation in the cohort of patients with ndGBM and its effect, and other treatment-related parameters, on patients' progression-free survival (PFS) and overall survival (OS). METHODS A retrospective study was conducted on 56 isocitrate dehydrogenase 1/2 wild-type patients with ndGBM treated with upfront LITT between 2011 and 2021. Patient data including demographics, oncological course, and LITT-associated parameters were analyzed. RESULTS Patient median age was 62.3 years (31-84), and the median follow-up duration was 11.4 months. As expected, the subgroup of patients receiving full chemoradiation was found to have the most beneficial PFS and OS (n = 34). Further analysis showed that 10 of them underwent near-total ablation and had a significantly improved PFS (10.3 months) and OS (22.7 months). Notably, 84% excess ablation was detected which was not related to a higher rate of neurological deficits. Tumor volume was also found to influence PFS and OS, but it was not possible to further corroborate this finding because of low numbers. CONCLUSION This study presents data analysis of the largest series of ndGBM treated with upfront LITT. Near-total ablation was shown to significantly benefit patients' PFS and OS. Importantly, it was shown to be safe, even in cases of excess ablation and therefore could be considered when using this modality to treat ndGBM.
Collapse
Affiliation(s)
- Tehila Kaisman-Elbaz
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, The Cleveland Clinic, Cleveland, Ohio, USA
- Department of Neurosurgery, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Tianqi Xiao
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, The Cleveland Clinic, Cleveland, Ohio, USA
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Matthew M Grabowski
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, The Cleveland Clinic, Cleveland, Ohio, USA
- Department of Neurosurgery, The Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Gene H Barnett
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, The Cleveland Clinic, Cleveland, Ohio, USA
- Department of Neurosurgery, The Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Alireza M Mohammadi
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, The Cleveland Clinic, Cleveland, Ohio, USA
- Department of Neurosurgery, The Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
28
|
Park DJ, Persad AR, Yoo KH, Marianayagam NJ, Yener U, Tayag A, Ustrzynski L, Emrich SC, Chuang C, Pollom E, Soltys SG, Meola A, Chang SD. Stereotactic Radiosurgery for Contrast-Enhancing Satellite Nodules in Recurrent Glioblastoma: A Rare Case Series From a Single Institution. Cureus 2023; 15:e44455. [PMID: 37664337 PMCID: PMC10470661 DOI: 10.7759/cureus.44455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Glioblastoma (GBM) is the most common malignant adult brain tumor and is invariably fatal. The standard treatment for GBM involves resection where possible, followed by chemoradiation per Stupp's protocol. We frequently use stereotactic radiosurgery (SRS) as a single-fraction treatment for small (volume ≤ 1cc) nodular recurrent GBM to the contrast-enhancing target on T1 MRI scan. In this paper, we aimed to evaluate the safety and efficacy of SRS for patients with contrast-enhancing satellite nodules in recurrent GBM. Methods This retrospective study analyzed the clinical and radiological outcomes of five patients who underwent CyberKnife (Accuray Inc., Sunnyvale, California) SRS at the institute between 2013 and 2022. Results From 96 patients receiving SRS for GBM, five (four males, one female; median age 53) had nine distinct new satellite lesions on MRI, separate from their primary tumor beds. Those nine lesions were treated with a median margin dose of 20 Gy in a single fraction. The three-, six, and 12-month local tumor control rates were 77.8%, 66.7%, and 26.7%, respectively. Median progression-free survival (PFS) was seven months, median overall survival following SRS was 10 months, and median overall survival (OS) was 35 months. Interestingly, the only lesion that did not show radiological progression was separate from the T2-fluid attenuated inversion recovery (FLAIR) signal of the main tumor. Conclusion Our SRS treatment outcomes for recurrent GBM satellite lesions are consistent with existing findings. However, in a unique case, a satellite nodule distinct from the primary tumor's T2-FLAIR signal and treated with an enlarged target volume showed promising control until the patient's demise. This observation suggests potential research avenues, given the limited strategies for 'multicentric' GBM lesions.
Collapse
Affiliation(s)
- David J Park
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Amit R Persad
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Kelly H Yoo
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | | | - Ulas Yener
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Armine Tayag
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Louisa Ustrzynski
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Sara C Emrich
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Cynthia Chuang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, USA
| | - Erqi Pollom
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, USA
| | - Scott G Soltys
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, USA
| | - Antonio Meola
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Steven D Chang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| |
Collapse
|
29
|
Mier-García JF, Ospina-Santa S, Orozco-Mera J, Ma R, Plaha P. Supramaximal versus gross total resection in Glioblastoma, IDH wild-type and Astrocytoma, IDH-mutant, grade 4, effect on overall and progression free survival: systematic review and meta-analysis. J Neurooncol 2023; 164:31-41. [PMID: 37561356 DOI: 10.1007/s11060-023-04409-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023]
Abstract
PURPOSE To synthesize the evidence on the impact on progression-free survival (PFS) and overall survival (OS) of supramaximal resection (SMR) over gross total resection (GTR) in Glioblastoma, IDH wild-type and Astrocytoma, IDH-mutant, grade 4 (Glioblastoma). METHODS The PubMed, Scopus, Web of Science, Ovid and Cochrane databases were systematically searched (up to November 30, 2022). Studies reporting OS and PFS on adult humans with a suspected Glioblastoma, treated either with a SMR or GTR were included. Hazard ratios were estimated for each study and treatment effects were calculated through DerSimonian and Laird random effects models. RESULTS The literature search yielded 14 studies published between 2013 and 2022, enrolling a total of 6779 patients. Analysis of the included studies reveals significantly better clinical outcomes favoring SMR over GTR in terms of PFS (HR 0.67; p = 0.0007), and OS (HR 0.7; p = 0.0001). CONCLUSION Glioblastoma, IDH wild-type and Astrocytoma, IDH-mutant, grade 4, are aggressive tumors with a very short long-term OS. SMR is an effective therapeutic approach contributing to increased PFS and OS in patients with this catastrophic disease.
Collapse
Affiliation(s)
- Juan F Mier-García
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK.
- Section of Neurosurgery, School of Medicine, Universidad del Valle, Cali, Valle del Cauca, Colombia.
| | - Stefanía Ospina-Santa
- Department of Neurosurgery, Hospital Universitario del Valle, Cali, Valle del Cauca, Colombia
| | - Javier Orozco-Mera
- Section of Neurosurgery, School of Medicine, Universidad del Valle, Cali, Valle del Cauca, Colombia
- Department of Neurosurgery, Hospital Universitario del Valle, Cali, Valle del Cauca, Colombia
| | - Ruichong Ma
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK
- Human Immunology Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
- Nuffield Department of Surgery, University of Oxford, Oxford, Oxfordshire, UK
| | - Puneet Plaha
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK
- Nuffield Department of Surgery, University of Oxford, Oxford, Oxfordshire, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
| |
Collapse
|
30
|
Altieri R. Editorial: Frontiers in Neuro Oncology and Neurosurgery. Brain Sci 2023; 13:brainsci13040565. [PMID: 37190530 DOI: 10.3390/brainsci13040565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Despite advances in our knowledge and treatments, Central Nervous System (CNS) Tumors remain the most difficult clinical challenge for the worldwide medical community [...]
Collapse
|
31
|
Polonara G, Aiudi D, Iacoangeli A, Raggi A, Ottaviani MM, Antonini R, Iacoangeli M, Dobran M. Glioblastoma: A Retrospective Analysis of the Role of the Maximal Surgical Resection on Overall Survival and Progression Free Survival. Biomedicines 2023; 11:biomedicines11030739. [PMID: 36979717 PMCID: PMC10045159 DOI: 10.3390/biomedicines11030739] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 03/05/2023] Open
Abstract
Background: Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults; despite advances in the understanding of GBM pathogenesis, significant achievements in treating this disease are still lacking. The aim of this study was to evaluate the prognostic significance of the extent of surgical resection (EOR), beyond the neoplastic mass, on the overall survival (OS). Methods: A retrospective review of a single-institution glioblastoma patient database (January 2012–September 2021) was undertaken. The series is composed of 64 patients who underwent surgery at the University Department of Neurosurgery of Ancona; the series was divided into four groups based on the amount of tumor mass excision with the fluid-attenuated inversion recovery (FLAIR) abnormalities (SUPr-supratotal resection, GTR-gross total resection, STR-subtotal resection, BIOPSY). The hypothesis was that the maximal resection of FLAIR abnormalities may improve the overall survival compared to the resection of the visible T1 contrast-enhanced neoplastic area only. Results: In the univariate analysis, SUPr and GTR are correlated with the overall survival (p = 0.001); the percentage of total neoplastic removal threshold conditioning outcome was 90% (p = 0.027). These results were confirmed by the multivariate analysis. Conclusions: Maximal surgical resection, when feasible, involving areas of FLAIR abnormalities represents an advantageous approach for the OS in GBM patients.
Collapse
Affiliation(s)
- Gabriele Polonara
- Department of Neuroradiology, Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
| | - Denis Aiudi
- Department of Neurosurgery, Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
- Correspondence: (D.A.); (M.D.)
| | - Alessio Iacoangeli
- Department of Neurosurgery, Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
| | - Alessio Raggi
- Department of Neurosurgery, Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
| | - Matteo Maria Ottaviani
- Department of Neurosurgery, Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
| | - Ruggero Antonini
- Department of Neurosurgery, Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
| | - Maurizio Iacoangeli
- Department of Neurosurgery, Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
| | - Mauro Dobran
- Department of Neurosurgery, Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
- Correspondence: (D.A.); (M.D.)
| |
Collapse
|
32
|
Willman M, Willman J, Figg J, Dioso E, Sriram S, Olowofela B, Chacko K, Hernandez J, Lucke-Wold B. Update for astrocytomas: medical and surgical management considerations. EXPLORATION OF NEUROSCIENCE 2023:1-26. [PMID: 36935776 PMCID: PMC10019464 DOI: 10.37349/en.2023.00009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/10/2022] [Indexed: 02/25/2023]
Abstract
Astrocytomas include a wide range of tumors with unique mutations and varying grades of malignancy. These tumors all originate from the astrocyte, a star-shaped glial cell that plays a major role in supporting functions of the central nervous system (CNS), including blood-brain barrier (BBB) development and maintenance, water and ion regulation, influencing neuronal synaptogenesis, and stimulating the immunological response. In terms of epidemiology, glioblastoma (GB), the most common and malignant astrocytoma, generally occur with higher rates in Australia, Western Europe, and Canada, with the lowest rates in Southeast Asia. Additionally, significantly higher rates of GB are observed in males and non-Hispanic whites. It has been suggested that higher levels of testosterone observed in biological males may account for the increased rates of GB. Hereditary syndromes such as Cowden, Lynch, Turcot, Li-Fraumeni, and neurofibromatosis type 1 have been linked to increased rates of astrocytoma development. While there are a number of specific gene mutations that may influence malignancy or be targeted in astrocytoma treatment, O6-methylguanine-DNA methyltransferase (MGMT) gene function is an important predictor of astrocytoma response to chemotherapeutic agent temozolomide (TMZ). TMZ for primary and bevacizumab in the setting of recurrent tumor formation are two of the main chemotherapeutic agents currently approved in the treatment of astrocytomas. While stereotactic radiosurgery (SRS) has debatable implications for increased survival in comparison to whole-brain radiotherapy (WBRT), SRS demonstrates increased precision with reduced radiation toxicity. When considering surgical resection of astrocytoma, the extent of resection (EoR) is taken into consideration. Subtotal resection (STR) spares the margins of the T1 enhanced magnetic resonance imaging (MRI) region, gross total resection (GTR) includes the margins, and supramaximal resection (SMR) extends beyond the margin of the T1 and into the T2 region. Surgical resection, radiation, and chemotherapy are integral components of astrocytoma treatment.
Collapse
Affiliation(s)
- Matthew Willman
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jonathan Willman
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - John Figg
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Emma Dioso
- School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Sai Sriram
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Bankole Olowofela
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kevin Chacko
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jairo Hernandez
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
33
|
Broggi G, Altieri R, Barresi V, Certo F, Barbagallo GMV, Zanelli M, Palicelli A, Magro G, Caltabiano R. Histologic Definition of Enhancing Core and FLAIR Hyperintensity Region of Glioblastoma, IDH-Wild Type: A Clinico-Pathologic Study on a Single-Institution Series. Brain Sci 2023; 13:brainsci13020248. [PMID: 36831791 PMCID: PMC9954517 DOI: 10.3390/brainsci13020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The extent of resection beyond the enhancing core (EC) in glioblastoma IDH-wild type (GBM, IDHwt) is one of the most debated topics in neuro-oncology. Indeed, it has been demonstrated that local disease recurrence often arises in peritumoral areas and that radiologically-defined FLAIR hyperintensity areas of GBM IDHwt are often visible beyond the conventional EC. Therefore, the need to extend the surgical resection also to the FLAIR hyperintensity areas is a matter of debate. Since little is known about the histological composition of FLAIR hyperintensity regions, in this study we aimed to provide a comprehensive description of the histological features of EC and FLAIR hyperintensity regions sampled intraoperatively using neuronavigation and 5-aminolevulinic acid (5-ALA) fluorescence, in 33 patients with GBM, IDHwt. Assessing a total 109 histological samples, we found that FLAIR areas consisted in: (i) fragments of white matter focally to diffusely infiltrated by tumor cells in 76% of cases; (ii) a mixture of white matter with reactive astrogliosis and grey matter with perineuronal satellitosis in 15% and (iii) tumor tissue in 9%. A deeper knowledge of the histology of FLAIR hyperintensity areas in GBM, IDH-wt may serve to better guide neurosurgeons on the choice of the most appropriate surgical approach in patients with this neoplasm.
Collapse
Affiliation(s)
- Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy
- Correspondence:
| | - Roberto Altieri
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95123 Catania, Italy
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy
| | - Valeria Barresi
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, 37134 Verona, Italy
| | - Francesco Certo
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95123 Catania, Italy
| | | | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy
| |
Collapse
|
34
|
Würtemberger U, Rau A, Reisert M, Kellner E, Diebold M, Erny D, Reinacher PC, Hosp JA, Hohenhaus M, Urbach H, Demerath T. Differentiation of Perilesional Edema in Glioblastomas and Brain Metastases: Comparison of Diffusion Tensor Imaging, Neurite Orientation Dispersion and Density Imaging and Diffusion Microstructure Imaging. Cancers (Basel) 2022; 15:cancers15010129. [PMID: 36612127 PMCID: PMC9817519 DOI: 10.3390/cancers15010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
Although the free water content within the perilesional T2 hyperintense region should differ between glioblastomas (GBM) and brain metastases based on histological differences, the application of classical MR diffusion models has led to inconsistent results regarding the differentiation between these two entities. Whereas diffusion tensor imaging (DTI) considers the voxel as a single compartment, multicompartment approaches such as neurite orientation dispersion and density imaging (NODDI) or the recently introduced diffusion microstructure imaging (DMI) allow for the calculation of the relative proportions of intra- and extra-axonal and also free water compartments in brain tissue. We investigate the potential of water-sensitive DTI, NODDI and DMI metrics to detect differences in free water content of the perilesional T2 hyperintense area between histopathologically confirmed GBM and brain metastases. Respective diffusion metrics most susceptible to alterations in the free water content (MD, V-ISO, V-CSF) were extracted from T2 hyperintense perilesional areas, normalized and compared in 24 patients with GBM and 25 with brain metastases. DTI MD was significantly increased in metastases (p = 0.006) compared to GBM, which was corroborated by an increased DMI V-CSF (p = 0.001), while the NODDI-derived ISO-VF showed only trend level increase in metastases not reaching significance (p = 0.060). In conclusion, diffusion MRI metrics are able to detect subtle differences in the free water content of perilesional T2 hyperintense areas in GBM and metastases, whereas DMI seems to be superior to DTI and NODDI.
Collapse
Affiliation(s)
- Urs Würtemberger
- Department of Neuroradiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Correspondence:
| | - Alexander Rau
- Department of Neuroradiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Diagnostic and Interventional Radiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Medical Physics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Elias Kellner
- Department of Medical Physics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Martin Diebold
- Institute of Neuropathology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- IMM-PACT Clinician Scientist Program, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Daniel Erny
- Institute of Neuropathology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Berta-Ottenstein-Program for Advanced Clinician Scientists, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Peter C. Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Fraunhofer Institute for Laser Technology, 52074 Aachen, Germany
| | - Jonas A. Hosp
- Department of Neurology and Neurophysiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Marc Hohenhaus
- Department of Neurosurgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Theo Demerath
- Department of Neuroradiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
35
|
Altieri R, Broggi G, Certo F, Pacella D, Cammarata G, Maione M, Garozzo M, Barbagallo D, Purrello M, Caltabiano R, Magro G, Barbagallo G. Anatomical distribution of cancer stem cells between enhancing nodule and FLAIR hyperintensity in supratentorial glioblastoma: time to recalibrate the surgical target? Neurosurg Rev 2022; 45:3709-3716. [PMID: 36171505 DOI: 10.1007/s10143-022-01863-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/18/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022]
Abstract
It is ge nerally accepted that glioblastoma (GBM) arise from cancer stem cells (CSC); however, there is little evidence on their anatomical distribution. We investigated the expression and distribution of SOX-2-positive and CD133-positive CSCs both in the enhancing nodule (EN) of GBM and in the FLAIR hyperintensity zones on a surgical, histopathological series of 33 GBMs. The inclusion criterion was the intraoperative sampling of different tumor regions individualized, thanks to neuronavigation and positivity to intraoperative fluorescence with the use of 5-aminolevulinic acid (5-ALA). Thirty-three patients (20 males and 13 females with a mean age at diagnosis of 56 years) met the inclusion criterion. A total of 109 histological samples were evaluated, 52 for ENs and 57 for FLAIR hyperintensity zone. Considering the quantitative distribution of levels of intensity of staining (IS), ES (extent score), and immunoreactivity score (IRS), no difference was found between ENs and FLAIR regions for both the SOX-2 biomarker (respectively, IS p = 0.851, ES p = 0.561, IRS p = 1.000) and the CD133 biomarker (IS p = 0.653, ES p = 0.409, IRS p = 0.881). This evidence suggests to recalibrate the target of surgery for FLAIRECTOMY and 5-ALA could improve the possibility to achieve this goal.
Collapse
Affiliation(s)
- Roberto Altieri
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Viale Carlo Azeglio CIampi, 1, 95121, Catania, Italy.
- Interdisciplinary Research Center On Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy.
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy.
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Anatomic Pathology, University of Catania, Catania, Italy
| | - Francesco Certo
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Viale Carlo Azeglio CIampi, 1, 95121, Catania, Italy
- Interdisciplinary Research Center On Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
| | - Daniela Pacella
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giacomo Cammarata
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Viale Carlo Azeglio CIampi, 1, 95121, Catania, Italy
| | - Massimiliano Maione
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Viale Carlo Azeglio CIampi, 1, 95121, Catania, Italy
| | - Marco Garozzo
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Viale Carlo Azeglio CIampi, 1, 95121, Catania, Italy
| | - Davide Barbagallo
- Interdisciplinary Research Center On Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics Giovanni Sichel, University of Catania, Catania, Italy
| | - Michele Purrello
- Interdisciplinary Research Center On Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics Giovanni Sichel, University of Catania, Catania, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Anatomic Pathology, University of Catania, Catania, Italy
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Anatomic Pathology, University of Catania, Catania, Italy
| | - Giuseppe Barbagallo
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Viale Carlo Azeglio CIampi, 1, 95121, Catania, Italy
- Interdisciplinary Research Center On Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
| |
Collapse
|