1
|
Fan B, Goodman W, Sheth SA, Bouchard RR, Aazhang B. Computational sensitivity evaluation of ultrasound neuromodulation resolution to brain tissue sound speed with robust beamforming. Sci Rep 2025; 15:11251. [PMID: 40175469 PMCID: PMC11965375 DOI: 10.1038/s41598-025-95396-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 03/20/2025] [Indexed: 04/04/2025] Open
Abstract
Low-intensity focused ultrasound (LIFU) neuromodulation requires precise targeting and high resolution enabled by phased array transducers and beamforming. However, focusing optimization usually relies on phantom measurements or simulations with inaccurate acoustic properties to degrade neuromodulation resolution. Therefore, this work analyzes the sensitivity of neuromodulation resolution, measured by off-target activation area (OTAA), to brain tissue sound speed. A Robust Optimal Resolution (ROR) beamforming method is proposed to minimize the worst-case OTAA with restricted sound speed inaccuracy and propagation information estimated with deviated sound speed. The propagation estimation model utilizes equivalent source method (ESM) to map sound field between different acoustic parameter sets. Simulation in a human head model validates the effectiveness of the proposed propagation estimation model, and shows that ROR beamforming method can significantly reduce the worst-case OTAA compared to benchmark methods by [Formula: see text] on average and up to [Formula: see text], improving the robustness of stimulation and addressing the sensitivity issue. This allows reliable high-resolution neuromodulation in potential clinical applications with reduced invasive acquisition of propagation measurements for focusing optimization.
Collapse
Affiliation(s)
- Boqiang Fan
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA.
| | - Wayne Goodman
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA
- Department of Psychiatry and Behavioral Science, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sameer A Sheth
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Richard R Bouchard
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Behnaam Aazhang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
2
|
Kim S, Kim DI, Yeo HG, Lee G, Kim JY, Choi H. Localized ultrasonic stimulation using a piezoelectric micromachined ultrasound transducer array for selective neural differentiation of magnetic cell-based robots. MICROSYSTEMS & NANOENGINEERING 2025; 11:52. [PMID: 40113763 PMCID: PMC11926166 DOI: 10.1038/s41378-025-00900-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/13/2025] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
Targeted stem cell delivery utilizing a magnetic actuation system is an emerging technology in stem cell engineering that efficiently targets stem cells in specific areas in vitro. However, integrating precise magnetic control systems with selective neural differentiation has not yet been widely considered for building successful neural networks. Challenges arise in creating targeted functional neuronal networks, largely due to difficulties in simultaneously controlling the positions of stem cells and selectively stimulating their differentiation. These challenges often result in suboptimal differentiation rates and abnormalities in transplanted neural stem cells. In contrast, ultrasound stimulation has superior tissue penetration and focusing capability, and represents a promising noninvasive neural stimulation technique capable of modulating neural activity and promoting selective differentiation into neuronal stem cells. In this study, we introduce a method for targeted neural differentiation using localized ultrasonic stimulation with a piezoelectric micromachined ultrasound transducer (pMUT) array. Differentiation was assessed quantitatively by monitoring neurite outgrowth as the ultrasound intensity was increased. The neurite length of cells ultrasonically stimulated for 40 min was found to have increased, compared to the non-stimulated group (119.9 ± 34.3 μm vs. 63.2 ± 17.3 μm, respectively). Targeted differentiation was confirmed by measuring neurite lengths, where selective ultrasound stimulation induced differentiation in cells that were precisely delivered via an electromagnetic system. Magnetic cell-based robots reaching the area of localized ultrasound stimulation were confirmed to have enhanced differentiation. This research demonstrated the potential of the combination of precise stem cell delivery with selective neural differentiation to establish functional neural networks.
Collapse
Affiliation(s)
- Seonhyoung Kim
- Department of Robotics & Mechatronics Engineering, Daegu Gyeongbuk Institute Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Dong-In Kim
- Department of Robotics & Mechatronics Engineering, Daegu Gyeongbuk Institute Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Hong Goo Yeo
- Department of Advanced Materials Engineering, Sun Moon University, Asan-si, 31460, Republic of Korea
| | - Gyudong Lee
- Division of Nanotechnology, Daegu Gyeongbuk Institute Science and Technology (DGIST), Daegu, Republic of Korea
| | - Jin-Young Kim
- Division of Biotechnology, Daegu Gyeongbuk Institute Science and Technology (DGIST), Daegu, Republic of Korea
| | - Hongsoo Choi
- Department of Robotics & Mechatronics Engineering, Daegu Gyeongbuk Institute Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
- DGIST-ETH Microrobotics Research Center, Daegu, 42988, Republic of Korea.
| |
Collapse
|
3
|
Radjenovic S, Bender L, Gaal M, Grigoryeva D, Mitterwallner M, Osou S, Zettl A, Plischek N, Lachmair P, Herzhauser K, Matt E, Beisteiner R. A retrospective analysis of ultrasound neuromodulation therapy using transcranial pulse stimulation in 58 dementia patients. Psychol Med 2025; 55:e70. [PMID: 40033713 PMCID: PMC12080636 DOI: 10.1017/s0033291725000406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Novel ultrasound neuromodulation techniques allow therapeutic brain stimulation with unmet precision and non-invasive targeting of deep brain areas. Transcranial pulse stimulation (TPS), a multifrequency sonication technique, is approved for the clinical treatment of Alzheimer's disease (AD). Here, we present the largest real-world retrospective analysis of ultrasound neuromodulation therapy in dementia (AD, vascular, mixed) and mild cognitive impairment (MCI). METHODS The consecutive sample involved 58 patients already receiving state-of-the-art treatment in an open-label, uncontrolled, retrospective study. TPS therapy typically comprises 10 sessions (range 8-12) with individualized MRI-based target areas defined according to brain pathology and individual pathophysiology. We compared the CERAD-Plus neuropsychological test battery results before and after treatment, with the CERAD Corrected Total Score ( CTS) as the primary outcome. Furthermore, we analyzed side effects reported by patients during the treatment period. RESULTS CERAD Corrected Total Score (CTS) significantly improved (p = .017, d = .32) after treatment (Baseline: M = 56.56, SD = 18.56; Post-treatment: M = 58.65, SD = 19.44). The group of top-responders (top quartile) improved even by 9.8 points. Fewer than one-third of all patients reported any sensation during treatment. Fatigue and transient headaches were the most common, with no severe adverse events. CONCLUSIONS The findings implicate TPS as a novel and safe add-on therapy for patients with dementia or MCI with the potential to further improve current state-of-the-art treatment results. Despite the individual benefits, further randomized, sham-controlled, longitudinal clinical trials are needed to differentiate the effects of verum and placebo.
Collapse
Affiliation(s)
- Sonja Radjenovic
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Lena Bender
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Martin Gaal
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Daria Grigoryeva
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Sarah Osou
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Anna Zettl
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Nina Plischek
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Patrick Lachmair
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Katrin Herzhauser
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Eva Matt
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Roland Beisteiner
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Alti O, Vallesi A. Clarifying the Specificity of Transcranial Pulse Stimulation in Neuromodulatory-Based Therapeutic Applications. CNS Neurosci Ther 2025; 31:e70325. [PMID: 40022505 PMCID: PMC11871398 DOI: 10.1111/cns.70325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/22/2025] [Indexed: 03/03/2025] Open
Affiliation(s)
- Onur Alti
- Department of NeuroscienceUniversity of PadovaPadovaItaly
| | - Antonino Vallesi
- Department of NeuroscienceUniversity of PadovaPadovaItaly
- Padova Neuroscience CenterUniversity of PadovaPadovaItaly
| |
Collapse
|
5
|
Manganotti P, Liccari M, Maria Isabella Lombardo T, Della Toffola J, Cenacchi V, Catalan M, Busan P. Effect of a single session of transcranial pulse stimulation (TPS) on resting tremor in patients with Parkinson's disease. Brain Res 2025; 1850:149405. [PMID: 39932498 DOI: 10.1016/j.brainres.2024.149405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/09/2024] [Accepted: 12/16/2024] [Indexed: 05/08/2025]
Abstract
INTRODUCTION Tremor is a common symptom in movement disorders and is evident at rest in Parkinson's Disease (PD). In PD, tremor may be responsive to brain stimulation, ranging from Deep Brain Stimulation to Transcranial Magnetic Stimulation. Transcranial Pulse Stimulation (TPS) is a novel/painless/non-invasive technique which appears to induce biomolecular changes through shock waves. Here, as one of the first studies in the field of PD, we exploratively investigate the possibility to observe changes in tremor, induced by single-session TPS delivered on the motor cortex of PD patients. METHODS TPS was delivered in 16 patients. Of these, 9 were admitted to sham (placebo). Resting tremor was measured at baseline (T0), after TPS (T1), and after 24 h from intervention (T2). RESULTS At baseline, tremor was always present. After TPS, tremor reduction was noted at T1 and T2 (compared to T0 and placebo). We noted a decrease in the amplitude of resting tremor (not its frequency). DISCUSSION TPS is a non-invasive technique that may be a novel solution for reducing tremor in PD, lasting at least 24 h after single-sessions. No side effects were reported. We discuss evidence suggesting potential physiological changes in mechanisms of neural circuits that are affected in PD.
Collapse
Affiliation(s)
- Paolo Manganotti
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy; Unit of Clinical Neurology, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Marco Liccari
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy
| | | | - Jacopo Della Toffola
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy
| | - Valentina Cenacchi
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy
| | - Mauro Catalan
- Unit of Clinical Neurology, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Pierpaolo Busan
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
6
|
Șovrea AS, Boșca AB, Dronca E, Constantin AM, Crintea A, Suflețel R, Ștefan RA, Ștefan PA, Onofrei MM, Tschall C, Crivii CB. Non-Drug and Non-Invasive Therapeutic Options in Alzheimer's Disease. Biomedicines 2025; 13:84. [PMID: 39857667 PMCID: PMC11760896 DOI: 10.3390/biomedicines13010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/28/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
Despite the massive efforts of modern medicine to stop the evolution of Alzheimer's disease (AD), it affects an increasing number of people, changing individual lives and imposing itself as a burden on families and the health systems. Considering that the vast majority of conventional drug therapies did not lead to the expected results, this review will discuss the newly developing therapies as an alternative in the effort to stop or slow AD. Focused Ultrasound (FUS) and its derived Transcranial Pulse Stimulation (TPS) are non-invasive therapeutic approaches. Singly or as an applied technique to change the permeability of the blood-brain-barrier (BBB), FUS and TPS have demonstrated the benefits of use in treating AD in animal and human studies. Adipose-derived stem Cells (ADSCs), gene therapy, and many other alternative methods (diet, sleep pattern, physical exercise, nanoparticle delivery) are also new potential treatments since multimodal approaches represent the modern trend in this disorder research therapies.
Collapse
Affiliation(s)
- Alina Simona Șovrea
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| | - Adina Bianca Boșca
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| | - Eleonora Dronca
- Molecular Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (E.D.); (A.C.)
| | - Anne-Marie Constantin
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| | - Andreea Crintea
- Molecular Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (E.D.); (A.C.)
| | - Rada Suflețel
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| | - Roxana Adelina Ștefan
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| | - Paul Andrei Ștefan
- Radiology and Imaging Department, Emergency County Hospital Cluj, 400347 Cluj-Napoca, Romania;
| | - Mădălin Mihai Onofrei
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| | - Christoph Tschall
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| | - Carmen-Bianca Crivii
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| |
Collapse
|
7
|
Ibn Minhaj T, Annayev M, Adelegan OJ, Biliroğlu AÖ, Yamaner FY, Oralkan Ö. Design, Fabrication, and Characterization of Capacitive Micromachined Ultrasonic Transducers for Transcranial, Multifocus Neurostimulation. MICROMACHINES 2024; 15:1106. [PMID: 39337765 PMCID: PMC11434040 DOI: 10.3390/mi15091106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
In a recent study using 3-D fullwave simulations, it was shown for a nonhuman primate model that a helmet-shaped 3D array of 128 transducer elements can be assembled for neurostimulation in an optimized configuration with the accommodation of an imaging aperture. Considering all acoustic losses, according to this study, for a nonhuman primate skull, the assembly of the proposed transducers was projected to produce sufficient focusing gain in two different focal positions at deep and shallow brain regions, thus providing sufficient acoustic intensity at these distinct focal points for neural stimulation. This array also has the ability to focus on multiple additional brain regions. In the work presented here, we designed and fabricated a single 15 mm diameter capacitive micromachined ultrasonic transducer (CMUT) element operating at 800 kHz central frequency with a 480 kHz 3 dB bandwidth, capable of producing a 190 kPa peak negative pressure (PNP) on the surface. The corresponding projected transcranial spatial peak pulse average intensity (ISPPA) was 28 Wcm-2, and the mechanical index (MI) value was 1.1 for an array of 128 of these elements.
Collapse
Affiliation(s)
- Tamzid Ibn Minhaj
- Department of Materials Science and Engineering, NC State University, Raleigh, NC 27695, USA
| | - Muhammetgeldi Annayev
- Department of Electrical and Computer Engineering, NC State University, Raleigh, NC 27695, USA; (M.A.); (O.J.A.); (A.Ö.B.); (F.Y.Y.); (Ö.O.)
| | - Oluwafemi J. Adelegan
- Department of Electrical and Computer Engineering, NC State University, Raleigh, NC 27695, USA; (M.A.); (O.J.A.); (A.Ö.B.); (F.Y.Y.); (Ö.O.)
| | - Ali Önder Biliroğlu
- Department of Electrical and Computer Engineering, NC State University, Raleigh, NC 27695, USA; (M.A.); (O.J.A.); (A.Ö.B.); (F.Y.Y.); (Ö.O.)
| | - Feysel Yalçın Yamaner
- Department of Electrical and Computer Engineering, NC State University, Raleigh, NC 27695, USA; (M.A.); (O.J.A.); (A.Ö.B.); (F.Y.Y.); (Ö.O.)
| | - Ömer Oralkan
- Department of Electrical and Computer Engineering, NC State University, Raleigh, NC 27695, USA; (M.A.); (O.J.A.); (A.Ö.B.); (F.Y.Y.); (Ö.O.)
| |
Collapse
|
8
|
Beisteiner R, Lozano A, Di Lazzaro V, George MS, Hallett M. Clinical recommendations for non-invasive ultrasound neuromodulation. Brain Stimul 2024; 17:890-895. [PMID: 39084519 DOI: 10.1016/j.brs.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
Non-invasive ultrasound neuromodulation has experienced exponential growth in the neuroscientific literature, recently also including clinical studies and applications. However, clinical recommendations for the secure and effective application of ultrasound neuromodulation in pathological brains are currently lacking. Here, clinical experts with neuroscientific expertise in clinical brain stimulation and ultrasound neuromodulation present initial clinical recommendations for ultrasound neuromodulation with relevance for all ultrasound neuromodulation techniques. The recommendations start with methodological safety issues focusing on technical issues to avoid harm to the brain. This is followed by clinical safety issues focusing on important factors concerning pathological situations.
Collapse
Affiliation(s)
- Roland Beisteiner
- Department of Neurology, Functional Brain Diagnostics and Therapy, High Field MR Center, Medical University of Vienna, Vienna, Austria.
| | - Andres Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Mark S George
- Brain Stimulation Division, Psychiatry, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Mark Hallett
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, USA
| |
Collapse
|
9
|
Matt E, Radjenovic S, Mitterwallner M, Beisteiner R. Current state of clinical ultrasound neuromodulation. Front Neurosci 2024; 18:1420255. [PMID: 38962179 PMCID: PMC11219564 DOI: 10.3389/fnins.2024.1420255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024] Open
Abstract
Unmatched by other non-invasive brain stimulation techniques, transcranial ultrasound (TUS) offers highly focal stimulation not only on the cortical surface but also in deep brain structures. These unique attributes are invaluable in both basic and clinical research and might open new avenues for treating neurological and psychiatric diseases. Here, we provide a concise overview of the expanding volume of clinical investigations in recent years and upcoming research initiatives concerning focused ultrasound neuromodulation. Currently, clinical TUS research addresses a variety of neuropsychiatric conditions, such as pain, dementia, movement disorders, psychiatric conditions, epilepsy, disorders of consciousness, and developmental disorders. As demonstrated in sham-controlled randomized studies, TUS neuromodulation improved cognitive functions and mood, and alleviated symptoms in schizophrenia and autism. Further, preliminary uncontrolled evidence suggests relieved anxiety, enhanced motor functions in movement disorders, reduced epileptic seizure frequency, improved responsiveness in patients with minimally conscious state, as well as pain reduction after neuromodulatory TUS. While constrained by the relatively modest number of investigations, primarily consisting of uncontrolled feasibility trials with small sample sizes, TUS holds encouraging prospects for treating neuropsychiatric disorders. Larger sham-controlled randomized trials, alongside further basic research into the mechanisms of action and optimal sonication parameters, are inevitably needed to unfold the full potential of TUS neuromodulation.
Collapse
Affiliation(s)
| | | | | | - Roland Beisteiner
- Functional Brain Diagnostics and Therapy, Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Stoddart PR, Begeng JM, Tong W, Ibbotson MR, Kameneva T. Nanoparticle-based optical interfaces for retinal neuromodulation: a review. Front Cell Neurosci 2024; 18:1360870. [PMID: 38572073 PMCID: PMC10987880 DOI: 10.3389/fncel.2024.1360870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Degeneration of photoreceptors in the retina is a leading cause of blindness, but commonly leaves the retinal ganglion cells (RGCs) and/or bipolar cells extant. Consequently, these cells are an attractive target for the invasive electrical implants colloquially known as "bionic eyes." However, after more than two decades of concerted effort, interfaces based on conventional electrical stimulation approaches have delivered limited efficacy, primarily due to the current spread in retinal tissue, which precludes high-acuity vision. The ideal prosthetic solution would be less invasive, provide single-cell resolution and an ability to differentiate between different cell types. Nanoparticle-mediated approaches can address some of these requirements, with particular attention being directed at light-sensitive nanoparticles that can be accessed via the intrinsic optics of the eye. Here we survey the available known nanoparticle-based optical transduction mechanisms that can be exploited for neuromodulation. We review the rapid progress in the field, together with outstanding challenges that must be addressed to translate these techniques to clinical practice. In particular, successful translation will likely require efficient delivery of nanoparticles to stable and precisely defined locations in the retinal tissues. Therefore, we also emphasize the current literature relating to the pharmacokinetics of nanoparticles in the eye. While considerable challenges remain to be overcome, progress to date shows great potential for nanoparticle-based interfaces to revolutionize the field of visual prostheses.
Collapse
Affiliation(s)
- Paul R. Stoddart
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - James M. Begeng
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, Australia
- Department of Biomedical Engineering, Faculty of Engineering & Information Technology, The University of Melbourne, Melbourne, VIC, Australia
| | - Wei Tong
- Department of Biomedical Engineering, Faculty of Engineering & Information Technology, The University of Melbourne, Melbourne, VIC, Australia
- School of Physics, The University of Melbourne, Melbourne, VIC, Australia
| | - Michael R. Ibbotson
- Department of Biomedical Engineering, Faculty of Engineering & Information Technology, The University of Melbourne, Melbourne, VIC, Australia
| | - Tatiana Kameneva
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, Australia
| |
Collapse
|
11
|
Chen X, You J, Ma H, Zhou M, Huang C. Transcranial pulse stimulation in Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14372. [PMID: 37469252 PMCID: PMC10848065 DOI: 10.1111/cns.14372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Transcranial pulse stimulation (TPS) is a novel noninvasive ultrasonic brain stimulation that can increase cortical and corticospinal excitability, induce neuroplasticity, and increase functional connectivity within the brain. Several trials have confirmed its potential in treating Alzheimer's disease (AD). OBJECTIVE To investigate the effect and safety of TPS on AD. DESIGN A systematic review. METHODS PubMed, Embase via Ovid, Web of Science, Cochrane Library, CNKI (China National Knowledge Infrastructure), VIP (China Science and Technology Journal Database), and WanFang were searched from inception to April 1, 2023. Study selection, data extraction, and quality evaluation of the studies were conducted by two reviewers independently, with any controversy resolved by consensus. The Methodological Index for Nonrandomized Studies was used to assess the risk of bias. RESULTS Five studies were included in this review, with a total of 99 patients with AD. For cognitive performance, TPS significantly improved the scores of the CERAD (Consortium to Establish a Registry for Alzheimer's Disease) test battery, Alzheimer's Disease Assessment Scale (cognitive), Montreal Cognitive Assessment, and Mini-Mental Status Examination. For depressive symptoms, TPS significantly reduced the scores of the Alzheimer's Disease Assessment Scale (affective), Geriatric Depression Score, and Beck Depression Inventory. By functional magnetic resonance imaging, studies have shown that TPS improved cognitive performance in AD patients by increasing functional connectivity in the hippocampus, parahippocampal cortex, precuneus, and parietal cortex, and activating cortical activity in the bilateral hippocampus. TPS alleviated depressive symptoms in AD patients by decreasing functional connectivity between the ventromedial network (left frontal orbital cortex) and the salience network (right anterior insula). Adverse events in this review, including headache, worsening mood, jaw pain, nausea, and drowsiness, were reversible and lasted no longer than 1 day. No serious adverse events or complications were observed. CONCLUSIONS TPS is promising in improving cognitive performance and reducing depressive symptoms in patients with AD. TPS may be a safe adjunct therapy in the treatment of AD. However, these findings lacked a sham control and were limited by the small sample size of the included studies. Further research may be needed to better explore the potential of TPS. PATIENT AND PUBLIC INVOLVEMENT Patients and the public were not involved in this study.
Collapse
Affiliation(s)
- Xinxin Chen
- Department of Rehabilitation MedicineWest China HospitalSichuan UniversityChengduSichuanChina
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
- School of Rehabilitation SciencesWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Jiuhong You
- Department of Rehabilitation MedicineWest China HospitalSichuan UniversityChengduSichuanChina
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
- School of Rehabilitation SciencesWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Hui Ma
- Department of Rehabilitation MedicineWest China HospitalSichuan UniversityChengduSichuanChina
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
- School of Rehabilitation SciencesWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Mei Zhou
- Department of Rehabilitation MedicineWest China HospitalSichuan UniversityChengduSichuanChina
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
- School of Rehabilitation SciencesWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Cheng Huang
- Department of Rehabilitation MedicineWest China HospitalSichuan UniversityChengduSichuanChina
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
12
|
Beisteiner R, Hallett M, Lozano AM. Ultrasound Neuromodulation as a New Brain Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205634. [PMID: 36961104 PMCID: PMC10190662 DOI: 10.1002/advs.202205634] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/03/2023] [Indexed: 05/18/2023]
Abstract
Within the last decade, ultrasound has been "rediscovered" as a technique for brain therapies. Modern technologies allow focusing ultrasound through the human skull for highly focal tissue ablation, clinical neuromodulatory brain stimulation, and targeted focal blood-brain-barrier opening. This article gives an overview on the state-of-the-art of the most recent application: ultrasound neuromodulation as a new brain therapy. Although research centers have existed for decades, the first treatment centers were not established until 2020, and clinical applications are spreading rapidly.
Collapse
Affiliation(s)
- Roland Beisteiner
- Department of NeurologyFunctional Brain Diagnostics and TherapyHigh Field MR CenterMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Mark Hallett
- Human Motor Control SectionNational Institute of Neurological Disorders and StrokeNational Institutes of Health10 Center DriveBethesdaMD20892–1428USA
| | - Andres M. Lozano
- Division of NeurosurgeryDepartment of SurgeryUniversity of TorontoTorontoONM5T 2S8Canada
| |
Collapse
|