1
|
Valenzuela-López L, Moreno-Verdú M, Cuenca-Zaldívar JN, Romero JP. Effects of Hand Motor Interventions on Cognitive Outcomes Post-stroke: A Systematic Review and Bayesian Network Meta-analysis. Arch Phys Med Rehabil 2024; 105:1770-1783. [PMID: 38211761 DOI: 10.1016/j.apmr.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/29/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE To synthetize the evidence on the effects of hand rehabilitation (RHB) interventions on cognition post-stroke and compare their efficacy. DATA SOURCES PubMed, Embase, Cochrane, Scopus, Web of Science, and CINAHL were searched from inception to November 2022. DATA SELECTION Randomized controlled trials conducted in adults with stroke where the effects of hand motor interventions on any cognitive domains were assessed. DATA EXTRACTION Data were extracted by 2 independent reviewers. A Bayesian Network Meta-analysis (NMA) was applied for measures with enough studies and comparisons. Risk of bias was assessed with the Cochrane Risk of Bias tool. DATA SYNTHESIS Fifteen studies were included in qualitative synthesis, and 11 in NMA. Virtual reality (VR) (n=7), robot-assisted (n=5), or handgrip strength (n=3) training were the experimental interventions and conventional RHB (n=14) control intervention. Two separate NMA were performed with MoCA (n=480 participants) and MMSE (n=350 participants) as outcome measures. Both coincided that the most probable best interventions were robot-assisted and strength training, according to SUCRA and rankogram, followed by conventional RHB and VR training. No significant differences between any of the treatments were found in the MoCA network, but in the MMSE, robot-assisted and strength training were significantly better than conventional RHB and VR. No significant differences between robot-assisted and strength training were found nor between conventional RHB and VR. CONCLUSIONS Motor interventions can improve MoCA/MMSE scores post-stroke. Most probable best interventions were robot-assisted and strength training. Limited literature assessing domain-specific cognitive effects was found.
Collapse
Affiliation(s)
- Laura Valenzuela-López
- Faculty of Experimental Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain; Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain
| | - Marcos Moreno-Verdú
- Faculty of Experimental Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain; Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain.
| | - Juan Nicolás Cuenca-Zaldívar
- Research Group in Physiotherapy and Pain, Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain; Research Group in Nursing and Health Care, Puerta de Hierro Health Research Institute - Segovia de Arana (IDIPHISA), Madrid, Spain; Physical Therapy Unit. Primary Health Care Center "El Abajón", Madrid, Spain; Interdisciplinary Group on Musculoskeletal Disorders, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Spain
| | - Juan Pablo Romero
- Faculty of Experimental Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain; Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain; Brain Damage Unit, Beata María Ana Hospital, Madrid, Spain
| |
Collapse
|
2
|
Varalta V, Righetti A, Evangelista E, Vantini A, Martoni A, Tamburin S, Fonte C, Di Vico IA, Tinazzi M, Waldner A, Picelli A, Filippetti M, Smania N. Effects of upper limb vibratory stimulation training on motor symptoms in Parkinson's disease: an observational study. J Rehabil Med 2024; 56:jrm19495. [PMID: 38407431 PMCID: PMC10910977 DOI: 10.2340/jrm.v56.19495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/13/2023] [Indexed: 02/27/2024] Open
Abstract
OBJECTIVES Parkinson's disease is characterized by motor and non-motor symptoms. Tremor is one of the motor symptoms that can affect manual skills and have an impact on daily activities. The aim of the current study is to investigate the effect of upper limb training provided by a specific vibratory device (Armshake®, Move It GmbH - Bochum, Germany) on tremor and motor functionality in patients with Parkinson's disease. Furthermore, the training effect on global cognitive functioning is assessed. DESIGN An uncontrolled before-after clinical trial. PATIENTS Individuals with diagnosis of Parkinson's disease, motor upper limbs deficits, and absence of dementia. METHODS Participants underwent a 3-week programme (3 times a week) and was evaluated before, after, and at 1 month follow-up by motor (Fahn Tolosa Marin Tremor Rating Scale, Unified Parkinson's Disease Rating Scale - part III, Purdue Pegboard Test, Disability of the Arm, Shoulder and Hand Questionnaire) and cognitive (Montreal Cognitive Assessment) scales. RESULTS Twenty subjects are included. After treatment a statistically significant improvement in tremor, manual dexterity and activities of daily living was found. The data indicated no effects on global cognitive functioning. CONCLUSION These findings suggest positive effects of vibratory stimulation training on upper limb motor symptoms in Parkinson's disease.
Collapse
Affiliation(s)
- Valentina Varalta
- Neuromotor and Cognitive Rehabilitation Research Center, Section of Physical and Rehabilitation Medicine, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona; Neurorehabilitation Unit, University Hospital of Verona, Verona
| | - Anna Righetti
- Neuromotor and Cognitive Rehabilitation Research Center, Section of Physical and Rehabilitation Medicine, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona; Neurorehabilitation Unit, University Hospital of Verona, Verona
| | - Elisa Evangelista
- Neuromotor and Cognitive Rehabilitation Research Center, Section of Physical and Rehabilitation Medicine, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Alberto Vantini
- Neurorehabilitation Unit, University Hospital of Verona, Verona, Italy
| | - Alessandro Martoni
- Neuromotor and Cognitive Rehabilitation Research Center, Section of Physical and Rehabilitation Medicine, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona
| | - Stefano Tamburin
- Section of Neurology, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona
| | - Cristina Fonte
- Neuromotor and Cognitive Rehabilitation Research Center, Section of Physical and Rehabilitation Medicine, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona; Neurorehabilitation Unit, University Hospital of Verona, Verona
| | - Ilaria Antonella Di Vico
- Section of Neurology, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona
| | - Michele Tinazzi
- Section of Neurology, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona; Neurology Unit, USD Parkinson e Disturbi del Movimento, University Hospital of Verona, Verona
| | - Andreas Waldner
- Department of Neurological Rehabilitation, Private Hospital "Villa Melitta", Bolzano. andre
| | - Alessandro Picelli
- Neuromotor and Cognitive Rehabilitation Research Center, Section of Physical and Rehabilitation Medicine, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona; Neurorehabilitation Unit, University Hospital of Verona, Verona; Canadian Advances in Neuro-Orthopedics for Spasticity Congress (CANOSC), Kingston, ON K7K 1Z6, Canada.
| | - Mirko Filippetti
- Neuromotor and Cognitive Rehabilitation Research Center, Section of Physical and Rehabilitation Medicine, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona; Neurorehabilitation Unit, University Hospital of Verona, Verona
| | - Nicola Smania
- Neuromotor and Cognitive Rehabilitation Research Center, Section of Physical and Rehabilitation Medicine, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona; Neurorehabilitation Unit, University Hospital of Verona, Verona
| |
Collapse
|