1
|
Ramírez Romero A, Rodríguez Herrera AR, Sánchez Cuellar JF, Cevallos Delgado RE, Ochoa Martínez EE. Pioneering Augmented and Mixed Reality in Cranial Surgery: The First Latin American Experience. Brain Sci 2024; 14:1025. [PMID: 39452038 PMCID: PMC11506422 DOI: 10.3390/brainsci14101025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION Augmented reality (AR) and mixed reality (MR) technologies have revolutionized cranial neurosurgery by overlaying digital information onto the surgical field, enhancing visualization, precision, and training. These technologies enable the real-time integration of preoperative imaging data, aiding in better decision-making and reducing operative risks. Despite challenges such as cost and specialized training needs, AR and MR offer significant benefits, including improved surgical outcomes and personalized surgical plans based on individual patient anatomy. MATERIALS AND METHODS This study describes three intracranial surgeries using AR and MR technologies at Hospital Ángeles Universidad, Mexico City, in 2023. Surgeries were performed with VisAR software 3 version and Microsoft HoloLens 2, transforming DICOM images into 3D models. Preoperative MRI and CT scans facilitated planning, and radiopaque tags ensured accurate image registration during surgery. Postoperative outcomes were assessed through clinical and imaging follow-up. RESULTS Three intracranial surgeries were performed with AR and MR assistance, resulting in successful outcomes with minimal postoperative complications. Case 1 achieved 80% tumor resection, Case 2 achieved near-total tumor resection, and Case 3 achieved complete lesion resection. All patients experienced significant symptom relief and favorable recoveries, demonstrating the precision and effectiveness of AR and MR in cranial surgery. CONCLUSIONS This study demonstrates the successful use of AR and MR in cranial surgery, enhancing precision and clinical outcomes. Despite challenges like training and costs, these technologies offer significant benefits. Future research should focus on long-term outcomes and broader applications to validate their efficacy and cost-effectiveness in neurosurgery.
Collapse
Affiliation(s)
- Alberto Ramírez Romero
- Neurosurgeon Hospital Ángeles Universidad, Mexico City 03330, Mexico; (J.F.S.C.); (R.E.C.D.)
| | | | | | | | | |
Collapse
|
2
|
Reyes Soto G, Moreno DV, Serrano-Murillo M, Castillo-Rangel C, Gonzalez-Aguilar A, Meré Gómez JR, Garcìa Fuentes PI, Cacho Diaz B, Ramirez MDJE, Nikolenko V, Cherubin TM, Amador Hernández MA, Montemurro N. Transpedicular Corpectomy in Minimally Invasive Surgery for Metastatic Spinal Cord Compression: A Single-Center Series. Cureus 2024; 16:e70503. [PMID: 39479069 PMCID: PMC11523553 DOI: 10.7759/cureus.70503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction The role of separation surgery in managing symptomatic spinal metastases has been increasing in recent years, and it represents a crucial part of the definitive management of this condition. Methods We report on a series of seven patients treated at the National Cancer Institute in Mexico using minimally invasive approaches to perform transpedicular corpectomy. The goal was to obtain a margin of tumor-free tissue, enabling the completion of oncological treatment with radiotherapy. Results We collected data from six cases. The mean age was 61.2 years. Surgical outcomes were good in 83.3% of patients. Ranging from minimally invasive instrumentations to total or partial corpectomies, these procedures achieved their intended function of generating healthy neural tissue free of tumor. This ensures that the radiation gradient does not affect this tissue. No surgical complications were reported. The objective of these surgeries was to establish a radiotherapy or radiosurgery regimen as soon as possible, thereby improving patients' quality of life (QoL). Conclusions Low-cost transpedicular corpectomy via minimally invasive surgery (MIS) is a safe and effective method that meets the goals of separation surgery. However, prospective studies are needed to directly compare open techniques with minimally invasive methods.
Collapse
Affiliation(s)
- Gervith Reyes Soto
- Neurosurgical Oncology, Mexico's National Institute of Cancer, Tlalpan, MEX
| | | | | | - Carlos Castillo-Rangel
- Neurosurgery, Servicio of the 1ro de Octubre Hospital of the Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Instituto Politécnico Nacional, Mexico City, MEX
| | | | - José Rodrigo Meré Gómez
- Physical Medicine and Rehabilitation, Clínica de la Columna Instituto Nacional de Rehabilitación, Mexico City, MEX
| | | | | | | | - Vladimir Nikolenko
- Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, RUS
| | | | - Miguel Agustín Amador Hernández
- Orthopaedics, Hospital Central Militar - Traumatología y Ortopedia, Hospital General de Mexico Cirugía de Columna, Mexico City, MEX
| | | |
Collapse
|
3
|
De Jesus Encarnacion Ramirez M, Chmutin G, Nurmukhametov R, Soto GR, Kannan S, Piavchenko G, Nikolenko V, Efe IE, Romero AR, Mukengeshay JN, Simfukwe K, Mpoyi Cherubin T, Nicolosi F, Sharif S, Roa JC, Montemurro N. Integrating Augmented Reality in Spine Surgery: Redefining Precision with New Technologies. Brain Sci 2024; 14:645. [PMID: 39061386 PMCID: PMC11274952 DOI: 10.3390/brainsci14070645] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 07/28/2024] Open
Abstract
INTRODUCTION The integration of augmented reality (AR) in spine surgery marks a significant advancement, enhancing surgical precision and patient outcomes. AR provides immersive, three-dimensional visualizations of anatomical structures, facilitating meticulous planning and execution of spine surgeries. This technology not only improves spatial understanding and real-time navigation during procedures but also aims to reduce surgical invasiveness and operative times. Despite its potential, challenges such as model accuracy, user interface design, and the learning curve for new technology must be addressed. AR's application extends beyond the operating room, offering valuable tools for medical education and improving patient communication and satisfaction. MATERIAL AND METHODS A literature review was conducted by searching PubMed and Scopus databases using keywords related to augmented reality in spine surgery, covering publications from January 2020 to January 2024. RESULTS In total, 319 articles were identified through the initial search of the databases. After screening titles and abstracts, 11 articles in total were included in the qualitative synthesis. CONCLUSION Augmented reality (AR) is becoming a transformative force in spine surgery, enhancing precision, education, and outcomes despite hurdles like technical limitations and integration challenges. AR's immersive visualizations and educational innovations, coupled with its potential synergy with AI and machine learning, indicate a bright future for surgical care. Despite the existing obstacles, AR's impact on improving surgical accuracy and safety marks a significant leap forward in patient treatment and care.
Collapse
Affiliation(s)
| | - Gennady Chmutin
- Department of Neurosurgery, Russian People’s Friendship University, 117198 Moscow, Russia
| | - Renat Nurmukhametov
- Department of Neurosurgery, Russian People’s Friendship University, 117198 Moscow, Russia
| | - Gervith Reyes Soto
- Department of Head and Neck, Unidad de Neurociencias, Instituto Nacional de Cancerología, Mexico City 14080, Mexico
| | - Siddarth Kannan
- School of Medicine, University of Central Lancashire, Preston PR0 2AA, UK
| | - Gennadi Piavchenko
- Department of Human Anatomy and Histology, Sechenov University, 119911 Moscow, Russia
| | - Vladmir Nikolenko
- Department of Neurosurgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Ibrahim E. Efe
- Department of Neurosurgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10178 Berlin, Germany
| | | | | | - Keith Simfukwe
- Department of Neurosurgery, Russian People’s Friendship University, 117198 Moscow, Russia
| | | | - Federico Nicolosi
- Department of Medicine and Surgery, Neurosurgery, University of Milano-Bicocca, 20126 Milan, Italy
| | - Salman Sharif
- Department of Neurosurgery, Liaquat National Hospital and Medical College, Karachi 05444, Pakistan
| | - Juan Carlos Roa
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliero Universitaria Pisana (AOUP), 56100 Pisa, Italy
| |
Collapse
|
4
|
Süvegh D, Juhász Á, Viola R, Al-Smadi MW, Viola Á. Treatment of Ankylosing Spondylitis Patients with Cervical Spinal Injury with Anterior Single-Stage Fixation with Bone Cement Augmentation. J Clin Med 2024; 13:3131. [PMID: 38892842 PMCID: PMC11172596 DOI: 10.3390/jcm13113131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Background/Objectives: Cervical spine fractures in ankylosing spondylitis (AS) are characterized as highly unstable fractures posing an elevated risk of neurological deficit and a significantly elevated mortality rate. This study assesses the efficacy and safety of single-stage plate stabilization with ventral cement augmentation in treating subaxial cervical spine fractures in patients with AS. Methods: Over 86 months, 38 patients diagnosed with AS received ventral plate stabilization with cement augmentation after suffering unstable subaxial cervical fractures. No additional dorsal stabilization was used in any of these surgeries. Results: There were no complications as a result of cement leakage. During the follow-up period, screw loosening and implant displacement were documented in two out of 38 cases. At the time of data analysis, 17 patients who had undergone treatment had died, representing 44.7% of the total cases. Seven patients died within 1 month, two patients died within 6 months, four patients died within 1 year, and four patients died after 1 year. Conclusions: Our study shows that a single-stage anterior screw and plate fixation of the cervical spine with cement augmentation could be a feasible and effective method to treat cervical spine fractures in patients with AS.
Collapse
Affiliation(s)
- Dávid Süvegh
- Department of Traumatology, Semmelweis University, Fiumei út 17., 1081 Budapest, Hungary; (D.S.); (Á.J.)
| | - Ádám Juhász
- Department of Traumatology, Semmelweis University, Fiumei út 17., 1081 Budapest, Hungary; (D.S.); (Á.J.)
| | - Réka Viola
- Department of Psychiatry, Peterfy Sandor Hospital, 1076 Budapest, Hungary;
| | - Mohammad Walid Al-Smadi
- Department of Neurosurgery and Neurotraumatology, Dr. Manninger Jenő National Traumatology Institution, 1081 Budapest, Hungary;
| | - Árpád Viola
- Department of Traumatology, Semmelweis University, Fiumei út 17., 1081 Budapest, Hungary; (D.S.); (Á.J.)
| |
Collapse
|
5
|
Sufianov A, Ovalle CS, Cruz O, Contreras J, Begagić E, Kannan S, Rosario Rosario A, Chmutin G, Askatovna GN, Lafuente J, Sanchez JS, Nurmukhametov R, Soto García ME, Peev N, Pojskić M, Reyes-Soto G, Bozkurt I, Encarnación Ramírez MDJ. Low-Cost 3D Models for Cervical Spine Tumor Removal Training for Neurosurgery Residents. Brain Sci 2024; 14:547. [PMID: 38928547 PMCID: PMC11201732 DOI: 10.3390/brainsci14060547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Spinal surgery, particularly for cervical pathologies such as myelopathy and radiculopathy, requires a blend of theoretical knowledge and practical skill. The complexity of these conditions, often necessitating surgical intervention, underscores the need for intricate understanding and precision in execution. Advancements in neurosurgical training, especially with the use of low-cost 3D models for simulating cervical spine tumor removal, are revolutionizing this field. These models provide the realistic and hands-on experience crucial for mastering complex neurosurgical techniques, filling gaps left by traditional educational methods. MATERIALS AND METHODS This study aimed to assess the effectiveness of 3D-printed cervical vertebrae models in enhancing surgical skills, focusing on tumor removal, and involving 20 young neurosurgery residents. These models, featuring silicone materials to simulate the spinal cord and tumor tissues, provided a realistic training experience. The training protocol included a laminectomy, dural incision, and tumor resection, using a range of microsurgical tools, focusing on steps usually performed by senior surgeons. RESULTS The training program received high satisfaction rates, with 85% of participants extremely satisfied and 15% satisfied. The 3D models were deemed very realistic by 85% of participants, effectively replicating real-life scenarios. A total of 80% found that the simulated pathologies were varied and accurate, and 90% appreciated the models' accurate tactile feedback. The training was extremely useful for 85% of the participants in developing surgical skills, with significant post-training confidence boosts and a strong willingness to recommend the program to peers. CONCLUSIONS Continuing laboratory training for residents is crucial. Our model offers essential, accessible training for all hospitals, regardless of their resources, promising improved surgical quality and patient outcomes across various pathologies.
Collapse
Affiliation(s)
- Albert Sufianov
- Federal State Budgetary Institution the Federal Center of Neurosurgery of the Ministry of Health of the Russian Federation, 625062 Tyumen, Russia
- Department of Neurosurgery, State Medical University (Sechenov University), 119991 Moscow, Russia
- Educational and Scientific Institute of Neurosurgery, Peoples’ Friendship University of Russia RUDN University, 117198 Moscow, Russia
| | - Carlos Salvador Ovalle
- Department of Neurosurgery, National University of Mexico Hospital General, Durango 34030, Mexico
| | - Omar Cruz
- Department of Neurosurgery, National University of Mexico Hospital General, Durango 34030, Mexico
| | - Javier Contreras
- Department of Neurosurgery, National University of Mexico Hospital General, Durango 34030, Mexico
| | - Emir Begagić
- Department of General Medicine, School of Medicine, University of Zenica, 72000 Zenica, Bosnia and Herzegovina
| | - Siddarth Kannan
- School of Medicine, University of Central Lancashire, Preston PR02AG, UK
| | | | - Gennady Chmutin
- Petrovsky Russian Scientific Center of Surgery, 121359 Moscow, Russia
| | - Garifullina Nargiza Askatovna
- Federal State Budgetary Institution the Federal Center of Neurosurgery of the Ministry of Health of the Russian Federation, 625062 Tyumen, Russia
| | - Jesus Lafuente
- Spine Center Hospital del Mar, Sagrat Cor University Hospital, 08029 Barcelona, Spain
| | - Jose Soriano Sanchez
- Instituto Soriano de Cirugía de Columna Mínimamente Invasiva at ABC Hospital, Neurological Center, Santa Fe Campus, Mexico City 05100, Mexico
| | - Renat Nurmukhametov
- NCC No. 2 Federal State Budgetary Scientific Institution Russian Scientific Center Named after. Acad. B.V. Petrovsky (Central Clinical Hospital Russian Academy of Sciences), 121359 Moscow, Russia
| | | | - Nikolay Peev
- Department of Neurosurgery, Russian People’s Friendship University, 117198 Moscow, Russia
| | - Mirza Pojskić
- Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033 Marburg, Germany
| | - Gervith Reyes-Soto
- Department of Head and Neck, Unidad de Neurociencias, Instituto Nacional de Cancerología, Mexico City 14080, Mexico
| | - Ismail Bozkurt
- Department of Neurosurgery, Medical Park Ankara Hospital, Kent Koop Mah 1868. Sok, Batıkent Blv. No:15, 06680 Ankara, Turkey
- Department of Neurosurgery, School of Medicine, Yuksek Ihtisas University, 06520 Ankara, Turkey
| | | |
Collapse
|