1
|
Lukow PB, Lowther M, Pike AC, Yamamori Y, Chavanne AV, Gormley S, Aylward J, McCloud T, Goble T, Rodriguez-Sanchez J, Tuominen EW, Buehler SK, Kirk P, Robinson OJ. Amygdala activity after subchronic escitalopram administration in healthy volunteers: A pharmaco-functional magnetic resonance imaging study. J Psychopharmacol 2024; 38:1071-1082. [PMID: 39364684 PMCID: PMC11531087 DOI: 10.1177/02698811241286773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
BACKGROUND Selective serotonin reuptake inhibitors (SSRIs) are used for the treatment of several conditions including anxiety disorders, but the basic neurobiology of serotonin function remains unclear. The amygdala and prefrontal cortex are strongly innervated by serotonergic projections and have been suggested to play an important role in anxiety expression. However, serotonergic function in behaviour and SSRI-mediated neurobiological changes remain incompletely understood. AIMS To investigate the neural correlates of subchronic antidepressant administration. METHODS We investigated whether the 2- to 3-week administration of a highly selective SSRI (escitalopram) would alter brain activation on a task robustly shown to recruit the bilateral amygdala and frontal cortices in a large healthy volunteer sample. Participants performed the task during a functional magnetic resonance imaging acquisition before (n = 96) and after subchronic escitalopram (n = 46, days of administration mean (SD) = 15.7 (2.70)) or placebo (n = 40 days of administration mean (SD) = 16.2 (2.90)) self-administration. RESULTS Compared to placebo, we found an elevation in right amygdala activation to the task after escitalopram administration without significant changes in mood. This effect was not seen in the left amygdala, the dorsomedial region of interest, the subgenual anterior cingulate cortex or the right fusiform area. There were no significant changes in connectivity between the dorsomedial cortex and amygdala or the subgenual anterior cingulate cortex after escitalopram administration. CONCLUSIONS To date, this most highly powered study of subchronic SSRI administration indicates that, contrary to effects often seen in patients with anxiety disorders, subchronic SSRI treatment may increase amygdala activation in healthy controls. This finding highlights important gaps in our understanding of the functional role of serotonin.
Collapse
Affiliation(s)
- Paulina B Lukow
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Millie Lowther
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Alexandra C Pike
- Institute of Cognitive Neuroscience, University College London, London, UK
- Department of Psychology & York Biomedical Research Institute, University of York, York, UK
| | - Yumeya Yamamori
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Alice V Chavanne
- Institute of Cognitive Neuroscience, University College London, London, UK
- Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale, INSERM U1299 “Trajectoires Développementales Psychiatrie,” Ecole Normale Supérieure Paris-Saclay, CNRS UMR 9010, Centre Borelli, Gif-sur-Yvette, France
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Siobhan Gormley
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Jessica Aylward
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Tayla McCloud
- Institute of Cognitive Neuroscience, University College London, London, UK
- UCL Division of Psychiatry, Maple House, London, UK
| | - Talya Goble
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Julia Rodriguez-Sanchez
- Institute of Cognitive Neuroscience, University College London, London, UK
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Ella W Tuominen
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Sarah K Buehler
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Peter Kirk
- Institute of Cognitive Neuroscience, University College London, London, UK
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Oliver J Robinson
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
2
|
Di X, Zhang L, Zhang Z, Biswal BB. Opportunities and challenges in connectivity analysis for task-based fMRI comment on "connectivity analyses for task-based fMRI" by Huang S, De Brigard, F., Cabeza, R, and Davis, S.W. Phys Life Rev 2024; 51:13-17. [PMID: 39236551 DOI: 10.1016/j.plrev.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Affiliation(s)
- Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Li Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Zhiguo Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen 518060, China
| | - Bharat B Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
3
|
Varkevisser T, Geuze E, van Honk J. Amygdala fMRI-A Critical Appraisal of the Extant Literature. Neurosci Insights 2024; 19:26331055241270591. [PMID: 39148643 PMCID: PMC11325331 DOI: 10.1177/26331055241270591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024] Open
Abstract
Even before the advent of fMRI, the amygdala occupied a central space in the affective neurosciences. Yet this amygdala-centred view on emotion processing gained even wider acceptance after the inception of fMRI in the early 1990s, a landmark that triggered a goldrush of fMRI studies targeting the amygdala in vivo. Initially, this amygdala fMRI research was mostly confined to task-activation studies measuring the magnitude of the amygdala's response to emotional stimuli. Later, interest began to shift more towards the study of the amygdala's resting-state functional connectivity and task-based psychophysiological interactions. Later still, the test-retest reliability of amygdala fMRI came under closer scrutiny, while at the same time, amygdala-based real-time fMRI neurofeedback gained widespread popularity. Each of these major subdomains of amygdala fMRI research has left its marks on the field of affective neuroscience at large. The purpose of this review is to provide a critical assessment of this literature. By integrating the insights garnered by these research branches, we aim to answer the question: What part (if any) can amygdala fMRI still play within the current landscape of affective neuroscience? Our findings show that serious questions can be raised with regard to both the reliability and validity of amygdala fMRI. These conclusions force us to cast doubt on the continued viability of amygdala fMRI as a core pilar of the affective neurosciences.
Collapse
Affiliation(s)
- Tim Varkevisser
- University Medical Center, Utrecht, The Netherlands
- Brain Research and Innovation Center, Ministry of Defence, Utrecht, The Netherlands
- Utrecht University, Utrecht, The Netherlands
| | - Elbert Geuze
- University Medical Center, Utrecht, The Netherlands
- Brain Research and Innovation Center, Ministry of Defence, Utrecht, The Netherlands
| | - Jack van Honk
- Utrecht University, Utrecht, The Netherlands
- University of Cape Town, Cape Town, South Africa
| |
Collapse
|
4
|
Kirk PA, Holmes AJ, Robinson OJ. Anxiety Shapes Amygdala-Prefrontal Dynamics During Movie Watching. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:409-417. [PMID: 37519469 PMCID: PMC10382705 DOI: 10.1016/j.bpsgos.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022] Open
Abstract
Background A well-characterized amygdala-dorsomedial prefrontal circuit is thought to be crucial for threat vigilance during anxiety. However, engagement of this circuitry within relatively naturalistic paradigms remains unresolved. Methods Using an open functional magnetic resonance imaging dataset (Cambridge Centre for Ageing Neuroscience; n = 630), we sought to investigate whether anxiety correlates with dynamic connectivity between the amygdala and dorsomedial prefrontal cortex during movie watching. Results Using an intersubject representational similarity approach, we saw no effect of anxiety when comparing pairwise similarities of dynamic connectivity across the entire movie. However, preregistered analyses demonstrated a relationship between anxiety, amygdala-prefrontal dynamics, and anxiogenic features of the movie (canonical suspense ratings). Our results indicated that amygdala-prefrontal circuitry was modulated by suspense in low-anxiety individuals but was less sensitive to suspense in high-anxiety individuals. We suggest that this could also be related to slowed habituation or amplified anticipation. Moreover, a measure of threat-relevant attentional bias (accuracy/reaction time to fearful faces) demonstrated an association with connectivity and suspense. Conclusions Overall, this study demonstrated the presence of anxiety-relevant differences in connectivity during movie watching, varying with anxiogenic features of the movie. Mechanistically, exactly how and when these differences arise remains an opportunity for future research.
Collapse
Affiliation(s)
- Peter A. Kirk
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
- Experimental Psychology, University College London, London, United Kingdom
- Departments of Psychology and Psychiatry, Yale University, New Haven, Connecticut
| | - Avram J. Holmes
- Departments of Psychology and Psychiatry, Yale University, New Haven, Connecticut
- Wu Tsai Institute, Yale University, New Haven, Connecticut
| | - Oliver J. Robinson
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
- Clinical, Educational and Health Psychology, University College London, London, United Kingdom
| |
Collapse
|
5
|
Kirk PA, Robinson OJ, Skipper JI. Anxiety and amygdala connectivity during movie-watching. Neuropsychologia 2022; 169:108194. [PMID: 35245529 PMCID: PMC8987737 DOI: 10.1016/j.neuropsychologia.2022.108194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/08/2021] [Accepted: 02/27/2022] [Indexed: 12/13/2022]
Abstract
Rodent and human studies have implicated an amygdala-prefrontal circuit during threat processing. One possibility is that while amygdala activity underlies core features of anxiety (e.g. detection of salient information), prefrontal cortices (i.e. dorsomedial prefrontal/anterior cingulate cortex) entrain its responsiveness. To date, this has been established in tightly controlled paradigms (predominantly using static face perception tasks) but has not been extended to more naturalistic settings. Consequently, using ‘movie fMRI’—in which participants watch ecologically-rich movie stimuli rather than constrained cognitive tasks—we sought to test whether individual differences in anxiety correlate with the degree of face-dependent amygdala-prefrontal coupling in two independent samples. Analyses suggested increased face-dependent superior parietal activation and decreased speech-dependent auditory cortex activation as a function of anxiety. However, we failed to find evidence for anxiety-dependent connectivity, neither in our stimulus-dependent or -independent analyses. Our findings suggest that work using experimentally constrained tasks may not replicate in more ecologically valid settings and, moreover, highlight the importance of testing the generalizability of neuroimaging findings outside of the original context. Using ‘movie fMRI’, we tested whether trait anxiety correlates with face-dependent amygdala-prefrontal coupling. We observed altered superior parietal activation to faces and auditory cortex activation to speech as a function of anxiety. We failed to find evidence for anxiety-dependent amygdala-dmPFC connectivity in stimulus-dependent or -independent analyses. Our findings highlight the importance of testing the generalizability of neuroimaging findings outside of the original context.
Collapse
Affiliation(s)
- Peter A Kirk
- UCL Institute of Cognitive Neuroscience, UK; UCL Experimental Psychology, UK.
| | - Oliver J Robinson
- UCL Institute of Cognitive Neuroscience, UK; UCL Clinical, Educational and Health Psychology, UK
| | | |
Collapse
|
6
|
Jamieson AJ, Harrison BJ, Davey CG. Altered effective connectivity of the extended face processing system in depression and its association with treatment response: findings from the YoDA-C randomized controlled trial. Psychol Med 2021; 51:2933-2944. [PMID: 37676047 DOI: 10.1017/s0033291721002567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Depression is commonly associated with fronto-amygdala dysfunction during the processing of emotional face expressions. Interactions between these regions are hypothesized to contribute to negative emotional processing biases and as such have been highlighted as potential biomarkers of treatment response. This study aimed to investigate depression associated alterations to directional connectivity and assess the utility of these parameters as predictors of treatment response. METHODS Ninety-two unmedicated adolescents and young adults (mean age 20.1; 56.5% female) with moderate-to-severe major depressive disorder and 88 healthy controls (mean age 19.8; 61.4% female) completed an implicit emotional face processing fMRI task. Patients were randomized to receive cognitive behavioral therapy for 12 weeks, plus either fluoxetine or placebo. Using dynamic causal modelling, we examined functional relationships between six brain regions implicated in emotional face processing, comparing both patients and controls and treatment responders and non-responders. RESULTS Depressed patients demonstrated reduced inhibition from the dlPFC to vmPFC and reduced excitation from the dlPFC to amygdala during sad expression processing. During fearful expression processing patients showed reduced inhibition from the vmPFC to amygdala and reduced excitation from the amygdala to dlPFC. Response was associated with connectivity from the amygdala to dlPFC during sad expression processing and amygdala to vmPFC connectivity during fearful expression processing. CONCLUSIONS Our study clarifies the nature of face processing network alterations in adolescents and young adults with depression, highlighting key interactions between the amygdala and prefrontal cortex. Moreover, these findings highlight the potential utility of these interactions in predicting treatment response.
Collapse
Affiliation(s)
- Alec J Jamieson
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia
| | - Christopher G Davey
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia
- Department of Psychiatry, The University of Melbourne, Australia
| |
Collapse
|
7
|
Norbury A, Rutter SB, Collins AB, Costi S, Jha MK, Horn SR, Kautz M, Corniquel M, Collins KA, Glasgow AM, Brallier J, Shin LM, Charney DS, Murrough JW, Feder A. Neuroimaging correlates and predictors of response to repeated-dose intravenous ketamine in PTSD: preliminary evidence. Neuropsychopharmacology 2021; 46:2266-2277. [PMID: 34333555 PMCID: PMC8580962 DOI: 10.1038/s41386-021-01104-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/15/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023]
Abstract
Promising initial data indicate that the glutamate N-methyl-D-aspartate (NMDA) receptor antagonist ketamine may be beneficial in post-traumatic stress disorder (PTSD). Here, we explore the neural correlates of ketamine-related changes in PTSD symptoms, using a rich battery of functional imaging data (two emotion-processing tasks and one task-free scan), collected from a subset of participants of a randomized clinical trial of repeated-dose intravenous ketamine vs midazolam (total N = 21). In a pre-registered analysis, we tested whether changes in an a priori set of imaging measures from a target neural circuit were predictive of improvement in PTSD symptoms, using leave-one-out cross-validated elastic-net regression models (regions of interest in the target circuit consisted of the dorsal and rostral anterior cingulate cortex, ventromedial prefrontal cortex, anterior hippocampus, anterior insula, and amygdala). Improvements in PTSD severity were associated with increased functional connectivity between the ventromedial prefrontal cortex (vmPFC) and amygdala during emotional face-viewing (change score retained in model with minimum predictive error in left-out subjects, standardized regression coefficient [β] = 2.90). This effect was stronger in participants who received ketamine compared to midazolam (interaction β = 0.86), and persisted following inclusion of concomitant change in depressive symptoms in the analysis model (β = 0.69). Improvement following ketamine was also predicted by decreased dorsal anterior cingulate activity during emotional conflict regulation, and increased task-free connectivity between the vmPFC and anterior insula (βs = -2.82, 0.60). Exploratory follow-up analysis via dynamic causal modelling revealed that whilst improvement in PTSD symptoms following either drug was associated with decreased excitatory modulation of amygdala→vmPFC connectivity during emotional face-viewing, increased top-down inhibition of the amygdala by the vmPFC was only observed in participants who improved under ketamine. Individuals with low prefrontal inhibition of amygdala responses to faces at baseline also showed greater improvements following ketamine treatment. These preliminary findings suggest that, specifically under ketamine, improvements in PTSD symptoms are accompanied by normalization of hypofrontal control over amygdala responses to social signals of threat.
Collapse
Affiliation(s)
- Agnes Norbury
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah B Rutter
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Abigail B Collins
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sara Costi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manish K Jha
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah R Horn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marin Kautz
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Morgan Corniquel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katherine A Collins
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Andrew M Glasgow
- Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jess Brallier
- Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lisa M Shin
- Department of Psychology, Tufts University, Medford, MA, USA
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Dennis S Charney
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James W Murrough
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adriana Feder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
8
|
Structural and resting state functional connectivity beyond the cortex. Neuroimage 2021; 240:118379. [PMID: 34252527 DOI: 10.1016/j.neuroimage.2021.118379] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/21/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022] Open
Abstract
Mapping the structural and functional connectivity of the central nervous system has become a key area within neuroimaging research. While detailed network structures across the entire brain have been probed using animal models, non-invasive neuroimaging in humans has thus far been dominated by cortical investigations. Beyond the cortex, subcortical nuclei have traditionally been less accessible due to their smaller size and greater distance from radio frequency coils. However, major neuroimaging developments now provide improved signal and the resolution required to study these structures. Here, we present an overview of the connectivity between the amygdala, brainstem, cerebellum, spinal cord and the rest of the brain. While limitations to their imaging and analyses remain, we also provide some recommendations and considerations for mapping brain connectivity beyond the cortex.
Collapse
|
9
|
Westgarth MMP, Hogan CA, Neumann DL, Shum DHK. A systematic review of studies that used NIRS to measure neural activation during emotion processing in healthy individuals. Soc Cogn Affect Neurosci 2021; 16:345-369. [PMID: 33528022 PMCID: PMC7990068 DOI: 10.1093/scan/nsab017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 01/10/2021] [Accepted: 02/02/2021] [Indexed: 12/05/2022] Open
Abstract
Functional neuroimaging provides an avenue for earlier diagnosis and tailored treatment of psychological disorders characterised by emotional impairment. Near-infrared spectroscopy (NIRS) offers ecological advantages compared to other neuroimaging techniques and suitability of measuring regions involved in emotion functions. A systematic review was conducted to evaluate the capacity of NIRS to detect activation during emotion processing and to provide recommendations for future research. Following a comprehensive literature search, we reviewed 85 journal articles, which compared activation during emotional experience, regulation or perception with either a neutral condition or baseline period among healthy participants. The quantitative synthesis of outcomes was limited to thematical analysis, owing to the lack of standardisation between studies. Although most studies found increased prefrontal activity during emotional experience and regulation, the findings were more inconsistent for emotion perception. Some researchers reported increased activity during the task, some reported decreases, some no significant changes, and some reported mixed findings depending on the valence and region. We propose that variations in the cognitive task and stimuli, recruited sample, and measurement and analysis of data are the primary causes of inconsistency. Recommendations to improve consistency in future research by carefully considering the choice of population, cognitive task and analysis approach are provided.
Collapse
Affiliation(s)
- Matthew M P Westgarth
- School of Applied Psychology, Griffith University, Brisbane, Queensland, 4122, Australia
| | - Christy A Hogan
- School of Applied Psychology, Griffith University, Brisbane, Queensland, 4122, Australia
| | - David L Neumann
- School of Applied Psychology, Griffith University, Brisbane, Queensland, 4122, Australia
| | - David H K Shum
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon City District, 100077, Hong Kong
| |
Collapse
|
10
|
Nord CL. Predicting Response to Brain Stimulation in Depression: a Roadmap for Biomarker Discovery. Curr Behav Neurosci Rep 2021; 8:11-19. [PMID: 33708470 PMCID: PMC7904553 DOI: 10.1007/s40473-021-00226-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 11/22/2022]
Abstract
PURPOSE OF REVIEW Clinical response to brain stimulation treatments for depression is highly variable. A major challenge for the field is predicting an individual patient's likelihood of response. This review synthesises recent developments in neural predictors of response to targeted brain stimulation in depression. It then proposes a framework to evaluate the clinical potential of putative 'biomarkers'. RECENT FINDINGS Largely, developments in identifying putative predictors emerge from two approaches: data-driven, including machine learning algorithms applied to resting state or structural neuroimaging data, and theory-driven, including task-based neuroimaging. Theory-driven approaches can also yield mechanistic insight into the cognitive processes altered by the intervention. SUMMARY A pragmatic framework for discovery and testing of biomarkers of brain stimulation response in depression is proposed, involving (1) identification of a cognitive-neural phenotype; (2) confirming its validity as putative biomarker, including out-of-sample replicability and within-subject reliability; (3) establishing the association between this phenotype and treatment response and/or its modifiability with particular brain stimulation interventions via an early-phase randomised controlled trial RCT; and (4) multi-site RCTs of one or more treatment types measuring the generalisability of the biomarker and confirming the superiority of biomarker-selected patients over randomly allocated groups.
Collapse
Affiliation(s)
- Camilla L. Nord
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF UK
| |
Collapse
|
11
|
Abstract
Lateral asymmetry is one of the fundamental properties of the functional anatomy of the human brain. Amygdala (AMYG) asymmetry was also reported in clinical studies of resting-state functional connectivity (rsFC) but rarely in healthy groups. To explore this issue, we investigated the reproducibility of the data on rsFC of the left and right AMYG using functional MRI twice a week in 20 healthy volunteers with mild-to-moderate anxiety. We found a resting-state network of the AMYG, which included regions involved in emotional processing and several other brain areas associated with memory and motor inhibition. The AMYG network was stable in time and within subjects, but the right AMYG had more significant connections with anatomical brain regions. The rsFC values of the right AMYG were also more sustained across the week than the left AMYG rsFC. Subjective ratings of anxiety did not correlate significantly with the patterns of seed-based AMYG connectivity. Our findings indicate that, for healthy subjects, rsFC may differ for the right and left AMYG. Moreover, the AMYG functional connectivity is variable in short-term observations, which may also influence the results of longitude studies.
Collapse
|
12
|
Fennema D, O'Daly O, Barker GJ, Moll J, Zahn R. Internal reliability of blame-related functional MRI measures in major depressive disorder. NEUROIMAGE: CLINICAL 2021; 32:102901. [PMID: 34911203 PMCID: PMC8640114 DOI: 10.1016/j.nicl.2021.102901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/14/2021] [Accepted: 11/26/2021] [Indexed: 11/02/2022] Open
Abstract
Self-blame-related fMRI measures were previously validated in depressive disorders. Reproducibility and internal consistency as a measure of reliability were examined. Whilst simple fMRI measures exhibited fair reliability, complex measures did not. Yet, complex measures showed reproducible clinical validity at the group level. Connectivity measures, that balance reliability and validity better, are needed.
Background Methods Results Conclusions
Collapse
|
13
|
McDermott TJ, Kirlic N, Akeman E, Touthang J, Cosgrove KT, DeVille DC, Clausen AN, White EJ, Kuplicki R, Aupperle RL. Visual cortical regions show sufficient test-retest reliability while salience regions are unreliable during emotional face processing. Neuroimage 2020; 220:117077. [PMID: 32574806 DOI: 10.1016/j.neuroimage.2020.117077] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 01/14/2023] Open
Abstract
Functional magnetic resonance imaging studies frequently use emotional face processing tasks to probe neural circuitry related to psychiatric disorders and treatments with an emphasis on regions within the salience network (e.g., amygdala). Findings across previous test-retest reliability studies of emotional face processing have shown high variability, potentially due to differences in data analytic approaches. The present study comprehensively examined the test-retest reliability of an emotional faces task utilizing multiple approaches to region of interest (ROI) analysis and by examining voxel-wise reliability across the entire brain for both neural activation and functional connectivity. Analyses included 42 healthy adult participants who completed an fMRI scan concurrent with an emotional faces task on two separate days with an average of 25.52 days between scans. Intraclass correlation coefficients (ICCs) were calculated for the 'FACES-SHAPES' and 'FACES' (compared to implicit baseline) contrasts across the following: anatomical ROIs identified from a publicly available brain atlas (i.e., Brainnetome), functional ROIs consisting of 5-mm spheres centered on peak voxels from a publicly available meta-analytic database (i.e., Neurosynth), and whole-brain, voxel-wise analysis. Whole-brain, voxel-wise analyses of functional connectivity were also conducted using both anatomical and functional seed ROIs. While group-averaged neural activation maps were consistent across time, only one anatomical ROI and two functional ROIs showed good or excellent individual-level reliability for neural activation. The anatomical ROI was the right medioventral fusiform gyrus for the FACES contrast (ICC = 0.60). The functional ROIs were the left and the right fusiform face area (FFA) for both FACES-SHAPES and FACES (Left FFA ICCs = 0.69 & 0.79; Right FFA ICCs = 0.68 & 0.66). Poor reliability (ICCs < 0.4) was identified for almost all other anatomical and functional ROIs, with some exceptions showing fair reliability (ICCs = 0.4-0.59). Whole-brain voxel-wise analysis of neural activation identified voxels with good (ICCs = 0.6-0.74) to excellent reliability (ICCs > 0.75) that were primarily located in visual cortex, with several clusters in bilateral dorsal lateral prefrontal cortex (DLPFC). Whole-brain voxel-wise analyses of functional connectivity for amygdala and fusiform gyrus identified very few voxels with good to excellent reliability using both anatomical and functional seed ROIs. Exceptions included clusters in right cerebellum and right DLPFC that showed reliable connectivity with left amygdala (ICCs > 0.6). In conclusion, results indicate that visual cortical regions demonstrate good reliability at the individual level for neural activation, but reliability is generally poor for salience regions often focused on within psychiatric research (e.g., amygdala). Given these findings, future clinical neuroimaging studies using emotional faces tasks to examine individual differences might instead focus on visual regions and their role in psychiatric disorders.
Collapse
Affiliation(s)
- Timothy J McDermott
- Laureate Institute for Brain Research, Tulsa, OK, United States; Department of Psychology, University of Tulsa, Tulsa, OK, United States
| | - Namik Kirlic
- Laureate Institute for Brain Research, Tulsa, OK, United States
| | | | - James Touthang
- Laureate Institute for Brain Research, Tulsa, OK, United States
| | - Kelly T Cosgrove
- Laureate Institute for Brain Research, Tulsa, OK, United States; Department of Psychology, University of Tulsa, Tulsa, OK, United States
| | - Danielle C DeVille
- Laureate Institute for Brain Research, Tulsa, OK, United States; Department of Psychology, University of Tulsa, Tulsa, OK, United States
| | - Ashley N Clausen
- Laureate Institute for Brain Research, Tulsa, OK, United States; VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center, Durham VA Health Care System, Durham, NC, USA; Duke University Brain Imaging and Analysis Center, Durham, NC, USA
| | - Evan J White
- Laureate Institute for Brain Research, Tulsa, OK, United States
| | - Rayus Kuplicki
- Laureate Institute for Brain Research, Tulsa, OK, United States; Department of Community Medicine, University of Tulsa, Tulsa, OK, United States
| | - Robin L Aupperle
- Laureate Institute for Brain Research, Tulsa, OK, United States; Department of Community Medicine, University of Tulsa, Tulsa, OK, United States.
| |
Collapse
|
14
|
Changes in functional connectivity with cognitive behavioral therapy for social anxiety disorder predict outcomes at follow-up. Behav Res Ther 2020; 129:103612. [PMID: 32276238 DOI: 10.1016/j.brat.2020.103612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 01/27/2023]
Abstract
Approximately half of individuals with Social Anxiety Disorder (SAD) treated with psychological intervention do not achieve clinically significant improvement or retain long-term gains. Neurobiological models of SAD propose that disruptions in functioning of amygdala-prefrontal circuitry is implicated in short-term treatment response. However, whether treatment-related changes in functional connectivity predict long-term well-being after psychotherapy is unknown. Patients with SAD completed an incidental emotion regulation task during fMRI before and after treatment with cognitive behavioral therapy or acceptance and commitment therapy (n = 23, collapsed across groups). Psychophysiological interaction analyses using amygdala seed regions were conducted to assess changes in functional connectivity from pre-to post-treatment that predicted symptom change from 6 to 12-month follow-up. Negative change (i.e., greater inverse/weaker positive) in amygdala connectivity with the dorsomedial prefrontal cortex (dmPFC) and dorsal anterior cingulate cortex (dACC) predicted greater symptom reduction during follow-up. Positive change in amygdala connectivity with the cerebellum, fusiform gyrus, and pre-central and post-central gyri predicted less symptom reduction (e.g., no change or worsening). Results suggest that strengthened amygdala connectivity with regulatory regions may promote better long-term outcomes, whereas changes with visual and sensorimotor regions may represent sensitization to emotion-related cues, conferring poorer outcomes. Clinical implications for treatment personalization are discussed, should effects replicate in larger samples.
Collapse
|
15
|
Longitudinal changes of resting-state functional connectivity of amygdala following fear learning and extinction. Int J Psychophysiol 2020; 149:15-24. [DOI: 10.1016/j.ijpsycho.2020.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 12/09/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
|