1
|
Giunco S, Petrara MR, Indraccolo S, Ciminale V, De Rossi A. Beyond Telomeres: Unveiling the Extratelomeric Functions of TERT in B-Cell Malignancies. Cancers (Basel) 2025; 17:1165. [PMID: 40227701 PMCID: PMC11987798 DOI: 10.3390/cancers17071165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025] Open
Abstract
The reactivation of telomerase enables cancer cells to maintain the telomere length, bypassing replicative senescence and achieving cellular immortality. In addition to its canonical role in telomere maintenance, accumulating evidence highlights telomere-length-independent functions of TERT, the catalytic subunit of telomerase. These extratelomeric functions involve the regulation of signaling pathways and transcriptional networks, creating feed-forward loops that promote cancer cell proliferation, resistance to apoptosis, and disease progression. This review explores the complex mechanisms by which TERT modulates key signaling pathways, such as NF-κB, AKT, and MYC, highlighting its role in driving autonomous cancer cell growth and resistance to therapy in B-cell malignancies. Furthermore, we discuss the therapeutic potential of targeting TERT's extratelomeric functions. Unlike telomere-directed approaches, which may require prolonged treatment to achieve effective telomere erosion, inhibiting TERT's extratelomeric functions offers the prospect of rapid tumor-specific effects. This strategy could complement existing chemotherapeutic regimens, providing an innovative and effective approach to managing B-cell malignancies.
Collapse
Affiliation(s)
- Silvia Giunco
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (S.G.); (S.I.); (V.C.)
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy;
| | - Maria Raffaella Petrara
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy;
| | - Stefano Indraccolo
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (S.G.); (S.I.); (V.C.)
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Vincenzo Ciminale
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (S.G.); (S.I.); (V.C.)
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy;
| | - Anita De Rossi
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (S.G.); (S.I.); (V.C.)
| |
Collapse
|
2
|
Harrer DC, Lüke F, Pukrop T, Ghibelli L, Reichle A, Heudobler D. MEPED as salvage therapy for relapsed/refractory Hodgkin's lymphoma incorporating edited non-oncogene addiction: mTOR as a bottleneck. Front Pharmacol 2025; 16:1553331. [PMID: 40183103 PMCID: PMC11965665 DOI: 10.3389/fphar.2025.1553331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Rescue therapies of relapsed/refractory (r/r) Hodgkin's lymphoma (HL) in the third to sixth-line provide major, yet unresolved problems. The MEPED regimen includes nuclear receptor agonists such as pioglitazone and dexamethasone, which counterbalance HL homeostasis, HL stress response inhibitors, everolimus and COX-2 inhibitor, and a stress response inducer, low-dose metronomic treosulfan. CR (six of seven patients) and long-term cCR in patients receiving no consolidating allogeneic stem cell transplantation highlight MEPED as a potent salvage therapy in advanced refractory HL. MEPED edits everolimus activities in such a way that mTORC1 becomes a non-oncogene addiction bottleneck, hence determining long-term therapy outcome. The implications of the therapeutic paradigm shift toward editing of HL tissue, and particularly mTOR addiction, could prove to be profound for clinical practice, both in terms of outcome and treatment tolerability. The long-term results of MEPED treatment indicate the urgent evaluation of the schedule in a multicenter trial for r/r HL.
Collapse
Affiliation(s)
- Dennis Christoph Harrer
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Regensburg, Germany
| | - Lina Ghibelli
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
3
|
YANG PIAO, SHEYKHHASAN MOHSEN, HEIDARI REZA, CHAMANARA MOHSEN, DAMA PAOLA, AHMADIEH-YAZDI AMIRHOSSEIN, MANOOCHEHRI HAMED, TANZADEHPANAH HAMID, MAHAKI HANIE, KALHOR NASER, DIRBAZIYAN ASHKAN, AL-MUSAWI SHARAFALDIN. FOXR2 in cancer development: emerging player and therapeutic opportunities. Oncol Res 2025; 33:283-300. [PMID: 39866234 PMCID: PMC11753994 DOI: 10.32604/or.2024.052939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/26/2024] [Indexed: 01/28/2025] Open
Abstract
Cancer, a leading cause of global mortality, remains a significant challenge to increasing life expectancy worldwide. Forkhead Box R2 (FOXR2), identified as an oncogene within the FOX gene family, plays a crucial role in developing various endoderm-derived organs. Recent studies have elucidated FOXR2-related pathways and their involvement in both tumor and non-tumor diseases. Dysregulation of FOXR2 has been linked to numerous malignant tumors, spanning the brain, nervous system, thyroid, osteosarcoma, Hodgkin lymphoma, colorectal, liver, pancreatic, lung, breast, ovarian, prostate, female genital tract, endometrial, and uterine cancers. Despite extensive research on FOXR2 dysregulation, its practical applications remain underexplored. This review delves into the mechanisms underlying FOXR2 dysregulation during oncogenesis and its implications for cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- PIAO YANG
- Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, OH, USA
| | - MOHSEN SHEYKHHASAN
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - REZA HEIDARI
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - MOHSEN CHAMANARA
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
- Student Research Committee, AJA University of Medical Sciences, Tehran, Iran
| | - PAOLA DAMA
- Research Fellow School of Life Sciences, University of Sussex, Brighton, UK
| | - AMIRHOSSEIN AHMADIEH-YAZDI
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - HAMED MANOOCHEHRI
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - HAMID TANZADEHPANAH
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - HANIE MAHAKI
- Vascular & Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - NASER KALHOR
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom, Iran
| | - ASHKAN DIRBAZIYAN
- Department of Microbiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
4
|
Knecht H, Petrogiannis-Haliotis T, Louis S, Mai S. 3D-Q-FISH/Telomere/TRF2 Nanotechnology Identifies a Progressively Disturbed Telomere/Shelterin/Lamin AC Complex as the Common Pathogenic, Molecular/Spatial Denominator of Classical Hodgkin Lymphoma. Cells 2024; 13:1748. [PMID: 39513855 PMCID: PMC11545283 DOI: 10.3390/cells13211748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/27/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
The bi- or multinucleated Reed-Sternberg cell (RS) is the diagnostic cornerstone of Epstein-Barr Virus (EBV)-positive and EBV-negative classical Hodgkin lymphoma (cHL). cHL is a germinal center (GC)-derived B-cell disease. Hodgkin cells (H) are the mononuclear precursors of RS. An experimental model has to fulfill three conditions to qualify as common pathogenic denominator: (i) to be of GC-derived B-cell origin, (ii) to be EBV-negative to avoid EBV latency III expression and (iii) to support permanent EBV-encoded oncogenic latent membrane protein (LMP1) expression upon induction. These conditions are unified in the EBV-, diffuse large B-Cell lymphoma (DLBCL) cell line BJAB-tTA-LMP1. 3D reconstructive nanotechnology revealed spatial, quantitative and qualitative disturbance of telomere/shelterin interactions in mononuclear H-like cells, with further progression during transition to RS-like cells, including progressive complexity of the karyotype with every mitotic cycle, due to BBF (breakage/bridge/fusion) events. The findings of this model were confirmed in diagnostic patient samples and correlate with clinical outcomes. Moreover, in vitro, significant disturbance of the lamin AC/telomere interaction progressively occurred. In summary, our research over the past three decades identified cHL as the first lymphoid malignancy driven by a disturbed telomere/shelterin/lamin AC interaction, generating the diagnostic RS. Our findings may act as trailblazer for tailored therapies in refractory cHL.
Collapse
Affiliation(s)
- Hans Knecht
- Division of Hematology, Department of Medicine, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | | | - Sherif Louis
- Telo Genomics Corp., Ontario, ON M5G 1L7, Canada;
| | - Sabine Mai
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|
5
|
Knecht H, Johnson N, Bienz MN, Brousset P, Memeo L, Shifrin Y, Alikhah A, Louis SF, Mai S. Analysis by TeloView ® Technology Predicts the Response of Hodgkin's Lymphoma to First-Line ABVD Therapy. Cancers (Basel) 2024; 16:2816. [PMID: 39199588 PMCID: PMC11352807 DOI: 10.3390/cancers16162816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Classic Hodgkin's lymphoma (cHL) is a curable cancer with a disease-free survival rate of over 10 years. Over 80% of diagnosed patients respond favorably to first-line chemotherapy, but few biomarkers exist that can predict the 15-20% of patients who experience refractory or early relapsed disease. To date, the identification of patients who will not respond to first-line therapy based on disease staging and traditional clinical risk factor analysis is still not possible. Three-dimensional (3D) telomere analysis using the TeloView® software platform has been shown to be a reliable tool to quantify genomic instability and to inform on disease progression and patients' response to therapy in several cancers. It also demonstrated telomere dysfunction in cHL elucidating biological mechanisms related to disease progression. Here, we report 3D telomere analysis on a multicenter cohort of 156 cHL patients. We used the cohort data as a training data set and identified significant 3D telomere parameters suitable to predict individual patient outcomes at the point of diagnosis. Multivariate analysis using logistic regression procedures allowed for developing a predictive scoring model using four 3D telomere parameters as predictors, including the proportion of t-stumps (very short telomeres), which has been a prominent predictor for cHL patient outcome in a previously published study using TeloView® analysis. The percentage of t-stumps was by far the most prominent predictor to identify refractory/relapsing (RR) cHL prior to initiation of adriamycin, bleomycin, vinblastine, and dacarbazine (ABVD) therapy. The model characteristics include an AUC of 0.83 in ROC analysis and a sensitivity and specificity of 0.82 and 0.78 respectively.
Collapse
Affiliation(s)
- Hans Knecht
- Division of Hematology, Jewish General Hospital, McGill University, Montréal, QC H3A 0G4, Canada; (N.J.); (M.N.B.)
| | - Nathalie Johnson
- Division of Hematology, Jewish General Hospital, McGill University, Montréal, QC H3A 0G4, Canada; (N.J.); (M.N.B.)
| | - Marc N. Bienz
- Division of Hematology, Jewish General Hospital, McGill University, Montréal, QC H3A 0G4, Canada; (N.J.); (M.N.B.)
| | - Pierre Brousset
- Toulouse Cancer Center, Université de Toulouse, 31000 Toulouse, France;
| | - Lorenzo Memeo
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Viagrande, Italy;
| | - Yulia Shifrin
- Telo Genomics Corp., Toronto ON M5G 1L7, Canada; (Y.S.); (A.A.); (S.F.L.)
| | - Asieh Alikhah
- Telo Genomics Corp., Toronto ON M5G 1L7, Canada; (Y.S.); (A.A.); (S.F.L.)
| | - Sherif F. Louis
- Telo Genomics Corp., Toronto ON M5G 1L7, Canada; (Y.S.); (A.A.); (S.F.L.)
| | - Sabine Mai
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3T 2N, Canada;
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
6
|
Velasco-Suelto J, Gálvez-Carvajal L, Comino-Méndez I, Rueda-Domínguez A. Hodgkin lymphoma and liquid biopsy: a story to be told. J Exp Clin Cancer Res 2024; 43:184. [PMID: 38956619 PMCID: PMC11218217 DOI: 10.1186/s13046-024-03108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Hodgkin lymphoma (HL) represents a neoplasm primarily affecting adolescents and young adults, necessitating the development of precise diagnostic and monitoring tools. Specifically, classical Hodgkin lymphoma (cHL), comprising 90% of cases, necessitating tailored treatments to minimize late toxicities. Although positron emission tomography/computed tomography (PET/CT) has enhanced response assessment, its limitations underscore the urgency for more reliable progression predictive tools. Genomic characterisation of rare Hodgkin Reed-Sternberg (HRS) cells is challenging but essential. Recent studies employ single-cell molecular analyses, mass cytometry, and Next-Generation Sequencing (NGS) to unveil mutational landscapes. The integration of liquid biopsies, particularly circulating tumor DNA (ctDNA), extracellular vesicles (EVs), miRNAs and cytokines, emerge as groundbreaking approaches. Recent studies demonstrate ctDNA's potential in assessing therapy responses and predicting relapses in HL. Despite cHL-specific ctDNA applications being relatively unexplored, studies emphasize its value in monitoring treatment outcomes. Overall, this review underscores the imperative role of liquid biopsies in advancing HL diagnosis and monitoring.
Collapse
Affiliation(s)
- Jesús Velasco-Suelto
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de La Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga, IBIMA-CIMES-UMA), 29010, Malaga, Spain
| | - Laura Gálvez-Carvajal
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de La Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga, IBIMA-CIMES-UMA), 29010, Malaga, Spain
| | - Iñaki Comino-Méndez
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de La Victoria, 29010, Malaga, Spain.
- The Biomedical Research Institute of Málaga, IBIMA-CIMES-UMA), 29010, Malaga, Spain.
- Andalusia-Roche Network in Precision Medical Oncology, 41092, Seville, Spain.
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC - CB16, 12/00481); 28029, Madrid, Spain.
- Clinical and Translational Cancer Research Group, IBIMA Institute, C/ Severo Ochoa, ParqueTecnologico de Andalucia (PTA), 35, 29590, Campanillas-Malaga, Spain.
| | - Antonio Rueda-Domínguez
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de La Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga, IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Andalusia-Roche Network in Precision Medical Oncology, 41092, Seville, Spain
| |
Collapse
|
7
|
Gupta S, Craig JW. Classic Hodgkin lymphoma in young people. Semin Diagn Pathol 2023; 40:379-391. [PMID: 37451943 DOI: 10.1053/j.semdp.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
Classic Hodgkin lymphoma (CHL) is a unique form of lymphoid cancer featuring a heterogeneous tumor microenvironment and a relative paucity of malignant Hodgkin and Reed-Sternberg (HRS) cells with characteristic phenotype. Younger individuals (children, adolescents and young adults) are affected as often as the elderly, producing a peculiar bimodal age-incidence profile that has generated immense interest in this disease and its origins. Decades of epidemiological investigations have documented the populations most susceptible and identified multiple risk factors that can be broadly categorized as either biological or environmental in nature. Most risk factors result in overt immunodeficiency or confer more subtle alterations to baseline health, physiology or immune function. Epstein Barr virus, however, is both a risk factor and well-established driver of lymphomagenesis in a significant subset of cases. Epigenetic changes, along with the accumulation of somatic driver mutations and cytogenetic abnormalities are required for the malignant transformation of germinal center-experienced HRS cell precursors. Chromosomal instability and the influence of endogenous mutational processes are critical in this regard, by impacting genes involved in key signaling pathways that promote the survival and proliferation of HRS cells and their escape from immune destruction. Here we review the principal features, known risk factors and lymphomagenic mechanisms relevant to newly diagnosed CHL, with an emphasis on those most applicable to young people.
Collapse
Affiliation(s)
- Srishti Gupta
- Department of Pathology, University of Virginia Health System, 1215 Lee Street, 3rd Floor Hospital Expansion Room 3032, PO Box 800904, Charlottesville, VA 22908, USA
| | - Jeffrey W Craig
- Department of Pathology, University of Virginia Health System, 1215 Lee Street, 3rd Floor Hospital Expansion Room 3032, PO Box 800904, Charlottesville, VA 22908, USA.
| |
Collapse
|
8
|
Patient-Derived iPSCs Reveal Evidence of Telomere Instability and DNA Repair Deficiency in Coats Plus Syndrome. Genes (Basel) 2022; 13:genes13081395. [PMID: 36011306 PMCID: PMC9407572 DOI: 10.3390/genes13081395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 12/11/2022] Open
Abstract
Coats plus (CP) syndrome is an inherited autosomal recessive condition that results from mutations in the conserved telomere maintenance component 1 gene (CTC1). The CTC1 protein functions as a part of the CST protein complex, a protein heterotrimer consisting of CTC1-STN1-TEN1 which promotes telomere DNA synthesis and inhibits telomerase-mediated telomere elongation. However, it is unclear how CTC1 mutations may have an effect on telomere structure and function. For that purpose, we established the very first induced pluripotent stem cell lines (iPSCs) from a compound heterozygous patient with CP carrying deleterious mutations in both alleles of CTC1. Telomere dysfunction and chromosomal instability were assessed in both circulating lymphocytes and iPSCs from the patient and from healthy controls of similar age. The circulating lymphocytes and iPSCs from the CP patient were characterized by their higher telomere length heterogeneity and telomere aberrations compared to those in control cells from healthy donors. Moreover, in contrast to iPSCs from healthy controls, the high levels of telomerase were associated with activation of the alternative lengthening of telomere (ALT) pathway in CP-iPSCs. This was accompanied by inappropriate activation of the DNA repair proteins γH2AX, 53BP1, and ATM, as well as with accumulation of DNA damage, micronuclei, and anaphase bridges. CP-iPSCs presented features of cellular senescence and increased radiation sensitivity. Clonal dicentric chromosomes were identified only in CP-iPSCs after exposure to radiation, thus mirroring the role of telomere dysfunction in their formation. These data demonstrate that iPSCs derived from CP patients can be used as a model system for molecular studies of the CP syndrome and underscores the complexity of telomere dysfunction associated with the defect of DNA repair machinery in the CP syndrome.
Collapse
|
9
|
van Bladel DAG, Stevens WBC, van den Brand M, Kroeze LI, Groenen PJTA, van Krieken JHJM, Hebeda KM, Scheijen B. Novel Approaches in Molecular Characterization of Classical Hodgkin Lymphoma. Cancers (Basel) 2022; 14:cancers14133222. [PMID: 35805000 PMCID: PMC9264882 DOI: 10.3390/cancers14133222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The unique tumor composition of classical Hodgkin lymphoma (cHL), with only a small fraction of malignant Hodgkin and Reed–Sternberg cells within the tumor tissue, has created many challenges to characterize the genetic alterations that drive this lymphoid malignancy. Major advances in sequencing technologies and detailed analysis of circulating tumor DNA in blood samples of patients have provided important contributions to enhance our understanding of the pathogenesis of cHL. In this review, we provide an overview of the recent advances in genotyping the clonal and mutational landscape of cHL. In addition, we discuss different next-generation sequencing applications to characterize tumor tissue and cell-free DNA, which are now available to improve the diagnosis of cHL, and to monitor therapeutic response or disease progression during treatment and follow up of cHL patients. Abstract Classical Hodgkin lymphoma (cHL) represents a B-cell lymphoproliferative disease characterized by clonal immunoglobulin gene rearrangements and recurrent genomic aberrations in the Hodgkin Reed–Sternberg cells in a reactive inflammatory background. Several methods are available for the molecular analysis of cHL on both tissue and cell-free DNA isolated from blood, which can provide detailed information regarding the clonal composition and genetic alterations that drive lymphoma pathogenesis. Clonality testing involving the detection of immunoglobulin and T cell receptor gene rearrangements, together with mutation analysis, represent valuable tools for cHL diagnostics, especially for patients with an atypical histological or clinical presentation reminiscent of a reactive lesion or another lymphoma subtype. In addition, clonality assessment may establish the clonal relationship of composite or subsequent lymphoma presentations within one patient. During the last few decades, more insight has been obtained on the molecular mechanisms that drive cHL development, including recurrently affected signaling pathways (e.g., NF-κB and JAK/STAT) and immune evasion. We provide an overview of the different approaches to characterize the molecular composition of cHL, and the implementation of these next-generation sequencing-based techniques in research and diagnostic settings.
Collapse
Affiliation(s)
- Diede A. G. van Bladel
- Radboud University Medical Center, Department of Pathology, 6525 GA Nijmegen, The Netherlands; (D.A.G.v.B.); (M.v.d.B.); (L.I.K.); (P.J.T.A.G.); (J.H.J.M.v.K.); (K.M.H.)
- Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Wendy B. C. Stevens
- Radboud University Medical Center, Department of Hematology, 6525 GA Nijmegen, The Netherlands;
| | - Michiel van den Brand
- Radboud University Medical Center, Department of Pathology, 6525 GA Nijmegen, The Netherlands; (D.A.G.v.B.); (M.v.d.B.); (L.I.K.); (P.J.T.A.G.); (J.H.J.M.v.K.); (K.M.H.)
- Pathology-DNA, Rijnstate Hospital, 6815 AD Arnhem, The Netherlands
| | - Leonie I. Kroeze
- Radboud University Medical Center, Department of Pathology, 6525 GA Nijmegen, The Netherlands; (D.A.G.v.B.); (M.v.d.B.); (L.I.K.); (P.J.T.A.G.); (J.H.J.M.v.K.); (K.M.H.)
| | - Patricia J. T. A. Groenen
- Radboud University Medical Center, Department of Pathology, 6525 GA Nijmegen, The Netherlands; (D.A.G.v.B.); (M.v.d.B.); (L.I.K.); (P.J.T.A.G.); (J.H.J.M.v.K.); (K.M.H.)
| | - J. Han J. M. van Krieken
- Radboud University Medical Center, Department of Pathology, 6525 GA Nijmegen, The Netherlands; (D.A.G.v.B.); (M.v.d.B.); (L.I.K.); (P.J.T.A.G.); (J.H.J.M.v.K.); (K.M.H.)
| | - Konnie M. Hebeda
- Radboud University Medical Center, Department of Pathology, 6525 GA Nijmegen, The Netherlands; (D.A.G.v.B.); (M.v.d.B.); (L.I.K.); (P.J.T.A.G.); (J.H.J.M.v.K.); (K.M.H.)
| | - Blanca Scheijen
- Radboud University Medical Center, Department of Pathology, 6525 GA Nijmegen, The Netherlands; (D.A.G.v.B.); (M.v.d.B.); (L.I.K.); (P.J.T.A.G.); (J.H.J.M.v.K.); (K.M.H.)
- Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
- Correspondence:
| |
Collapse
|
10
|
Macrophage Infiltration Correlates with Genomic Instability in Classic Hodgkin Lymphoma. Biomedicines 2022; 10:biomedicines10030579. [PMID: 35327381 PMCID: PMC8945507 DOI: 10.3390/biomedicines10030579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 12/10/2022] Open
Abstract
Hodgkin lymphoma (HL) is a biologically diverse group of lymphoid tumors, which accounts for 1% of all de novo neoplasms in the world’s population. It is divided into two main groups: the more common classic Hodgkin lymphoma (cHL) and the less common nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL). cHL is further divided into four subtypes, which differ in morphology and the contents of tumor microenvironment. Macrophages are one of the components of tumor microenvironment known to contribute to creating an immunosuppressive microenvironment, which inhibits the activity of cells expressing granzyme B against tumor cells, even when tumor cells are infected with Epstein–Barr virus (EBV). Our research aimed to explore the association between the specific contents of tumor microenvironment and the genetic anomalies in tumor cells. The presence and the relative percentage of cytotoxic T lymphocytes and macrophages was detected by immunohistochemical staining of the antigens specific for certain cell populations. Fluorescent in situ hybridization was used to detect anomalies in the genome of tumor cells and in situ hybridization was used to detect the presence of EBV. Our results show an association between the number of CD163+ macrophages and the number of TP53 copies or BCL6 gene translocation. Patients who had a higher number of CD163+ macrophages infiltrating tumor tissue and three or higher number of copies of TP53 showed poorer survival. We conclude that the presence of macrophages may contribute to genetic instability in cHL, which drives the progression of cHL and decreases survival of the patients.
Collapse
|
11
|
van Bladel DAG, van den Brand M, Rijntjes J, Pamidimarri Naga S, Haacke DLCM, Luijks JACW, Hebeda KM, van Krieken JHJM, Groenen PJTA, Scheijen B. Clonality assessment and detection of clonal diversity in classic Hodgkin lymphoma by next-generation sequencing of immunoglobulin gene rearrangements. Mod Pathol 2022; 35:757-766. [PMID: 34862451 PMCID: PMC9174053 DOI: 10.1038/s41379-021-00983-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 02/06/2023]
Abstract
Clonality analysis in classic Hodgkin lymphoma (cHL) is of added value for correctly diagnosing patients with atypical presentation or histology reminiscent of T cell lymphoma, and for establishing the clonal relationship in patients with recurrent disease. However, such analysis has been hampered by the sparsity of malignant Hodgkin and Reed-Sternberg (HRS) cells in a background of reactive immune cells. Recently, the EuroClonality-NGS Working Group developed a novel next-generation sequencing (NGS)-based assay and bioinformatics platform (ARResT/Interrogate) to detect immunoglobulin (IG) gene rearrangements for clonality testing in B-cell lymphoproliferations. Here, we demonstrate the improved performance of IG-NGS compared to conventional BIOMED-2/EuroClonality analysis to detect clonal gene rearrangements in 16 well-characterized primary cHL cases within the IG heavy chain (IGH) and kappa light chain (IGK) loci. This was most obvious in formalin-fixed paraffin-embedded (FFPE) tissue specimens, where three times more clonal cases were detected with IG-NGS (9 cases) compared to BIOMED-2 (3 cases). In total, almost four times more clonal rearrangements were detected in FFPE with IG-NGS (N = 23) as compared to BIOMED-2/EuroClonality (N = 6) as judged on identical IGH and IGK targets. The same clonal rearrangements were also identified in paired fresh frozen cHL samples. To validate the neoplastic origin of the detected clonotypes, IG-NGS clonality analysis was performed on isolated HRS cells, demonstrating identical clonotypes as detected in cHL whole-tissue specimens. Interestingly, IG-NGS and HRS single-cell analysis after DEPArray™ digital sorting revealed rearrangement patterns and copy number variation profiles indicating clonal diversity and intratumoral heterogeneity in cHL. Our data demonstrate improved performance of NGS-based detection of IG gene rearrangements in cHL whole-tissue specimens, providing a sensitive molecular diagnostic assay for clonality assessment in Hodgkin lymphoma.
Collapse
Affiliation(s)
- Diede A. G. van Bladel
- grid.10417.330000 0004 0444 9382Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands ,grid.461760.20000 0004 0580 1253Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Michiel van den Brand
- grid.10417.330000 0004 0444 9382Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands ,grid.415930.aPathology-DNA, Rijnstate Hospital, Arnhem, The Netherlands
| | - Jos Rijntjes
- grid.10417.330000 0004 0444 9382Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Samhita Pamidimarri Naga
- grid.461760.20000 0004 0580 1253Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands ,grid.10417.330000 0004 0444 9382Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Demi L. C. M. Haacke
- grid.10417.330000 0004 0444 9382Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen A. C. W. Luijks
- grid.10417.330000 0004 0444 9382Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Konnie M. Hebeda
- grid.10417.330000 0004 0444 9382Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J. Han J. M. van Krieken
- grid.10417.330000 0004 0444 9382Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Patricia J. T. A. Groenen
- grid.10417.330000 0004 0444 9382Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Blanca Scheijen
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands. .,Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.
| |
Collapse
|
12
|
Casagrande N, Borghese C, Aldinucci D. In classical Hodgkin lymphoma the combination of the CCR5 antagonist maraviroc with trabectedin synergizes, enhances DNA damage and decreases 3D tumor-stroma heterospheroid viability. Haematologica 2021; 107:287-291. [PMID: 34498447 PMCID: PMC8719077 DOI: 10.3324/haematol.2021.279389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 11/15/2022] Open
Affiliation(s)
- Naike Casagrande
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN)
| | - Cinzia Borghese
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN)
| | - Donatella Aldinucci
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN).
| |
Collapse
|
13
|
Weniger MA, Küppers R. Molecular biology of Hodgkin lymphoma. Leukemia 2021; 35:968-981. [PMID: 33686198 PMCID: PMC8024192 DOI: 10.1038/s41375-021-01204-6] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/01/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
Classical Hodgkin lymphoma (cHL) is unique among lymphoid malignancies in several key biological features. (i) The Hodgkin and Reed-Sternberg (HRS) tumor cells are rare among an extensive and complex microenvironment. (ii) They derive from B cells, but have largely lost the B-cell typical gene expression program. (iii) Their specific origin appears to be pre-apoptotic germinal center (GC) B cells. (iv) They consistently develop bi- or multinucleated Reed-Sternberg cells from mononuclear Hodgkin cells. (v) They show constitutive activation of numerous signaling pathways. Recent studies have begun to uncover the basis of these specific features of cHL: HRS cells actively orchestrate their complex microenvironment and attract many distinct subsets of immune cells into the affected tissues, to support their survival and proliferation, and to create an immunosuppressive environment. Reed-Sternberg cells are generated by incomplete cytokinesis and refusion of Hodgkin cells. Epstein-Barr virus (EBV) plays a major role in the rescue of crippled GC B cells from apoptosis and hence is a main player in early steps of lymphomagenesis of EBV+ cHL cases. The analysis of the landscape of genetic lesions in HRS cells so far did not reveal any highly recurrent HRS cell-specific lesions, but major roles of genetic lesions in members of the NF-κB and JAK/STAT pathways and of factors of immune evasion. It is perhaps the combination of the genetic lesions and the peculiar cellular origin of HRS cells that are disease defining. A combination of such genetic lesions and multiple cellular interactions with cells in the microenvironment causes the constitutive activation of many signaling pathways, often interacting in complex fashions. In nodular lymphocyte predominant Hodgkin lymphoma, the GC B cell-derived tumor cells have largely retained their typical GC B-cell expression program and follicular microenvironment. For IgD-positive cases, bacterial antigen triggering has recently been implicated in early stages of its pathogenesis.
Collapse
Affiliation(s)
- Marc A Weniger
- Medical Faculty, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Ralf Küppers
- Medical Faculty, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
14
|
Gamboa-Cedeño AM, Díaz M, Cristaldo N, Otero V, Schutz N, Fantl D, Cugliari S, Zerga M, Rojas-Bilbao E, Jauk F, García Rivello H, Nuñez M, Ranuncolo SM. Apoptotic regulator BCL-2 blockade as a potential therapy in classical Hodgkin Lymphoma. Life Sci 2021; 268:118979. [PMID: 33421528 DOI: 10.1016/j.lfs.2020.118979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 12/22/2022]
Abstract
The challenge in classical Hodgkin Lymphoma (cHL) management is the 30-40% of refractory/relapsed cases. AIMS The aim of this work was to determine whether NIK and BCL-2 could be useful as prognosis biomarkers in cHL. In addition, we evaluated BCL-2 as a directed-therapy in cHL cell lines using venetoclax. MAIN METHODS We evaluated NIK and BCL-2 expression in 112 untreated cHL patients' lymph-node biopsies by immunohistochemistry. cHL cell lines were treated with venetoclax alone or combined with vincristine or doxorubicin. Cell viability, metabolic activity and cell death were analyzed by trypan-blue exclusion method, MTS assay and FDA/IP staining respectively. KEY FINDINGS No correlation between NIK or BCL-2 expression and the majority of the clinical parameters was found. Patients with ≥60% BCL-2+ HRS-cells had a shorter disease-free survival (DFS) and overall survival (OS) (p = 0.002, p = 0.02 respectively). A decision tree analysis, in a 30 patients subgroup, showed that patients with <60% NIK+ HRS-cells but with ≥60% BCL-2+ HRS-cells had a worse outcome in terms of DFS and OS. These parameters performed better as prognosis indicators as compared to the diagnosis bone marrow status. Human cHL cell lines U-H01, KM-H2, L1236, SUPHD1, L540 showed sensitivity to venetoclax. The co-treatment effect of venetoclax and vincristine or doxorubicin on cell viability was diverse depending on the cell line evaluated. SIGNIFICANCE BCL-2 should be considered as a prognosis biomarker as well as a potential new therapeutic target in cHL. We report for the first time the cytotoxic effect of venetoclax in human cHL cell lines.
Collapse
Affiliation(s)
| | - Mariángeles Díaz
- Research Area, Institute of Oncology "A.H. Roffo", School of Medicine (FMED), Universidad de Buenos Aires, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Argentina
| | - Nancy Cristaldo
- Hematology, Italian Hospital of Buenos Aires (HIBA), Buenos Aires, Argentina
| | - Victoria Otero
- Hematology, Italian Hospital of Buenos Aires (HIBA), Buenos Aires, Argentina
| | - Natalia Schutz
- Hematology, Italian Hospital of Buenos Aires (HIBA), Buenos Aires, Argentina
| | - Dorotea Fantl
- Hematology, Italian Hospital of Buenos Aires (HIBA), Buenos Aires, Argentina
| | - Silvana Cugliari
- Hematology, Institute of Oncology "A.H. Roffo", School of Medicine (FMED), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marta Zerga
- Hematology, Institute of Oncology "A.H. Roffo", School of Medicine (FMED), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Erica Rojas-Bilbao
- Pathology, Institute of Oncology "A.H. Roffo", School of Medicine (FMED), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico Jauk
- Sequencing Laboratory, Italian Hospital of Buenos Aires (HIBA), Buenos Aires, Argentina
| | | | - Myriam Nuñez
- School of Pharmacy and Biochemistry (FFyB), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Stella Maris Ranuncolo
- Traslational Medicine and Biomedical Engineering Institute (IMTIB), Buenos Aires, Argentina; Research Area, Institute of Oncology "A.H. Roffo", School of Medicine (FMED), Universidad de Buenos Aires, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Argentina.
| |
Collapse
|
15
|
Agilinko J, Gomati A, Bashat G, Shakeel M. Tracheo-oesophageal groove Hodgkin's lymphoma presenting as stridor: a diagnostic challenge. BMJ Case Rep 2021; 14:14/1/e238271. [PMID: 33408107 PMCID: PMC7789041 DOI: 10.1136/bcr-2020-238271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A 38-year-old male patient presented to the ear, nose and throat department with shortness of breath over last 2 months. The CT scan of the neck and chest revealed a 3.3×3 cm tumour behind the right thyroid lobe extending into the tracheo-oesophageal (TO) groove with tracheal compression. The ultrasound scan of the neck and targeted fine needle aspiration followed by core biopsy raised a suspicion of Hodgkin's lymphoma. The patient underwent a right hemithyroidectomy and incisional biopsy of the right TO groove tumour. The histology confirmed a Hasenclever's three nodular sclerosing Hodgkin's lymphoma for which he received adjuvant chemotherapy. An incidental pT1a pN0 thyroid papillary microcarcinoma in the adjacent thyroid parenchyma was completely excised. This represents a case of TO Hodgkin's lymphoma, of which there are no current published case reports. We aim to raise awareness about this rare condition by sharing the diagnostic work up and successful management in a multidisciplinary team setting.
Collapse
Affiliation(s)
- Joshua Agilinko
- Department of Otolaryngology-Head and Neck Surgery, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Anas Gomati
- Department of Otolaryngology-Head and Neck Surgery, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Ghada Bashat
- Department of Otolaryngology-Head and Neck Surgery, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Muhammad Shakeel
- Department of Otolaryngology-Head and Neck Surgery, Aberdeen Royal Infirmary, Aberdeen, UK
| |
Collapse
|
16
|
Molecular Pathogenesis of Hodgkin Lymphoma: Past, Present, Future. Int J Mol Sci 2020; 21:ijms21186623. [PMID: 32927751 PMCID: PMC7554683 DOI: 10.3390/ijms21186623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Our understanding of the tumorigenesis of classical Hodgkin lymphoma (cHL) and the formation of Reed–Sternberg cells (RS-cells) has evolved drastically in the last decades. More recently, a better characterization of the signaling pathways and the cellular interactions at play have paved the way for new targeted therapy in the hopes of improving outcomes. However, important gaps in knowledge remain that may hold the key for significant changes of paradigm in this lymphoma. Here, we discuss the past, present, and future of cHL, and review in detail the more recent discoveries pertaining to genetic instability, anti-apoptotic signaling pathways, the tumoral microenvironment, and host-immune system evasion in cHL.
Collapse
|
17
|
Abstract
Hodgkin lymphomas (HLs) are lymphoid neoplasms uniquely characterized by a paucity of neoplastic cells embedded in a supportive heterogenous cellular microenvironment. Although first described in the 19th century, systematic biological understanding of HLs has been hindered due to the challenges presented in studying the complex tumor microenvironment and scarce tumorigenic cells. Recent advances in single-cell isolation and characterization, sensitive mutational analytic tools, and multiplex immunohistochemical strategies have allowed further advances in understanding the development and progression of HL. Here we provide a current update on the chromosomal and mutational abnormalities seen in HL, the impact of Epstein-Barr virus infection on driving a subset of HLs, and the possibility of disease monitoring via high-sensitivity detection of genetic aberrations. We also discuss recent developments in understanding the intricate microenvironment through intercellular cross-talk, and describe novel potential biomarkers to aid in distinction of HL from other overlapping entities.
Collapse
|
18
|
Ou A, Sumrall A, Phuphanich S, Spetzler D, Gatalica Z, Xiu J, Michelhaugh S, Brenner A, Pandey M, Kesari S, Korn WM, Mittal S, Westin J, Heimberger AB. Primary CNS lymphoma commonly expresses immune response biomarkers. Neurooncol Adv 2020; 2:vdaa018. [PMID: 32201861 PMCID: PMC7067145 DOI: 10.1093/noajnl/vdaa018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Primary central nervous system lymphoma (PCNSL) is rare and there is limited genomic and immunological information available. Incidental clinical and radiographic responses have been reported in PCNSL patients treated with immune checkpoint inhibitors. Materials and Methods To genetically characterize and ascertain if the majority of PCNSL patients may potentially benefit from immune checkpoint inhibitors, we profiled 48 subjects with PCNSL from 2013 to 2018 with (1) next-generation sequencing to detect mutations, gene amplifications, and microsatellite instability (MSI); (2) RNA sequencing to detect gene fusions; and (3) immunohistochemistry to ascertain PD-1 and PD-L1 expression. Tumor mutational burden (TMB) was calculated using somatic nonsynonymous missense mutations. Results High PD-L1 expression (>5% staining) was seen in 18 patients (37.5%), and intermediate expression (1-5% staining) was noted in 14 patients (29.2%). Sixteen patients (33.3%) lacked PD-L1 expression. PD-1 expression (>1 cell/high-power field) was seen in 12/14 tumors (85.7%), uncorrelated with PD-L1 expression. TMB of greater than or equal to 5 mutations per megabase (mt/Mb) occurred in 41/42 tumors, with 19% (n = 8) exhibiting high TMB (≥17 mt/Mb), 71.4% (n = 30) exhibiting intermediate TMB (7-16 mt/Mb), and 9.5% (n = 4) exhibiting low TMB (≤6 mt/Mb). No samples had MSI. Twenty-six genes showed mutations, most frequently in MYD88 (34/42, 81%), CD79B (23/42, 55%), and PIM1 (23/42, 55%). Among 7 cases tested with RNA sequencing, an ETV6-IGH fusion was found. Overall, 18/48 samples expressed high PD-L1 and 38/42 samples expressed intermediate to high TMB. Conclusions Based on TMB biomarker expression, over 90% of PCNSL patients may benefit from the use of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Alexander Ou
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | - Joanne Xiu
- Caris Life Sciences, Phoenix, Arizona, USA
| | - Sharon Michelhaugh
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine and Carilion Clinic, Roanoke, Virginia, USA
| | - Andrew Brenner
- University of Texas at San Antonio, San Antonio, Texas, USA
| | - Manjari Pandey
- Department of Medical Oncology, West Cancer Center and Research Institute, Memphis, Tennessee, USA
| | - Santosh Kesari
- John Wayne Cancer Institute, Santa Monica, California, USA
| | - W Michael Korn
- Caris Life Sciences, Phoenix, Arizona, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| | - Sandeep Mittal
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine and Carilion Clinic, Roanoke, Virginia, USA
| | - Jason Westin
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Amy B Heimberger
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
19
|
Mohamed O, El Bastawisy A, Allahlobi N, Abdellateif MS, Zekri ARN, Shaarawy S, Korany Z, Mohanad M, Bahnassy AA. The role of CD68+ macrophage in classical Hodgkin lymphoma patients from Egypt. Diagn Pathol 2020; 15:10. [PMID: 32019558 PMCID: PMC7001371 DOI: 10.1186/s13000-019-0912-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/06/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND CD68+ tumor-associated macrophages (TAM) play an important role in the progression of classical Hodgkin lymphoma (cHL). We assessed the role of CD20 and CD68 + TAM in a cohort of cHL patients from Egypt and correlated the number of CD68 + cells with patients' characteristics, response to treatment, overall and progression free survival rates (OS & PFS). METHODS CD20 expression and CD68 + TAM numbers were assessed in representative tumor tissues obtained from 81 cHL patients using flowcytometry (FCM), immunohistochemistry (IHC), and Rt-PCR techniques. RESULTS The expression levels of CD68 protein by IHC was high in 27 (33.3%), moderate in 15 (18.5%), low in 15 (18.5%), and negative in 24 (29.6%) patients (p = 0.13). CD68-mRNA expression was high in 43/81(53.1%), and low in 38(46.9%) patients (p = 0.6). The number of CD68 + TAM (by FCM) was low (< 20 cells) in 42/81 (51.9%), and high (≥20 cells) in 39/81 (48.1%) patients (p = 0.74). CD68 expression (by FCM, IHC& Rt-PCR) associated significantly with poor response to treatment, decreased CD20 expression, reduced OS and PFS rates (p < 0.001 for all). CD68 expression (by Rt-PCR only) associated significantly with advanced disease stage (p = 0.04). The age of the patients, high CD20 expression & high CD68+ macrophage number were independent prognostic factors for OS (p= 0.02, p = 0.008 & p = 0.009; respectively). However, the age of the patient, high CD20, and high CD68+ macrophage expression (by FCM&IHC) were independent prognostic factors for DFS (p. = 0.004, p. = 0.01, p. = 0.007 and p. = 0.01; respectively). CONCLUSION CD68 + TAM expression (by Rt-PCR, FCM and/or IHC) can identify patients with poor response to treatment and reduced survival rates (OS& PFS). Assessment of CD68 + positive macrophages by FCM is superior to other methods (Rt-PCR and IHC) as a prognostic factor for DFS and OS rates.
Collapse
Affiliation(s)
- Osama Mohamed
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, 11976, Egypt
| | - Ahmed El Bastawisy
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, 11976, Egypt
| | - Nasr Allahlobi
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, 11976, Egypt
| | - Mona S Abdellateif
- Medical Biochemistry and molecular biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 11976, Egypt
| | - Abdel Rahman N Zekri
- Molecular Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 11976, Egypt
| | - Sabry Shaarawy
- Medical Biochemistry and molecular biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 11976, Egypt
| | - Zeinab Korany
- Medical Biochemistry and molecular biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 11976, Egypt
| | - Marwa Mohanad
- Biochemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th October, Cairo, 12945, Egypt
| | - Abeer A Bahnassy
- Pathology Department, National Cancer Institute, Cairo University, Cairo, 11976, Egypt.
| |
Collapse
|
20
|
Zaguia N, Laplagne E, Colicchio B, Cariou O, Al Jawhari M, Heidingsfelder L, Hempel WM, Jrad BBH, Jeandidier E, Dieterlen A, Carde P, Voisin P, M’kacher R. A new tool for genotoxic risk assessment: Reevaluation of the cytokinesis-block micronucleus assay using semi-automated scoring following telomere and centromere staining. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 850-851:503143. [DOI: 10.1016/j.mrgentox.2020.503143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/14/2022]
|
21
|
Record J, Sendel A, Kritikou JS, Kuznetsov NV, Brauner H, He M, Nagy N, Oliveira MMS, Griseti E, Haase CB, Dahlström J, Boddul S, Wermeling F, Thrasher AJ, Liu C, Andersson J, Claesson HE, Winqvist O, Burns SO, Björkholm M, Westerberg LS. An intronic deletion in megakaryoblastic leukemia 1 is associated with hyperproliferation of B cells in triplets with Hodgkin lymphoma. Haematologica 2019; 105:1339-1350. [PMID: 31582539 PMCID: PMC7193474 DOI: 10.3324/haematol.2019.216317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/26/2019] [Indexed: 11/09/2022] Open
Abstract
Megakaryoblastic leukemia 1 (MKL1) is a coactivator of serum response factor and together they regulate transcription of actin cytoskeleton genes. MKL1 is associated with hematologic malignancies and immunodeficiency, but its role in B cells is unexplored. Here we examined B cells from monozygotic triplets with an intronic deletion in MKL1, two of whom had been previously treated for Hodgkin lymphoma (HL). To investigate MKL1 and B-cell responses in the pathogenesis of HL, we generated Epstein-Barr virus-transformed lymphoblastoid cell lines from the triplets and two controls. While cells from the patients with treated HL had a phenotype close to that of the healthy controls, cells from the undiagnosed triplet had increased MKL1 mRNA, increased MKL1 protein, and elevated expression of MKL1-dependent genes. This profile was associated with elevated actin content, increased cell spreading, decreased expression of CD11a integrin molecules, and delayed aggregation. Moreover, cells from the undiagnosed triplet proliferated faster, displayed a higher proportion of cells with hyperploidy, and formed large tumors in vivo This phenotype was reversible by inhibiting MKL1 activity. Interestingly, cells from the triplet treated for HL in 1985 contained two subpopulations: one with high expression of CD11a that behaved like control cells and the other with low expression of CD11a that formed large tumors in vivo similar to cells from the undiagnosed triplet. This implies that pre-malignant cells had re-emerged a long time after treatment. Together, these data suggest that dysregulated MKL1 activity participates in B-cell transformation and the pathogenesis of HL.
Collapse
Affiliation(s)
- Julien Record
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Anton Sendel
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Joanna S Kritikou
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Nikolai V Kuznetsov
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Hanna Brauner
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Minghui He
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Noemi Nagy
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Mariana M S Oliveira
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Elena Griseti
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Christoph B Haase
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Jenny Dahlström
- Department of Medicine Solna, Karolinska University Hospital, Stockholm, Sweden
| | - Sanjaykumar Boddul
- Department of Medicine Solna, Karolinska University Hospital, Stockholm, Sweden
| | - Fredrik Wermeling
- Department of Medicine Solna, Karolinska University Hospital, Stockholm, Sweden
| | | | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - John Andersson
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Hans-Erik Claesson
- Department of Medicine Solna, Karolinska University Hospital, Stockholm, Sweden
| | - Ola Winqvist
- Department of Medicine Solna, Karolinska University Hospital, Stockholm, Sweden
| | - Siobhan O Burns
- Institute of Immunity and Transplantation, University College London, London, UK.,Department of Immunology, Royal Free London NHS Foundation Trust, London, UK
| | - Magnus Björkholm
- Department of Medicine Solna, Karolinska University Hospital, Stockholm, Sweden
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
M'kacher R, Junker S, Jeandidier E, Carde P. Letter to the editor of environmental and molecular mutagenesis: In regard to Ramos et al. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:385-386. [PMID: 30851116 DOI: 10.1002/em.22282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Affiliation(s)
| | - Steffen Junker
- Institute of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Eric Jeandidier
- Department of Genetic, Groupe Hospitalier de la Région de Mulhouse Sud-Alsace, Mulhouse, France
| | - Patrice Carde
- Department of Medicine, Gustave Roussy Cancer Campus, University Paris-Saclay, Villejuif, France
| |
Collapse
|
23
|
Frias S, Ramos S, Salas C, Molina B, Sánchez S, Rivera-Luna R. Nonclonal Chromosome Aberrations and Genome Chaos in Somatic and Germ Cells from Patients and Survivors of Hodgkin Lymphoma. Genes (Basel) 2019; 10:genes10010037. [PMID: 30634664 PMCID: PMC6357137 DOI: 10.3390/genes10010037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/10/2018] [Accepted: 01/04/2019] [Indexed: 12/27/2022] Open
Abstract
Anticancer regimens for Hodgkin lymphoma (HL) patients include highly genotoxic drugs that have been very successful in killing tumor cells and providing a 90% disease-free survival at five years. However, some of these treatments do not have a specific cell target, damaging both cancerous and normal cells. Thus, HL survivors have a high risk of developing new primary cancers, both hematologic and solid tumors, which have been related to treatment. Several studies have shown that after treatment, HL patients and survivors present persistent chromosomal instability, including nonclonal chromosomal aberrations. The frequency and type of chromosomal abnormalities appear to depend on the type of therapy and the cell type examined. For example, MOPP chemotherapy affects hematopoietic and germ stem cells leading to long-term genotoxic effects and azoospermia, while ABVD chemotherapy affects transiently sperm cells, with most of the patients showing recovery of spermatogenesis. Both regimens have long-term effects in somatic cells, presenting nonclonal chromosomal aberrations and genomic chaos in a fraction of noncancerous cells. This is a source of karyotypic heterogeneity that could eventually generate a more stable population acquiring clonal chromosomal aberrations and leading towards the development of a new cancer.
Collapse
Affiliation(s)
- Sara Frias
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Cd. De Mexico, P.O. Box 04530, Mexico.
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de Mexico, Cd. De Mexico, P.O. Box 04510, Mexico.
| | - Sandra Ramos
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Cd. De Mexico, P.O. Box 04530, Mexico.
| | - Consuelo Salas
- Laboratorio de Genética y Cáncer, Instituto Nacional de Pediatría, Cd. De Mexico, P.O. Box 04530, Mexico.
| | - Bertha Molina
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Cd. De Mexico, P.O. Box 04530, Mexico.
| | - Silvia Sánchez
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Cd. De Mexico, P.O. Box 04530, Mexico.
| | - Roberto Rivera-Luna
- Subdirección de Hemato-Oncología, Instituto Nacional de Pediatría, Cd. De Mexico, P.O. Box 04530, Mexico.
| |
Collapse
|
24
|
Liu S, Zhao Y, Li M, Xi J, Shi B, Zhu H. Simultaneous Hodgkin lymphoma and BRAFV600E-positive papillary thyroid carcinoma: A case report. Medicine (Baltimore) 2019; 98:e14180. [PMID: 30653166 PMCID: PMC6370130 DOI: 10.1097/md.0000000000014180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
RATIONALE Papillary thyroid carcinoma (PTC) is the most common endocrine malignancy. However, the simultaneous occurrence of PTC and Hodgkin Lymphoma (HL) was rarely reported. PATIENT CONCERNS We present a case of simultaneous BRAF-positive PTC and HL in a 17-year-old female. DIAGNOSIS She was referred to our clinic with a painless lump in her left neck. A highly suspicious thyroid nodule and multiple enlarged lymph nodes in the neck were found by ultrasonography examination. The suspicious nodule was diagnosed as PTC by fine needle aspiration cytology. INTERVENTIONS A total thyroidectomy with bilateral lymph node dissection was performed and the microscopic examination revealed a 2-cm PTC with BRAF mutation and HL (mixed cellularity) in the bilateral lymph nodes. PTC was postoperatively considered as T1bN0M0. Levothyroxine (125 μg/d) was administered to the patient for thyrotropin suppression therapy. Then the patient was referred to the Department of Hematology to receive 4 cycles of ABVD followed by 30 Gy involved-site radiotherapy and radioactive iodine (RAI) therapy for thyroid cancer. OUTCOMES After two cycles of ABVD, multiple enlarged lymph nodes showed a significant response to the chemotherapy in the patient. LESSONS Simultaneous HL and BRAF-positive PTC is extremely rare. Biopsy of the suspicious lymph nodes should be performed to confirm malignancy metastasizing from PTC or other lesions. Similarly, in HL patients with suspicious thyroid nodule, ultrasound-guided fine needle aspiration of thyroid nodule should be performed to exclude thyroid malignancy.
Collapse
Affiliation(s)
| | | | - Miaojing Li
- Department of Hematology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, PR China
| | - Jieying Xi
- Department of Hematology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, PR China
| | | | - Huachao Zhu
- Department of Hematology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, PR China
| |
Collapse
|
25
|
NKL homeobox gene NKX2-2 is aberrantly expressed in Hodgkin lymphoma. Oncotarget 2018; 9:37480-37496. [PMID: 30680064 PMCID: PMC6331023 DOI: 10.18632/oncotarget.26459] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/29/2018] [Indexed: 11/25/2022] Open
Abstract
NKL homeobox genes encode basic transcriptional regulators of cell and tissue differentiation. Recently, we described a hematopoietic NKL-code comprising nine specific NKL homeobox genes expressed in normal hematopoietic stem cells, lymphoid progenitors and during lymphopoiesis, highlighting their physiological role in the development of T-, B- and NK-cells. Here, we identified aberrant expression of the non-hematopoietic neural NKL homeobox gene NKX2-2 in about 12% of both, classical Hodgkin lymphoma (HL) and nodular lymphocyte predominant (NLP) HL patients. The NKX2-2 expressing NLPHL-derived cell line DEV served as a model by analysing chromosomal configurations and expression profiling data to reveal activating mechanisms and downstream targets of this developmental regulator. While excluding chromosomal rearrangements at the locus of NKX2-2 we identified t(3;14)(p21;q32) resulting in overexpression of the IL17 receptor gene IL17RB via juxtaposition with the IGH-locus. SiRNA-mediated knockdown experiments demonstrated that IL17RB activated NKX2-2 transcription. Overexpression of IL17RB-cofactor DAZAP2 via chromosomal gain of 12q13 and deletion of its proteasomal inhibitor SMURF2 at 17q24 supported expression of NKX2-2. IL17RB activated transcription factors FLI1 and FOXG1 which in turn mediated NKX2-2 expression. In addition, overexpressed chromatin-modulator AUTS2 contributed to NKX2-2 activation as well. Downstream analyses indicated that NKX2-2 inhibits transcription of lymphoid NKL homeobox gene MSX1 and activates expression of basic helix-loop-helix factor NEUROD1 which may disturb B-cell differentiation processes via reported interaction with TCF3/E2A. Taken together, our data reveal ectopic activation of a neural gene network in HL placing NKX2-2 at its hub, highlighting a novel oncogenic impact of NKL homeobox genes in B-cell malignancies.
Collapse
|
26
|
M'kacher R, Frenzel M, Al Jawhari M, Junker S, Cuceu C, Morat L, Bauchet AL, Stimmer L, Lenain A, Dechamps N, Hempel WM, Pottier G, Heidingsfelder L, Laplagne E, Borie C, Oudrhiri N, Jouni D, Bennaceur-Griscelli A, Colicchio B, Dieterlen A, Girinsky T, Boisgard R, Bourhis J, Bosq J, Mehrling T, Jeandidier E, Carde P. Establishment and Characterization of a Reliable Xenograft Model of Hodgkin Lymphoma Suitable for the Study of Tumor Origin and the Design of New Therapies. Cancers (Basel) 2018; 10:cancers10110414. [PMID: 30384446 PMCID: PMC6265845 DOI: 10.3390/cancers10110414] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 01/16/2023] Open
Abstract
To identify the cells responsible for the initiation and maintenance of Hodgkin lymphoma (HL) cells, we have characterized a subpopulation of HL cells grown in vitro and in vivo with the aim of establishing a reliable and robust animal model for HL. To validate our model, we challenged the tumor cells in vivo by injecting the alkylating histone-deacetylase inhibitor, EDO-S101, a salvage regimen for HL patients, into xenografted mice. Methodology: Blood lymphocytes from 50 HL patients and seven HL cell lines were used. Immunohistochemistry, flow cytometry, and cytogenetics analyses were performed. The in vitro and in vivo effects of EDO-S101 were assessed. Results: We have successfully determined conditions for in vitro amplification and characterization of the HL L428-c subline, containing a higher proportion of CD30−/CD15− cells than the parental L428 cell line. This subline displayed excellent clonogenic potential and reliable reproducibility upon xenografting into immunodeficient NOD-SCID-gamma (−/−)(NSG) mice. Using cell sorting, we demonstrate that CD30−/CD15− subpopulations can gain the phenotype of the L428-c cell line in vitro. Moreover, the human cells recovered from the seventh week after injection of L428-c cells into NSG mice were small cells characterized by a high frequency of CD30−/CD15− cells. Cytogenetic analysis demonstrated that they were diploid and showed high telomere instability and telomerase activity. Accordingly, chromosomal instability emerged, as shown by the formation of dicentric chromosomes, ring chromosomes, and breakage/fusion/bridge cycles. Similarly, high telomerase activity and telomere instability were detected in circulating lymphocytes from HL patients. The beneficial effect of the histone-deacetylase inhibitor EDO-S101 as an anti-tumor drug validated our animal model. Conclusion: Our HL animal model requires only 103 cells and is characterized by a high survival/toxicity ratio and high reproducibility. Moreover, the cells that engraft in mice are characterized by a high frequency of small CD30−/CD15− cells exhibiting high telomerase activity and telomere dysfunction.
Collapse
Affiliation(s)
- Radhia M'kacher
- Radiobiology and Oncology Laboratory, CEA, iRCM, University Paris-Saclay, 92 265 Fontenay aux Roses, France.
- Cell Environment, Oncology Section, 75020 Paris, France.
| | - Monika Frenzel
- Radiobiology and Oncology Laboratory, CEA, iRCM, University Paris-Saclay, 92 265 Fontenay aux Roses, France.
| | - Mustafa Al Jawhari
- Radiobiology and Oncology Laboratory, CEA, iRCM, University Paris-Saclay, 92 265 Fontenay aux Roses, France.
| | - Steffen Junker
- Institute of Biomedicine, University of Aarhus, DK-8000 Aarhus C, Denmark.
| | - Corina Cuceu
- Radiobiology and Oncology Laboratory, CEA, iRCM, University Paris-Saclay, 92 265 Fontenay aux Roses, France.
| | - Luc Morat
- Radiobiology and Oncology Laboratory, CEA, iRCM, University Paris-Saclay, 92 265 Fontenay aux Roses, France.
| | - Anne-Laure Bauchet
- Platform for Experimental Pathology PathEX/CRC MIRCen/CEA-INSERM, University Paris-Saclay, 92265 Fontenay aux Rroses, France.
| | - Lev Stimmer
- Platform for Experimental Pathology PathEX/CRC MIRCen/CEA-INSERM, University Paris-Saclay, 92265 Fontenay aux Rroses, France.
| | - Aude Lenain
- Radiobiology and Oncology Laboratory, CEA, iRCM, University Paris-Saclay, 92 265 Fontenay aux Roses, France.
| | - Nathalie Dechamps
- Platform for Cell Sorting, CEA, iRCM, 92265 Fontenay aux Roses, France.
| | - William M Hempel
- Radiobiology and Oncology Laboratory, CEA, iRCM, University Paris-Saclay, 92 265 Fontenay aux Roses, France.
| | - Geraldine Pottier
- Laboratoire d'Imagerie Moléculaire Expérimentale Groupe d'Imagerie du Petit Animal CEA/DSV/I2BM/SHFJ/U1023, University Paris-Saclay, 91400 Orsay, France.
| | | | | | - Claire Borie
- APHP-Hopital Paul Brousse Université Paris Sud/ESteam Paris Inserm UMR 935, 94800 Villejuif, France.
| | - Noufissa Oudrhiri
- APHP-Hopital Paul Brousse Université Paris Sud/ESteam Paris Inserm UMR 935, 94800 Villejuif, France.
| | - Dima Jouni
- APHP-Hopital Paul Brousse Université Paris Sud/ESteam Paris Inserm UMR 935, 94800 Villejuif, France.
| | | | - Bruno Colicchio
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 68093 Mulhouse, France.
| | - Alain Dieterlen
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 68093 Mulhouse, France.
| | - Theodore Girinsky
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, University Paris-Saclay, 94805 Villejuif, France.
| | - Raphael Boisgard
- Laboratoire d'Imagerie Moléculaire Expérimentale Groupe d'Imagerie du Petit Animal CEA/DSV/I2BM/SHFJ/U1023, University Paris-Saclay, 91400 Orsay, France.
| | - Jean Bourhis
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, University Paris-Saclay, 94805 Villejuif, France.
| | - Jacques Bosq
- Departement of Anapathology, Gustave Roussy Cancer Campus, University Paris-Saclay, 94805 Vilejuif, France.
| | | | - Eric Jeandidier
- Department of Genetic, Groupe Hospitalier de la Région de Mulhouse Sud-Alsace, 68093 Mulhouse, France.
| | - Patrice Carde
- Department of Medicine, Gustave Roussy Cancer Campus, University Paris-Saclay, 94805 Villejuif, France.
| |
Collapse
|
27
|
Ramos S, Navarrete-Meneses P, Molina B, Cervantes-Barragán DE, Lozano V, Gallardo E, Marchetti F, Frias S. Genomic chaos in peripheral blood lymphocytes of Hodgkin's lymphoma patients one year after ABVD chemotherapy/radiotherapy. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:755-768. [PMID: 30260497 DOI: 10.1002/em.22216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Hodgkin's lymphoma (HL) is a lymphoid malignancy representing 5% of all cancers in children, 16% in adolescents, and 30-40% of all malignant lymphomas and has a survival rate of ~95% at 10 years. One of the most common treatment schemes uses a cocktail of genotoxic agents including adriamycin, bleomycin, vinblastine, and dacarbazine (ABVD) with or without radiotherapy. We investigated the occurrence of chromosomal damage in peripheral blood lymphocytes from five patients diagnosed with HL who provided samples before (BT), during chemotherapy (DT) and ~1 year after ABVD chemotherapy/radiotherapy (AT). Five healthy subjects served as controls. Chromosomal abnormalities were evaluated by multicolor fluorescence in situ hybridization. The average frequencies of structural chromosomal aberrations in HL samples were 0.11, 0.22, and 0.96 per cell in BT, DT, and AT samples, respectively. These frequencies were significantly different (P < 0.0001) with respect to control subjects (0.02 per cell). Interestingly, the highest frequency of structural damage, including genomic chaos and nonclonal abnormalities, was observed in the AT samples indicating that new aberrations were continuously produced. Rejoined structural chromosomal aberrations were the most common type of aberrations, although aneuploidies were also significantly increased. Finally, we found several chromosomal abnormalities linked to cancer secondary to treatment in all five HL patients. Our results show that ABVD chemotherapy plus radiotherapy is inducing genomic chaos in vivo; moreover, the persistence of genomic instability in the hematopoietic stem cells from HL patients may play a role in the occurrence of secondary cancer that is observed in 5-20% of HL patients. Environ. Mol. Mutagen. 59:755-768, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sandra Ramos
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México, Mexico
| | | | - Bertha Molina
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México, Mexico
| | | | - Valentn Lozano
- Departamento de Hematología, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Emma Gallardo
- Servicio de Hematología, Hospital General de México, Ciudad de México, Mexico
| | | | - Sara Frias
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México, Mexico
- Departamento de Medicina Genómica y Toxicología ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
28
|
|
29
|
Independent Mechanisms Lead to Genomic Instability in Hodgkin Lymphoma: Microsatellite or Chromosomal Instability †. Cancers (Basel) 2018; 10:cancers10070233. [PMID: 30011886 PMCID: PMC6071189 DOI: 10.3390/cancers10070233] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 12/19/2022] Open
Abstract
Background: Microsatellite and chromosomal instability have been investigated in Hodgkin lymphoma (HL). Materials and Methods: We studied seven HL cell lines (five Nodular Sclerosis (NS) and two Mixed Cellularity (MC)) and patient peripheral blood lymphocytes (100 NS-HL and 23 MC-HL). Microsatellite instability (MSI) was assessed by PCR. Chromosomal instability and telomere dysfunction were investigated by FISH. DNA repair mechanisms were studied by transcriptomic and molecular approaches. Results: In the cell lines, we observed high MSI in L428 (4/5), KMH2, and HDLM2 (3/5), low MSI in L540, L591, and SUP-HD1, and none in L1236. NS-HL cell lines showed telomere shortening, associated with alterations of nuclear shape. Small cells were characterized by telomere loss and deletion, leading to chromosomal fusion, large nucleoplasmic bridges, and breakage/fusion/bridge (B/F/B) cycles, leading to chromosomal instability. The MC-HL cell lines showed substantial heterogeneity of telomere length. Intrachromosmal double strand breaks induced dicentric chromosome formation, high levels of micronucleus formation, and small nucleoplasmic bridges. B/F/B cycles induced complex chromosomal rearrangements. We observed a similar pattern in circulating lymphocytes of NS-HL and MC-HL patients. Transcriptome analysis confirmed the differences in the DNA repair pathways between the NS and MC cell lines. In addition, the NS-HL cell lines were radiosensitive and the MC-cell lines resistant to apoptosis after radiation exposure. Conclusions: In mononuclear NS-HL cells, loss of telomere integrity may present the first step in the ongoing process of chromosomal instability. Here, we identified, MSI as an additional mechanism for genomic instability in HL.
Collapse
|
30
|
M'kacher R, Cuceu C, Al Jawhari M, Morat L, Frenzel M, Shim G, Lenain A, Hempel WM, Junker S, Girinsky T, Colicchio B, Dieterlen A, Heidingsfelder L, Borie C, Oudrhiri N, Bennaceur-Griscelli A, Moralès O, Renaud S, Van de Wyngaert Z, Jeandidier E, Delhem N, Carde P. The Transition between Telomerase and ALT Mechanisms in Hodgkin Lymphoma and Its Predictive Value in Clinical Outcomes. Cancers (Basel) 2018; 10:E169. [PMID: 29848986 PMCID: PMC6025489 DOI: 10.3390/cancers10060169] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/18/2018] [Accepted: 05/25/2018] [Indexed: 11/16/2022] Open
Abstract
Background: We analyzed telomere maintenance mechanisms (TMMs) in lymph node samples from HL patients treated with standard therapy. The TMMs correlated with clinical outcomes of patients. Materials and Methods: Lymph node biopsies obtained from 38 HL patients and 24 patients with lymphadenitis were included in this study. Seven HL cell lines were used as in vitro models. Telomerase activity (TA) was assessed by TRAP assay and verified through hTERT immunofluorescence expression; alternative telomere lengthening (ALT) was also assessed, along with EBV status. Results: Both TA and ALT mechanisms were present in HL lymph nodes. Our findings were reproduced in HL cell lines. The highest levels of TA were expressed in CD30-/CD15- cells. Small cells were identified with ALT and TA. Hodgkin and Reed Sternberg cells contained high levels of PML bodies, but had very low hTERT expression. There was a significant correlation between overall survival (p < 10-3), event-free survival (p < 10-4), and freedom from progression (p < 10-3) and the presence of an ALT profile in lymph nodes of EBV+ patients. Conclusion: The presence of both types of TMMs in HL lymph nodes and in HL cell lines has not previously been reported. TMMs correlate with the treatment outcome of EBV+ HL patients.
Collapse
Affiliation(s)
- Radhia M'kacher
- Laboratoire de Radiobiologie et d'Oncologie, IRCM/DSV/CEA, 92265 Fontenay aux Roses, France.
- Cell Environment, DNA Damages R&D, Oncology Section, 75020 Paris, France.
| | - Corina Cuceu
- Laboratoire de Radiobiologie et d'Oncologie, IRCM/DSV/CEA, 92265 Fontenay aux Roses, France.
| | - Mustafa Al Jawhari
- Laboratoire de Radiobiologie et d'Oncologie, IRCM/DSV/CEA, 92265 Fontenay aux Roses, France.
| | - Luc Morat
- Laboratoire de Radiobiologie et d'Oncologie, IRCM/DSV/CEA, 92265 Fontenay aux Roses, France.
| | - Monika Frenzel
- Laboratoire de Radiobiologie et d'Oncologie, IRCM/DSV/CEA, 92265 Fontenay aux Roses, France.
| | - Grace Shim
- Laboratoire de Radiobiologie et d'Oncologie, IRCM/DSV/CEA, 92265 Fontenay aux Roses, France.
| | - Aude Lenain
- Laboratoire de Radiobiologie et d'Oncologie, IRCM/DSV/CEA, 92265 Fontenay aux Roses, France.
| | - William M Hempel
- Laboratoire de Radiobiologie et d'Oncologie, IRCM/DSV/CEA, 92265 Fontenay aux Roses, France.
| | - Steffen Junker
- Institute of Biomedicine, University of Aarhus, DK-8000 Aarhus C, Denmark.
| | - Theodore Girinsky
- Department of Radiation Therapy, Gustave Roussy Cancer Campus, 94808 Villejuif, France.
| | - Bruno Colicchio
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 68093 Mulhouse, France.
| | - Alain Dieterlen
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 68093 Mulhouse, France.
| | | | - Claire Borie
- Université Paris Sud, Service d'hématologie moléculaire et cytogénétique Paul brousse CHU paris Sud, Inserm UMRS935, 94800 Villejuif, France.
| | - Noufissa Oudrhiri
- Université Paris Sud, Service d'hématologie moléculaire et cytogénétique Paul brousse CHU paris Sud, Inserm UMRS935, 94800 Villejuif, France.
| | - Annelise Bennaceur-Griscelli
- Université Paris Sud, Service d'hématologie moléculaire et cytogénétique Paul brousse CHU paris Sud, Inserm UMRS935, 94800 Villejuif, France.
| | - Olivier Moralès
- CNRS, Institut Pasteur de Lille, UMR 8161-Immunoregulation of Virus-induced Cancers Team, F-59000 Lille, France.
| | - Sarah Renaud
- CNRS, Institut Pasteur de Lille, UMR 8161-Immunoregulation of Virus-induced Cancers Team, F-59000 Lille, France.
| | - Zoé Van de Wyngaert
- CHRU Lille Service des Maladies du Sang, Hopital Huriez, 59000 Lille, France.
| | - Eric Jeandidier
- Service de génétique, Groupe hospitalier de la région de Mulhouse Sud-Alsace, 68093 Mulhouse, France.
| | - Nadira Delhem
- CNRS, Institut Pasteur de Lille, UMR 8161-Immunoregulation of Virus-induced Cancers Team, F-59000 Lille, France.
| | - Patrice Carde
- Department of Medicine, Gustave Roussy Cancer Campus, 94808 Villejuif, France.
| |
Collapse
|