1
|
Handschin C, Shalhoub H, Mazet A, Guyon C, Dusserre N, Boutet-Robinet E, Oliveira H, Guillermet-Guibert J. Biotechnological advances in 3D modeling of cancer initiation. Examples from pancreatic cancer research and beyond. Biofabrication 2025; 17:022008. [PMID: 40018875 DOI: 10.1088/1758-5090/adb51c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 02/12/2025] [Indexed: 03/01/2025]
Abstract
In recent years, biofabrication technologies have garnered significant attention within the scientific community for their potential to create advancedin vitrocancer models. While these technologies have been predominantly applied to model advanced stages of cancer, there exists a pressing need to develop pertinent, reproducible, and sensitive 3D models that mimic cancer initiation lesions within their native tissue microenvironment. Such models hold profound relevance for comprehending the intricacies of cancer initiation, to devise novel strategies for early intervention, and/or to conduct sophisticated toxicology assessments of putative carcinogens. Here, we will explain the pivotal factors that must be faithfully recapitulated when constructing these models, with a specific focus on early pancreatic cancer lesions. By synthesizing the current state of research in this field, we will provide insights into recent advances and breakthroughs. Additionally, we will delineate the key technological and biological challenges that necessitate resolution in future endeavors, thereby paving the way for more accurate and insightfulin vitrocancer initiation models.
Collapse
Affiliation(s)
- C Handschin
- Université de Bordeaux, Tissue Bioengineering - BioTis, INSERM U1026, Bordeaux, F-33000, France
- INSERM U1026, ART BioPrint, F-33000 Bordeaux, France
| | - H Shalhoub
- CRCT, Université de Toulouse, Inserm, CNRS, Centre de Recherches en Cancérologie de Toulouse, 2 av Hubert Curien, Toulouse, France
- Labex Toucan, 2 av Hubert Curien, Toulouse, France
| | - A Mazet
- Université de Bordeaux, Tissue Bioengineering - BioTis, INSERM U1026, Bordeaux, F-33000, France
- INSERM U1026, ART BioPrint, F-33000 Bordeaux, France
| | - C Guyon
- CRCT, Université de Toulouse, Inserm, CNRS, Centre de Recherches en Cancérologie de Toulouse, 2 av Hubert Curien, Toulouse, France
- Labex Toucan, 2 av Hubert Curien, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - N Dusserre
- Université de Bordeaux, Tissue Bioengineering - BioTis, INSERM U1026, Bordeaux, F-33000, France
- INSERM U1026, ART BioPrint, F-33000 Bordeaux, France
| | - E Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - H Oliveira
- Université de Bordeaux, Tissue Bioengineering - BioTis, INSERM U1026, Bordeaux, F-33000, France
- INSERM U1026, ART BioPrint, F-33000 Bordeaux, France
| | - J Guillermet-Guibert
- CRCT, Université de Toulouse, Inserm, CNRS, Centre de Recherches en Cancérologie de Toulouse, 2 av Hubert Curien, Toulouse, France
- Labex Toucan, 2 av Hubert Curien, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| |
Collapse
|
2
|
Pourali G, Donyadideh G, Mehrabadi S, Hamid F, Hassanian SM, Ferns GA, Khazaei M, Avan A. Clinical practice guidelines for interventional treatment of pancreatic cancer. RECENT ADVANCES IN NANOCARRIERS FOR PANCREATIC CANCER THERAPY 2024:345-373. [DOI: 10.1016/b978-0-443-19142-8.00008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
3
|
MALDI-MSI: A Powerful Approach to Understand Primary Pancreatic Ductal Adenocarcinoma and Metastases. Molecules 2022; 27:molecules27154811. [PMID: 35956764 PMCID: PMC9369872 DOI: 10.3390/molecules27154811] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer-related deaths are very commonly attributed to complications from metastases to neighboring as well as distant organs. Dissociate response in the treatment of pancreatic adenocarcinoma is one of the main causes of low treatment success and low survival rates. This behavior could not be explained by transcriptomics or genomics; however, differences in the composition at the protein level could be observed. We have characterized the proteomic composition of primary pancreatic adenocarcinoma and distant metastasis directly in human tissue samples, utilizing mass spectrometry imaging. The mass spectrometry data was used to train and validate machine learning models that could distinguish both tissue entities with an accuracy above 90%. Model validation on samples from another collection yielded a correct classification of both entities. Tentative identification of the discriminative molecular features showed that collagen fragments (COL1A1, COL1A2, and COL3A1) play a fundamental role in tumor development. From the analysis of the receiver operating characteristic, we could further advance some potential targets, such as histone and histone variations, that could provide a better understanding of tumor development, and consequently, more effective treatments.
Collapse
|
4
|
PTML Modeling for Pancreatic Cancer Research: In Silico Design of Simultaneous Multi-Protein and Multi-Cell Inhibitors. Biomedicines 2022; 10:biomedicines10020491. [PMID: 35203699 PMCID: PMC8962338 DOI: 10.3390/biomedicines10020491] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer (PANC) is a dangerous type of cancer that is a major cause of mortality worldwide and exhibits a remarkably poor prognosis. To date, discovering anti-PANC agents remains a very complex and expensive process. Computational approaches can accelerate the search for anti-PANC agents. We report for the first time two models that combined perturbation theory with machine learning via a multilayer perceptron network (PTML-MLP) to perform the virtual design and prediction of molecules that can simultaneously inhibit multiple PANC cell lines and PANC-related proteins, such as caspase-1, tumor necrosis factor-alpha (TNF-alpha), and the insulin-like growth factor 1 receptor (IGF1R). Both PTML-MLP models exhibited accuracies higher than 78%. Using the interpretation from one of the PTML-MLP models as a guideline, we extracted different molecular fragments desirable for the inhibition of the PANC cell lines and the aforementioned PANC-related proteins and then assembled some of those fragments to form three new molecules. The two PTML-MLP models predicted the designed molecules as potentially versatile anti-PANC agents through inhibition of the three PANC-related proteins and multiple PANC cell lines. Conclusions: This work opens new horizons for the application of the PTML modeling methodology to anticancer research.
Collapse
|
5
|
Cintas C, Douche T, Dantes Z, Mouton-Barbosa E, Bousquet MP, Cayron C, Therville N, Pont F, Ramos-Delgado F, Guyon C, Garmy-Susini B, Cappello P, Burlet-Schiltz O, Hirsch E, Gomez-Brouchet A, Thibault B, Reichert M, Guillermet-Guibert J. Phosphoproteomics Identifies PI3K Inhibitor-selective Adaptive Responses in Pancreatic Cancer Cell Therapy and Resistance. Mol Cancer Ther 2021; 20:2433-2445. [PMID: 34552006 DOI: 10.1158/1535-7163.mct-20-0981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/28/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022]
Abstract
The PI3K pathway is highly active in human cancers. The four class I isoforms of PI3K are activated by distinct mechanisms leading to a common downstream signaling. Their downstream redundancy is thought to be responsible for treatment failures of PI3K inhibitors. We challenged this concept, by mapping the differential phosphoproteome evolution in response to PI3K inhibitors with different isoform-selectivity patterns in pancreatic cancer, a disease currently without effective therapy. In this cancer, the PI3K signal was shown to control cell proliferation. We compared the effects of LY294002 that inhibit with equal potency all class I isoenzymes and downstream mTOR with the action of inhibitors with higher isoform selectivity toward PI3Kα, PI3Kβ, or PI3Kγ (namely, A66, TGX-221 and AS-252424). A bioinformatics global pathway analysis of phosphoproteomics data allowed us to identify common and specific signals activated by PI3K inhibitors supported by the biological data. AS-252424 was the most effective treatment and induced apoptotic pathway activation as well as the highest changes in global phosphorylation-regulated cell signal. However, AS-252424 treatment induced reactivation of Akt, therefore decreasing the treatment outcome on cell survival. Reversely, AS-252424 and A66 combination treatment prevented p-Akt reactivation and led to synergistic action in cell lines and patient organoids. The combination of clinically approved α-selective BYL-719 with γ-selective IPI-549 was more efficient than single-molecule treatment on xenograft growth. Mapping unique adaptive signaling responses to isoform-selective PI3K inhibition will help to design better combinative treatments that prevent the induction of selective compensatory signals.
Collapse
Affiliation(s)
- Célia Cintas
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France.,Labex TouCAN, Toulouse, France
| | - Thibault Douche
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France.,Labex TouCAN, Toulouse, France
| | - Zahra Dantes
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Center for Protein Assemblies (CPA), Technische Universität München, Garching, Germany.,German Cancer Consortium (DKTK), partner site Munich, Germany
| | - Emmanuelle Mouton-Barbosa
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Marie-Pierre Bousquet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Coralie Cayron
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France.,Labex TouCAN, Toulouse, France
| | - Nicole Therville
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France.,Labex TouCAN, Toulouse, France
| | - Frédéric Pont
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France
| | - Fernanda Ramos-Delgado
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France.,Labex TouCAN, Toulouse, France
| | - Camille Guyon
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France.,Labex TouCAN, Toulouse, France
| | | | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.,Molecular Biotechnology Center (MBC), Turin, Italy
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.,Molecular Biotechnology Center (MBC), Turin, Italy
| | - Anne Gomez-Brouchet
- IUCT-O, Institut Claudius Regaud, Hopitaux de Toulouse, Biobank, Toulouse, France
| | - Benoît Thibault
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France.,Labex TouCAN, Toulouse, France
| | - Maximilian Reichert
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Center for Protein Assemblies (CPA), Technische Universität München, Garching, Germany.,German Cancer Consortium (DKTK), partner site Munich, Germany
| | - Julie Guillermet-Guibert
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France. .,Labex TouCAN, Toulouse, France
| |
Collapse
|
6
|
Thibault B, Ramos‐Delgado F, Pons‐Tostivint E, Therville N, Cintas C, Arcucci S, Cassant‐Sourdy S, Reyes‐Castellanos G, Tosolini M, Villard AV, Cayron C, Baer R, Bertrand‐Michel J, Pagan D, Ferreira Da Mota D, Yan H, Falcomatà C, Muscari F, Bournet B, Delord J, Aksoy E, Carrier A, Cordelier P, Saur D, Basset C, Guillermet‐Guibert J. Pancreatic cancer intrinsic PI3Kα activity accelerates metastasis and rewires macrophage component. EMBO Mol Med 2021; 13:e13502. [PMID: 34033220 PMCID: PMC8261517 DOI: 10.15252/emmm.202013502] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) patients frequently suffer from undetected micro-metastatic disease. This clinical situation would greatly benefit from additional investigation. Therefore, we set out to identify key signalling events that drive metastatic evolution from the pancreas. We searched for a gene signature that discriminate localised PDAC from confirmed metastatic PDAC and devised a preclinical protocol using circulating cell-free DNA (cfDNA) as an early biomarker of micro-metastatic disease to validate the identification of key signalling events. An unbiased approach identified, amongst actionable markers of disease progression, the PI3K pathway and a distinctive PI3Kα activation signature as predictive of PDAC aggressiveness and prognosis. Pharmacological or tumour-restricted genetic PI3Kα-selective inhibition prevented macro-metastatic evolution by hindering tumoural cell migratory behaviour independently of genetic alterations. We found that PI3Kα inhibition altered the quantity and the species composition of the produced lipid second messenger PIP3 , with a selective decrease of C36:2 PI-3,4,5-P3 . Tumoural PI3Kα inactivation prevented the accumulation of pro-tumoural CD206-positive macrophages in the tumour-adjacent tissue. Tumour cell-intrinsic PI3Kα promotes pro-metastatic features that could be pharmacologically targeted to delay macro-metastatic evolution.
Collapse
Affiliation(s)
- Benoit Thibault
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
| | - Fernanda Ramos‐Delgado
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
| | - Elvire Pons‐Tostivint
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
| | - Nicole Therville
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
| | - Celia Cintas
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
| | - Silvia Arcucci
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
| | - Stephanie Cassant‐Sourdy
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
| | | | - Marie Tosolini
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
| | - Amelie V Villard
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
| | - Coralie Cayron
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
| | - Romain Baer
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
| | | | - Delphine Pagan
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
| | - Dina Ferreira Da Mota
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- Institut Universitaire du Cancer de Toulouse – Oncopole (IUCT‐O)Hopitaux de ToulouseInstitut Claudius Regaud ToulouseFrance
| | - Hongkai Yan
- Division of Translational Cancer ResearchGerman Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)HeidelbergGermany
- Chair of Translational Cancer Research and Institute of Experimental Cancer TherapyKlinikum rechts der IsarSchool of MedicineTechnische Universität MünchenMunichGermany
| | - Chiara Falcomatà
- Division of Translational Cancer ResearchGerman Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)HeidelbergGermany
- Chair of Translational Cancer Research and Institute of Experimental Cancer TherapyKlinikum rechts der IsarSchool of MedicineTechnische Universität MünchenMunichGermany
| | - Fabrice Muscari
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- Institut Universitaire du Cancer de Toulouse – Oncopole (IUCT‐O)Hopitaux de ToulouseInstitut Claudius Regaud ToulouseFrance
| | - Barbara Bournet
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- Institut Universitaire du Cancer de Toulouse – Oncopole (IUCT‐O)Hopitaux de ToulouseInstitut Claudius Regaud ToulouseFrance
| | - Jean‐Pierre Delord
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- Institut Universitaire du Cancer de Toulouse – Oncopole (IUCT‐O)Hopitaux de ToulouseInstitut Claudius Regaud ToulouseFrance
| | - Ezra Aksoy
- Centre for Biochemical PharmacologyWilliam Harvey Research InstituteQueen Mary University of LondonLondonUK
| | - Alice Carrier
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli‐Calmettes, CRCMMarseilleFrance
| | - Pierre Cordelier
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
| | - Dieter Saur
- Division of Translational Cancer ResearchGerman Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)HeidelbergGermany
- Chair of Translational Cancer Research and Institute of Experimental Cancer TherapyKlinikum rechts der IsarSchool of MedicineTechnische Universität MünchenMunichGermany
| | - Celine Basset
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
- Institut Universitaire du Cancer de Toulouse – Oncopole (IUCT‐O)Hopitaux de ToulouseInstitut Claudius Regaud ToulouseFrance
| | - Julie Guillermet‐Guibert
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
| |
Collapse
|
7
|
Giannis D, Moris D, Barbas AS. Diagnostic, Predictive and Prognostic Molecular Biomarkers in Pancreatic Cancer: An Overview for Clinicians. Cancers (Basel) 2021; 13:cancers13051071. [PMID: 33802340 PMCID: PMC7959127 DOI: 10.3390/cancers13051071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/13/2021] [Accepted: 02/27/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Pancreatic cancer is the fourth most common cancer-related cause of death in the United States and is usually asymptomatic in early stages. There is a scarcity of tests that facilitate early diagnosis or accurately predict the disease progression. To this end, biomarkers have been identified as important tools in the diagnosis and management of pancreatic cancer. Despite the increasing number of biomarkers described in the literature, most of them have demonstrated moderate sensitivity and/or specificity and are far from being considered as screening tests. More efficient non-invasive biomarkers are needed to facilitate early-stage diagnosis and interventions. Multi-disciplinary collaboration might be required to facilitate the identification of such markers. Abstract Pancreatic ductal adenocarcinoma (PDAC) is the most common pancreatic malignancy and is associated with aggressive tumor behavior and poor prognosis. Most patients with PDAC present with an advanced disease stage and treatment-resistant tumors. The lack of noninvasive tests for PDAC diagnosis and survival prediction mandates the identification of novel biomarkers. The early identification of high-risk patients and patients with PDAC is of utmost importance. In addition, the identification of molecules that are associated with tumor biology, aggressiveness, and metastatic potential is crucial to predict survival and to provide patients with personalized treatment regimens. In this review, we summarize the current literature and focus on newer biomarkers, which are continuously added to the armamentarium of PDAC screening, predictive tools, and prognostic tools.
Collapse
Affiliation(s)
- Dimitrios Giannis
- Institute of Health Innovations and Outcomes Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA;
| | - Dimitrios Moris
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA;
- Correspondence: ; Tel.: +1-21-6571-6614
| | - Andrew S. Barbas
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA;
| |
Collapse
|
8
|
Meleady P, Abdul Rahman R, Henry M, Moriarty M, Clynes M. Proteomic analysis of pancreatic ductal adenocarcinoma. Expert Rev Proteomics 2020; 17:453-467. [PMID: 32755290 DOI: 10.1080/14789450.2020.1803743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC), which represents approximately 80% of all pancreatic cancers, is a highly aggressive malignant disease and one of the most lethal among all cancers. Overall, the 5-year survival rate among all pancreatic cancer patients is less than 9%; these rates have shown little change over the past 30 years. A more comprehensive understanding of the molecular mechanisms underlying this complex disease is crucial to the development of new diagnostic tools for early detection and disease monitoring, as well as to identify new and more effective therapeutics to improve patient outcomes. AREA COVERED We summarize recent advances in proteomic strategies and mass spectrometry to identify new biomarkers for early detection and monitoring of disease progression, predict response to therapy, and to identify novel proteins that have the potential to be 'druggable' therapeutic targets. An overview of proteomic studies that have been conducted to further our mechanistic understanding of metastasis and chemotherapy resistance in PDAC disease progression will also be discussed. EXPERT COMMENTARY The results from these PDAC proteomic studies on a variety of PDAC sample types (e.g., blood, tissue, cell lines, exosomes, etc.) provide great promise of having a significant clinical impact and improving patient outcomes.
Collapse
Affiliation(s)
- Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University , Dublin, Ireland
| | - Rozana Abdul Rahman
- St. Vincent's University Hospital , Dublin, Ireland.,St. Luke's Hospital , Dublin, Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University , Dublin, Ireland
| | - Michael Moriarty
- National Institute for Cellular Biotechnology, Dublin City University , Dublin, Ireland.,St. Luke's Hospital , Dublin, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University , Dublin, Ireland
| |
Collapse
|
9
|
Cai S, Chen Q, Xu Y, Zhuang Q, Ji S. Atorvastatin inhibits pancreatic cancer cells proliferation and invasion likely by suppressing neurotrophin receptor signaling. Transl Cancer Res 2020; 9:1439-1447. [PMID: 35117491 PMCID: PMC8798715 DOI: 10.21037/tcr.2020.01.27] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/13/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Pancreatic cancer (PC) is aggressive and with poor clinical prognosis. However, mechanisms underlying the aggressiveness of PC remain unclear. Increasing evidence indicates that cholesterol, a major source of bio-energy, is required for the progression of human cancers including PC. Therefore, this study aimed to investigate the anti-tumor effect of atorvastatin, a widely used lipid-lowering agent that blocks the production of cholesterol, on human PC. METHODS We firstly assessed the impacts of atorvastatin on the proliferation, apoptosis, cell cycle distribution, migration and invasion of human PC cells PANC-1 and SW1990. Furthermore, we studied the effects of atorvastatin on neurotrophin receptor signaling, including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and their downstream receptors tropomyosin receptor kinase (Trk) Trk A, Trk B and Trk C in human PC cells. RESULTS Atorvastatin significantly inhibited the proliferation, migration and invasion, and induced G1-phase cell cycle arrest and apoptosis in both PANC-1 and SW1990 cells. Meanwhile, atorvastatin treatment remarkably suppressed the expression of NGF, BDNF, and NT-3 as well as that of their downstream receptors Trk A and Trk C. CONCLUSIONS These results provide evidence that atorvastatin inhibits the proliferation, migration and invasion ability of human PC cells, and atorvastatin may exert the anti-tumor effect in PC via the inhibition of neurotrophin signaling pathway.
Collapse
Affiliation(s)
- Shang Cai
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Qingqing Chen
- Department of Radiotherapy and Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215001, China
| | - Yingying Xu
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Qianfeng Zhuang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou 213000, China
| | - Shengjun Ji
- Department of Radiotherapy and Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215001, China
| |
Collapse
|
10
|
Law HCH, Lagundžin D, Clement EJ, Qiao F, Wagner ZS, Krieger KL, Costanzo-Garvey D, Caffrey TC, Grem JL, DiMaio DJ, Grandgenett PM, Cook LM, Fisher KW, Yu F, Hollingsworth MA, Woods NT. The Proteomic Landscape of Pancreatic Ductal Adenocarcinoma Liver Metastases Identifies Molecular Subtypes and Associations with Clinical Response. Clin Cancer Res 2019; 26:1065-1076. [PMID: 31848187 DOI: 10.1158/1078-0432.ccr-19-1496] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/19/2019] [Accepted: 12/11/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic disease that can be separated into distinct subtypes based on molecular signatures. Identifying PDAC subtype-specific therapeutic vulnerabilities is necessary to develop precision medicine approaches to treat PDAC. EXPERIMENTAL DESIGN A total of 56 PDAC liver metastases were obtained from the UNMC Rapid Autopsy Program and analyzed with quantitative proteomics. PDAC subtypes were identified by principal component analysis based on protein expression profiling. Proteomic subtypes were further characterized by the associated clinical information, including but not limited to survival analysis, drug treatment response, and smoking and drinking status. RESULTS Over 3,960 proteins were identified and used to delineate four distinct PDAC microenvironment subtypes: (i) metabolic; (ii) progenitor-like; (iii) proliferative; and (iv) inflammatory. PDAC risk factors of alcohol and tobacco consumption correlate with subtype classifications. Enhanced survival is observed in FOLFIRINOX treated metabolic and progenitor-like subtypes compared with the proliferative and inflammatory subtypes. In addition, TYMP, PDCD6IP, ERAP1, and STMN showed significant association with patient survival in a subtype-specific manner. Gemcitabine-induced alterations in the proteome identify proteins, such as serine hydroxymethyltransferase 1, associated with drug resistance. CONCLUSIONS These data demonstrate that proteomic analysis of clinical PDAC liver metastases can identify molecular signatures unique to disease subtypes and point to opportunities for therapeutic development to improve the treatment of PDAC.
Collapse
Affiliation(s)
- Henry C-H Law
- Eppley Institute for Research in Cancer, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Dragana Lagundžin
- Eppley Institute for Research in Cancer, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Emalie J Clement
- Eppley Institute for Research in Cancer, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Fangfang Qiao
- Eppley Institute for Research in Cancer, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Zachary S Wagner
- Eppley Institute for Research in Cancer, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kimiko L Krieger
- Eppley Institute for Research in Cancer, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Diane Costanzo-Garvey
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha Nebraska
| | - Thomas C Caffrey
- Eppley Institute for Research in Cancer, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jean L Grem
- Internal Medicine, Division of Hematology Oncology, University of Nebraska Medical Center, Omaha Nebraska
| | - Dominick J DiMaio
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha Nebraska
| | - Paul M Grandgenett
- Eppley Institute for Research in Cancer, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Leah M Cook
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha Nebraska
| | - Kurt W Fisher
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha Nebraska
| | - Fang Yu
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha Nebraska
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Nicholas T Woods
- Eppley Institute for Research in Cancer, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|