1
|
Lu G, Liu H, Wang H, Luo S, Du M, Christiani DC, Wei Q. Genetic variants of FER and SULF1 in the fibroblast-related genes are associated with non-small-cell lung cancer survival. Int J Cancer 2025; 156:2107-2117. [PMID: 39707607 PMCID: PMC11971011 DOI: 10.1002/ijc.35305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
Fibroblasts are important components in the tumor microenvironment and can affect tumor progression and metastasis. However, the roles of genetic variants of the fibroblast-related genes (FRGs) in the prognosis of non-small-cell lung cancer (NSCLC) patients have not been reported. Therefore, we investigated the associations between 26,544 single nucleotide polymorphisms (SNPs) in 291 FRGs and survival of NSCLC patients from the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. In Cox regression multivariable analysis, we found that 661 SNPs were associated with NSCLC overall survival (OS). Then we validated these SNPs in another independent replication dataset of 984 patients from the Harvard Lung Cancer Susceptibility (HLCS) Study. Finally, we identified two independent SNPs (i.e., FER rs7716388 A>G and SULF1 rs11785839 G>C) that remained significantly associated with NSCLC survival with hazards ratios (HRs) of 0.87 (95% confidence interval [CI] = 0.77-0.98, p = 0.018) and 0.88 (95% CI = 0.79-0.99, p = 0.033), respectively. Combined analysis for these two SNPs showed that the number of protective alleles was associated with better OS and disease-specific survival. Expression quantitative trait loci analysis indicated that the FER rs7716388 G allele was associated with the up-regulation of FER mRNA expression levels in lung tissue. Our results indicated that these two functional SNPs in the FRGs may be prognostic biomarkers for the prognosis of NSCLC patients, and the possible mechanism may be through modulating the expression of their corresponding genes.
Collapse
Affiliation(s)
- Guojun Lu
- Department of Respiratory Medicine, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Huilin Wang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Respiratory Oncology, Guangxi Cancer Hospital, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mulong Du
- Departments of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115 USA
| | - David C. Christiani
- Departments of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115 USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, Durham, NC 27710, USA
- Duke Global Health Institute, Duke University Medical Center, Durham, Durham, NC 27710, USA
| |
Collapse
|
2
|
Schrier I, Slotki-Itzchakov O, Elkis Y, Most-Menachem N, Adato O, Fitoussi-Allouche D, Shpungin S, Unger R, Nir U. Fer governs mTORC1 regulating pathways and sustains viability of pancreatic ductal adenocarcinoma cells. Front Oncol 2024; 14:1427029. [PMID: 39206154 PMCID: PMC11349523 DOI: 10.3389/fonc.2024.1427029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers with a high percentage of morbidity. The deciphering and identification of novel targets and tools for intervening with its adverse progression are therefore of immense importance. To address this goal we adopted a specific inhibitor of the intracellular tyrosine kinase Fer, whose expression level is upregulated in PDAC tumors, and is associated with poor prognosis of patients. Subjecting PDAC cells to the E260-Fer inhibitor, unraveled its simultaneous effects on the mitochondria, and on a non-mitochondrial ERK1/2 regulatory cascade. E260 caused severe mitochondrial deformation, resulting in cellular- aspartate and ATP depletion, and followed by the activation of the metabolic sensor AMPK. This led to the phosphorylation and deactivation of the bona fide AMPK substrate, RAPTOR, which serves as a positive regulator of the mTORC1 metabolic hub. Accordingly, this resulted in the inhibition of the mTORC1 activity. In parallel, E260 downregulated the activation state of the ERK1/2 kinases, and their ability to neutralize the mTORC1 suppressor TSC2, thereby accentuating the inhibition of mTORC1. Importantly, both activation of AMPK and downregulation of ERK1/2 and mTORC1 were also achieved upon the knockdown of Fer, corroborating the regulatory role of Fer in these processes. Concomitantly, in PDAC tumors and not in healthy pancreatic tissues, the expression levels of Fer demonstrate moderate but statistically significant positive correlation with the expression levels of mTOR and its downstream effector LARP1. Finally, targeting the Fer driven activation of mTORC1, culminated in necrotic death of the treated PDAC cells, envisaging a new intervention tool for the challenging PDAC disease.
Collapse
Affiliation(s)
- Ilan Schrier
- Department of Surgery, Rabin Medical Center, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orel Slotki-Itzchakov
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Yoav Elkis
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Nofar Most-Menachem
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Orit Adato
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Sally Shpungin
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Uri Nir
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
3
|
Zhang Y, Xiong X, Sun R, Zhu X, Wang C, Jiang B, Yang X, Li D, Fan G. Development of the non-receptor tyrosine kinase FER-targeting PROTACs as a potential strategy for antagonizing ovarian cancer cell motility and invasiveness. J Biol Chem 2023:104825. [PMID: 37196766 DOI: 10.1016/j.jbc.2023.104825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/23/2023] [Accepted: 05/07/2023] [Indexed: 05/19/2023] Open
Abstract
Aberrant overexpression of non-receptor tyrosine kinase FER has been reported in various ovarian carcinoma-derived tumor cells and is a poor prognosis factor for patient survival. It plays an essential role in tumor cell migration and invasion, acting concurrently in both kinase-dependent and -independent manners, which is not easily suppressed by conventional enzymatic inhibitors. Nevertheless, the proteolysis-targeting chimeras (PROTACs) technology offers superior efficacy over traditional activity-based inhibitors by simultaneously targeting enzymatic and scaffold functions. Hence in this study, we report the development of two PROTAC compounds that promote robust FER degradation in a cereblon-dependent manner. Both PROTAC degraders outperform an FDA-approved drug, Brigatinib, in ovarian cancer cell motility suppression. Importantly, these PROTAC compounds also degrade multiple oncogenic FER fusion proteins identified in human tumor samples. These results lay an experimental foundation to apply the PROTAC strategy to antagonize cell motility and invasiveness in ovarian and other types of cancers with aberrant expression of FER kinase and highlight PROTACs as a superior strategy for targeting proteins with multiple tumor-promoting functions.
Collapse
Affiliation(s)
- Yanchun Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xuexue Xiong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Renhong Sun
- Gluetacs Therapeutics (Shanghai) Co., Ltd., Shanghai, China
| | - Xiaotong Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chen Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Xiaobao Yang
- Gluetacs Therapeutics (Shanghai) Co., Ltd., Shanghai, China.
| | - Dake Li
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| | - Gaofeng Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
4
|
Pomraenke M, Bolney R, Winkens T, Perkas O, Pretzel D, Theis B, Greiser J, Freesmeyer M. A Novel Breast Cancer Xenograft Model Using the Ostrich Chorioallantoic Membrane-A Proof of Concept. Vet Sci 2023; 10:vetsci10050349. [PMID: 37235432 DOI: 10.3390/vetsci10050349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The avian chorioallantoic membrane (CAM) assay has attracted scientific attention in cancer research as an alternative or complementary method for in vivo animal models. Here, we present a xenograft model based on the ostrich (struthio camelus) CAM assay for the first time. The engraftment of 2 × 106 breast cancer carcinoma MDA-MB-231 cells successfully lead to tumor formation. Tumor growth monitoring was evaluated in eight fertilized eggs after xenotransplantation. Cancer cells were injected directly onto the CAM surface, close to a well-vascularized area. Histological analysis confirmed the epithelial origin of tumors. The CAM of ostrich embryos provides a large experimental surface for the xenograft, while the comparably long developmental period allows for a long experimental window for tumor growth and treatment. These advantages could make the ostrich CAM assay an attractive alternative to the well-established chick embryo model. Additionally, the large size of ostrich embryos compared to mice and rats could help overcome the limitations of small animal models. The suggested ostrich model is promising for future applications, for example, in radiopharmaceutical research, the size of the embryonal organs may compensate for the loss in image resolution caused by physical limitations in small animal positron emission tomography (PET) imaging.
Collapse
Affiliation(s)
- Marta Pomraenke
- In Ovo Imaging Working Group, Clinic of Nuclear Medicine, Jena University Hospital, 07747 Jena, Germany
| | - Robert Bolney
- In Ovo Imaging Working Group, Clinic of Nuclear Medicine, Jena University Hospital, 07747 Jena, Germany
| | - Thomas Winkens
- In Ovo Imaging Working Group, Clinic of Nuclear Medicine, Jena University Hospital, 07747 Jena, Germany
| | - Olga Perkas
- In Ovo Imaging Working Group, Clinic of Nuclear Medicine, Jena University Hospital, 07747 Jena, Germany
| | - David Pretzel
- Institute of Organic & Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Bernhard Theis
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, 07747 Jena, Germany
| | - Julia Greiser
- In Ovo Imaging Working Group, Clinic of Nuclear Medicine, Jena University Hospital, 07747 Jena, Germany
| | - Martin Freesmeyer
- In Ovo Imaging Working Group, Clinic of Nuclear Medicine, Jena University Hospital, 07747 Jena, Germany
| |
Collapse
|
5
|
Nir U, Grinshtain E, Breitbart H. Fer and FerT: A New Regulatory Link between Sperm and Cancer Cells. Int J Mol Sci 2023; 24:ijms24065256. [PMID: 36982326 PMCID: PMC10049441 DOI: 10.3390/ijms24065256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/12/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Fer and its sperm and cancer specific variant, FerT, are non-receptor tyrosine kinases which play roles in cancer progression and metastasis. Recent studies have shed light on the regulatory role of these kinases in ensuring proper sperm function. Comparison of the regulatory cascades in which Fer and FerT are engaged in sperm and cancer cells presents an interesting picture, in which similar regulatory interactions of these enzymes are integrated in a similar or different regulatory context in the two cell types. These diverse compositions extend from the involvement of Fer in modulation of actin cytoskeleton integrity and function, to the unique regulatory interactions of Fer with PARP-1 and the PP1 phosphatase. Furthermore, recent findings link the metabolic regulatory roles of Fer and FerT in sperm and cancer cells. In the current review, we discuss the above detailed aspects, which portray Fer and FerT as new regulatory links between sperm and malignant cells. This perspective view can endow us with new analytical and research tools that will deepen our understanding of the regulatory trajectories and networks that govern these two multi-layered systems.
Collapse
|
6
|
Sluimer LM, Bullock E, Rätze MAK, Enserink L, Overbeeke C, Hornsveld M, Brunton VG, Derksen PWB, Tavares S. SKOR1 mediates FER kinase-dependent invasive growth of breast cancer cells. J Cell Sci 2023; 136:286925. [PMID: 36620935 DOI: 10.1242/jcs.260243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/22/2022] [Indexed: 01/10/2023] Open
Abstract
High expression of the non-receptor tyrosine kinase FER is an independent prognostic factor that correlates with poor survival in breast cancer patients. To investigate whether the kinase activity of FER is essential for its oncogenic properties, we developed an ATP analogue-sensitive knock-in allele (FERASKI). Specific FER kinase inhibition in MDA-MB-231 cells reduces migration and invasion, as well as metastasis when xenografted into a mouse model of breast cancer. Using the FERASKI system, we identified Ski family transcriptional corepressor 1 (SKOR1) as a direct FER kinase substrate. SKOR1 loss phenocopies FER inhibition, leading to impaired proliferation, migration and invasion, and inhibition of breast cancer growth and metastasis formation in mice. We show that SKOR1 Y234, a candidate FER phosphorylation site, is essential for FER-dependent tumor progression. Finally, our work suggests that the SKOR1 Y234 residue promotes Smad2/3 signaling through SKOR1 binding to Smad3. Our study thus identifies SKOR1 as a mediator of FER-dependent progression of high-risk breast cancers.
Collapse
Affiliation(s)
- Lilian M Sluimer
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Esme Bullock
- Edinburgh Cancer Research UK Centre, University of Edinburgh, Crewe Road South, EH4 2XR Edinburgh, UK
| | - Max A K Rätze
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Lotte Enserink
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Celine Overbeeke
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Marten Hornsveld
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands and Centre for Biomedical Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Valerie G Brunton
- Edinburgh Cancer Research UK Centre, University of Edinburgh, Crewe Road South, EH4 2XR Edinburgh, UK
| | - Patrick W B Derksen
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Sandra Tavares
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| |
Collapse
|
7
|
Wang M, Banik I, Shain AH, Yeh I, Bastian BC. Integrated genomic analyses of acral and mucosal melanomas nominate novel driver genes. Genome Med 2022; 14:65. [PMID: 35706047 PMCID: PMC9202124 DOI: 10.1186/s13073-022-01068-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/03/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Acral and mucosal melanomas are aggressive subtypes of melanoma, which have a significantly lower burden of somatic mutations than cutaneous melanomas, but more frequent copy number variations, focused gene amplifications, and structural alterations. The landscapes of their genomic alterations remain to be fully characterized. METHODS We compiled sequencing data of 240 human acral and mucosal melanoma samples from 11 previously published studies and applied a uniform pipeline to call tumor cell content, ploidy, somatic and germline mutations, as well as CNVs, LOH, and SVs. We identified genes that are significantly mutated or recurrently affected by CNVs and implicated in oncogenesis. We further examined the difference in the frequency of recurrent pathogenic alterations between the two melanoma subtypes, correlation between pathogenic alterations, and their association with clinical features. RESULTS We nominated PTPRJ, mutated and homozygously deleted in 3.8% (9/240) and 0.8% (2/240) of samples, respectively, as a probable tumor suppressor gene, and FER and SKP2, amplified in 3.8% and 11.7% of samples, respectively, as probable oncogenes. We further identified a long tail of infrequent pathogenic alterations, involving genes such as CIC and LZTR1. Pathogenic germline mutations were observed on MITF, PTEN, ATM, and PRKN. We found BRAF V600E mutations in acral melanomas with fewer structural variations, suggesting that they are distinct and related to cutaneous melanomas. Amplifications of PAK1 and GAB2 were more commonly observed in acral melanomas, whereas SF3B1 R625 codon mutations were unique to mucosal melanomas (12.9%). Amplifications at 11q13-14 were frequently accompanied by fusion to a region on chromosome 6q12, revealing a recurrent novel structural rearrangement whose role remains to be elucidated. CONCLUSIONS Our meta-analysis expands the catalog of driver mutations in acral and mucosal melanomas, sheds new light on their pathogenesis and broadens the catalog of therapeutic targets for these difficult-to-treat cancers.
Collapse
Affiliation(s)
- Meng Wang
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Ishani Banik
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - A Hunter Shain
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Iwei Yeh
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA.
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
| | - Boris C Bastian
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA.
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
8
|
Zhang Y, Xiong X, Zhu Q, Zhang J, Chen S, Wang Y, Cao J, Chen L, Hou L, Zhao X, Hao P, Chen J, Zhuang M, Li D, Fan G. FER-mediated phosphorylation and PIK3R2 recruitment on IRS4 promotes AKT activation and tumorigenesis in ovarian cancer cells. eLife 2022; 11:76183. [PMID: 35550247 PMCID: PMC9098222 DOI: 10.7554/elife.76183] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Tyrosine phosphorylation, orchestrated by tyrosine kinases and phosphatases, modulates a multi-layered signaling network in a time- and space-dependent manner. Dysregulation of this post-translational modification is inevitably associated with pathological diseases. Our previous work has demonstrated that non-receptor tyrosine kinase FER is upregulated in ovarian cancer, knocking down which attenuates metastatic phenotypes. However, due to the limited number of known substrates in the ovarian cancer context, the molecular basis for its pro-proliferation activity remains enigmatic. Here, we employed mass spectrometry and biochemical approaches to identify insulin receptor substrate 4 (IRS4) as a novel substrate of FER. FER engaged its kinase domain to associate with the PH and PTB domains of IRS4. Using a proximity-based tagging system in ovarian carcinoma-derived OVCAR-5 cells, we determined that FER-mediated phosphorylation of Tyr779 enables IRS4 to recruit PIK3R2/p85β, the regulatory subunit of PI3K, and activate the PI3K-AKT pathway. Rescuing IRS4-null ovarian tumor cells with phosphorylation-defective mutant, but not WT IRS4 delayed ovarian tumor cell proliferation both in vitro and in vivo. Overall, we revealed a kinase-substrate mode between FER and IRS4, and the pharmacological inhibition of FER kinase may be beneficial for ovarian cancer patients with PI3K-AKT hyperactivation.
Collapse
Affiliation(s)
- Yanchun Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xuexue Xiong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qi Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiali Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shengmiao Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuetong Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jian Cao
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Li Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Linjun Hou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xi Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Piliang Hao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jian Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Min Zhuang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Dake Li
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Gaofeng Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
9
|
Zhang X, Bao P, Ye N, Zhou X, Zhang Y, Liang C, Guo X, Chu M, Pei J, Yan P. Identification of the Key Genes Associated with the Yak Hair Follicle Cycle. Genes (Basel) 2021; 13:genes13010032. [PMID: 35052373 PMCID: PMC8774716 DOI: 10.3390/genes13010032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
The development of hair follicles in yak shows significant seasonal cycles. In our previous research, transcriptome data including mRNAs and lncRNAs in five stages during the yak hair follicles (HFs) cycle were detected, but their regulation network and the hub genes in different periods are yet to be explored. This study aimed to screen and identify the hub genes during yak HFs cycle by constructing a mRNA-lncRNA co-expression network. A total of 5000 differently expressed mRNA (DEMs) and 729 differently expressed long noncoding RNA (DELs) were used to construct the co-expression network, based on weighted genes co-expression network analysis (WGCNA). Four temporally specific modules were considered to be significantly associated with the HFs cycle of yak. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the modules are enriched into Wnt, EMC-receptor interaction, PI3K-Akt, focal adhesion pathways, and so on. The hub genes, such as FER, ELMO1, PCOLCE, and HOXC13, were screened in different modules. Five hub genes (WNT5A, HOXC13, DLX3, FOXN1, and OVOL1) and part of key lncRNAs were identified for specific expression in skin tissue. Furthermore, immunofluorescence staining and Western blotting results showed that the expression location and abundance of DLX3 and OVOL1 are changed following the process of the HFs cycle, which further demonstrated that these two hub genes may play important roles in HFs development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ping Yan
- Correspondence: ; Tel.: +86-0931-2115288
| |
Collapse
|
10
|
Wang C, Liu Y, Wang H, Gao F, Guan X, Shi B. Maternal Exposure to Oxidized Soybean Oil Impairs Placental Development by Modulating Nutrient Transporters in a Rat Model. Mol Nutr Food Res 2021; 65:e2100301. [PMID: 34289236 DOI: 10.1002/mnfr.202100301] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/13/2021] [Indexed: 01/07/2023]
Abstract
INTRODUCTION As an exogenous food contaminant, dietary oxidized lipid impairs growth and development, and triggers chronic diseases in humans or animals. This study explores the effects of soybean oil with different oxidative degree on the placental injury of gestational rats. METHODS AND RESULTS Thirty-two female adult rats are randomly assigned to four groups. The control group is fed the purified diet with fresh soybean oil (FSO), and the treatment groups are fed purified diets with lipid content replaced by oxidized soybean oil (OSO) at 200, 400, and 800 mEqO2 kg-1 from conception until delivery. On day 20 of gestation, OSO decreased placental and embryonic weights as the oxidative degree increased linearly and quadratically. The expression of Bax showed a linear increase, and Bcl-2 decreased as the oxidative degree increased. The expression of Fosl1 and Esx1 is linearly and quadratically decreased in OSO-treated groups than FSO group. OSO decreased the level of IL-10 but increased expression of IL-1β in placenta and plasma. OSO remarkably upregulates levels of Fatp1 and Glut1 and decreases expression of Snat2 and Glut3. CONCLUSION OSO aggravates placental injury by modulating nutrient transporters and apoptosis-related genes, impedes placental growth and development, and ultimately leads to the decrease of fetal weight.
Collapse
Affiliation(s)
- Chuanqi Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yang Liu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Huiting Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Feng Gao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xin Guan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| |
Collapse
|
11
|
Ding W, Fan Y, Jia W, Pan X, Han G, Zhang Y, Chen Z, Lu Y, Wang J, Wu J, Wang X. FER Regulated by miR-206 Promotes Hepatocellular Carcinoma Progression via NF-κB Signaling. Front Oncol 2021; 11:683878. [PMID: 34295819 PMCID: PMC8289706 DOI: 10.3389/fonc.2021.683878] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/21/2021] [Indexed: 12/09/2022] Open
Abstract
Objectives Feline sarcoma-related protein (FER) is known to play a critical regulatory role in several carcinomas. However, the exact biological function of FER in hepatocellular carcinoma (HCC) still needs to be investigated. The primary objective of this research was to investigate the unknown function and molecular mechanisms of FER in HCC. Materials and Methods The expression level of FER in HCC tissue samples and cells was examined by RT-qPCR, immunohistochemistry and western blot. Cellular and animal experiments were used to explore the effect of FER on the proliferative and metastatic capacities of HCC cells. The crosstalk between FER and NF-κB signaling was explored by western blot. The upstream factors that regulate FER were evaluated through dual-luciferase experiments and western blot assays. Results FER was overexpressed in HCC specimens and HCC cell lines. FER expression levels were positively associated with unfavorable clinicopathological characteristics. The higher the expression of FER was, the worse the overall survival of HCC patients was. The results of loss-of-function and gain-of-function experiments indicated that knockdown of FER decreased, while overexpression of FER increased, the proliferation, invasion and metastasis of HCC cells in vitro and in vivo. Mechanistically, we found that FER activated the NF-κB signaling pathway and stimulated epithelial-to-mesenchymal transition (EMT). We also found that FER was directly regulated by miR-206, and the downregulation of miR-206 was associated with proliferation and metastatic progression in HCC. Conclusions The present research was the first to reveal that a decrease in miR-206 levels results in an increase in FER expression in HCC, leading to enhanced cell growth and metastatic abilities via activation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Wenzhou Ding
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Ye Fan
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Wenbo Jia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Xiongxiong Pan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoyong Han
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Yao Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Zhiqiang Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Yiwei Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Jinyi Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Jindao Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| |
Collapse
|
12
|
Fraguas-Sánchez AI, Martín-Sabroso C, Torres-Suárez AI. The chick embryo chorioallantoic membrane model: a research approach for ex vivo and in vivo experiments. Curr Med Chem 2021; 29:1702-1717. [PMID: 34176455 DOI: 10.2174/0929867328666210625105438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The chick chorioallantoic membrane (CAM) model has attracted a great deal of interest in pharmaceutical and biological research as an alternative or complementary in vivo assay to animal models. Traditionally, CAM assay has been widely used to perform some toxicological studies, specifically to evaluate the skin, ocular and embryo toxicity of new drugs and formulations, and perform angiogenesis studies. Due to the possibility to generate the tumors onto the CAM, this model has also become an excellent strategy to evaluate the metastatic potential of different tumours and test the efficacy of novel anticancer therapies in vivo. Moreover, in the recent years, its use has considerably grown in other research areas, including the evaluation of new anti-infective agents, the development of biodistribution studies and tissue engineering research. OBJECTIVES This manuscript provides a critical overview of the use of CAM model in pharmaceutical and biological research, especially to test the toxicity of new drugs and formulations and the biodistribution and the efficacy of novel anticancer and anti-infective therapies, analyzing its advantages and disadvantages compared to animal models. CONCLUSION The chick chorioallantoic membrane model shows great utility in several research areas, such as cancer, toxicology, biodistribution studies and anti-infective therapies. In fact, it has become an intermediate stage between in vitro experiments and animal studies, and, in the case of toxicological studies (skin and ocular toxicity), has even replaced the animal models.
Collapse
Affiliation(s)
- Ana Isabel Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
13
|
Mao YQ, Han SF, Zhang SL, Zhang ZY, Kong CY, Chen HL, Li ZM, Cai PR, Han B, Wang LS. An approach using Caenorhabditis elegans screening novel targets to suppress tumour cell proliferation. Cell Prolif 2020; 53:e12832. [PMID: 32452127 PMCID: PMC7309951 DOI: 10.1111/cpr.12832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/07/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Tumour cell proliferation requires high metabolism to meet the bioenergetics and biosynthetic needs. Dauer in Caenorhabditis elegans is characterized by lower metabolism, and we established an approach with C elegans to find potential tumour therapy targets. MATERIALS AND METHODS RNAi screening was used to find dauer-related genes, and these genes were further analysed in glp-1(-) mutants for tumour-suppressing testing. The identified tumour-related genes were verified in clinical tumour tissues. RESULTS The lifespan of glp-1(-) mutants was found to be extended by classical dauer formation signalling. Then, 61 of 287 kinase-coding genes in Caenorhabditis elegans were identified as dauer-related genes, of which 27 were found to be homologous to human oncogenes. Furthermore, 12 dauer-related genes were randomly selected for tumour-suppressing test, and six genes significantly extended the lifespan of glp-1(-) mutants. Of these six genes, F47D12.9, W02B12.12 and gcy-21 were newly linked to dauer formation. These three new dauer-related genes significantly suppressed tumour cell proliferation and thus extended the lifespan of glp-1(-) mutants in a longevity- or dauer-independent manner. The mRNA expression profiles indicated that these dauer-related genes trigged similar low metabolism pattern in glp-1(-) mutants. Notably, the expression of homolog gene DCAF4L2/F47D12.9, TSSK6/W02B12.12 and NPR1/gcy-21 was found to be higher in glioma compared with adjacent normal tissue. In addition, the high expression of TSSK6/W02B12.12 and NPR1/gcy-21 correlated with a worse survival in glioma patients. CONCLUSIONS Dauer gene screening in combination with tumour-suppressing test in glp-1(-) mutants provided a useful approach to find potential targets for tumour therapy via suppressing tumour cell proliferation and rewiring tumour cell metabolism.
Collapse
Affiliation(s)
- Yu-Qin Mao
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - San-Feng Han
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Shi-Long Zhang
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Zheng-Yan Zhang
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Chao-Yue Kong
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Hui-Ling Chen
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Zhan-Ming Li
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Pei-Ran Cai
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Bing Han
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Li-Shun Wang
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Matsuura Y. High-resolution structural analysis shows how different crystallographic environments can induce alternative modes of binding of a phosphotyrosine peptide to the SH2 domain of Fer tyrosine kinase. Protein Sci 2019; 28:2011-2019. [PMID: 31441171 DOI: 10.1002/pro.3713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 11/08/2022]
Abstract
Fes and Fes-related (Fer) protein tyrosine kinases (PTKs) comprise a subfamily of nonreceptor tyrosine kinases characterized by a unique multidomain structure composed of an N-terminal Fer/CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain, a central Src homology 2 (SH2) domain, and a C-terminal PTK domain. Fer is ubiquitously expressed, and upregulation of Fer has been implicated in various human cancers. The PTK activity of Fes has been shown to be positively regulated by the binding of phosphotyrosine-containing ligands to the SH2 domain. Here, the X-ray crystal structure of human Fer SH2 domain bound to a phosphopeptide that has D-E-pY-E-N-V-D sequence is reported at 1.37 å resolution. The asymmetric unit (ASU) contains six Fer-phosphopeptide complexes, and the structure reveals three distinct binding modes for the same phosphopeptide. At four out of the six binding sites in the ASU, the phosphopeptide binds to Fer SH2 domain in a type I β-turn conformation, and this could be the optimal binding mode of this phosphopeptide. At the other two binding sites in the ASU, it appears that spatial proximity of neighboring SH2 domains in the crystal induces alternative modes of binding of this phosphopeptide.
Collapse
Affiliation(s)
- Yoshiyuki Matsuura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan.,Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|