1
|
Wang G, Wu W, He D, Wang J, Kong H, Wu W. N6-methyladenosine-mediated upregulation of H19 promotes resistance to bortezomib by modulating the miR-184/CARM1 axis in multiple myeloma. Clin Exp Med 2025; 25:102. [PMID: 40167832 PMCID: PMC11961544 DOI: 10.1007/s10238-025-01624-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025]
Abstract
Malignant plasma cell proliferation characterizes multiple myeloma (MM), a hematologic disease. Bortezomib (BTZ) is a protease inhibitor that has been approved for the treatment of MM. Nevertheless, the effectiveness of BTZ is frequently impeded by drug resistance, and the mechanisms responsible for this phenomenon remain incompletely understood. A growing body of evidence indicates that N6-methyladenosine (m6A) plays crucial roles in a wide range of biological functions. However, the impact of m6A on the response of MM cells to BTZ is poorly understood. In our recent research, we discovered that METTL3 facilitated the m6A alteration of lncRNA H19, providing MM cells with resistance to BTZ. Additional examination revealed that H19 functioned as a sponge to negatively regulate the expression of miR-184 in MM cells. Furthermore, we discovered that H19 binds to miR-184, a tumor suppressor, in MM cells. In MM cells, miR184 can suppress the expression of CARM1 by targeting its 3'-UTR. In conclusion, rescue trials have validated the significance of the METTL3/H19/miR-184/CARM1 pathway in determining the susceptibility of cells to BTZ. Consequently, directing efforts toward this pathway could prove to be a powerful approach for enhancing the effectiveness of BTZ for MM therapy.
Collapse
Affiliation(s)
- Gang Wang
- Department of Hematology, The Quzhou Affiliated Hospital of Wenzhou Medical UniversityThe Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang Province, China
| | - Wenping Wu
- Department of Hematology, The Quzhou Affiliated Hospital of Wenzhou Medical UniversityThe Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang Province, China
| | - Donghua He
- Bone Marrow Transplantation Center is Part of the First Affiliated Hospital at the School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jiaheng Wang
- Department of Hematology, The Quzhou Affiliated Hospital of Wenzhou Medical UniversityThe Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang Province, China
| | - Hongwei Kong
- Department of Hematology, The Quzhou Affiliated Hospital of Wenzhou Medical UniversityThe Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang Province, China
| | - Wenjun Wu
- Bone Marrow Transplantation Center is Part of the First Affiliated Hospital at the School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
2
|
Stasevich EM, Simonova AV, Poteryakhina AV, Bogomolova EA, Uvarova AN, Zheremyan EA, Korneev KV, Schwartz AM, Kuprash DV, Demin DE. Enhancer RNA from STAT3 locus affects temozolomide chemoresistance of glioblastoma cells. Gene 2025; 944:149297. [PMID: 39889913 DOI: 10.1016/j.gene.2025.149297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/30/2024] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Less than ten percent of glioblastoma tumors are sensitive to temozolomide, the primary drug for treating this type of cancer. STAT3 is a well-known regulator of glioblastoma resistance to temozolomide, suppression of its activity sensitizes cells to the treatment. However, systemic suppression of STAT3 may lead to immune dysregulation, possibly interfering with the antitumor effect. Non-coding RNAs expressed from enhancers (enhancer RNA or eRNA) can guide the direction of various cellular processes by controlling the expression of key genes. In this work, we found eRNA from the STAT3 locus (TMZR1-eRNA) that controls the sensitivity of glioblastoma cells to temozolomide. Knockdown of TMZR1-eRNA decreased STAT3 mRNA and protein expression, resulting in a profound reduction in the abundance of temozolomide-treated cells. Using the reporter assay, we showed that eRNA suppression reduced the activity of STAT3 promoter. Patient glioblastoma cells with higher eRNA expression also showed enhanced sensitivity to temozolomide upon eRNA knockdown. Expression of the eRNA in healthy brain tissue and PBMC was observed at markedly lower levels. Taken together, our results suggest TMZR1-eRNA suppression as a more targeted approach to STAT3 inhibition, potentially with minimal side effects.
Collapse
Affiliation(s)
- Ekaterina Mikhailovna Stasevich
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Anastasiia Vladimirovna Simonova
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anastasiya Valeryevna Poteryakhina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Moscow 119121, Russia
| | - Elvina Andreevna Bogomolova
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Moscow Center for Advanced Studies, Moscow, Russia
| | - Aksinya Nikolaevna Uvarova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elina Alekseevna Zheremyan
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kirill Viktorovich Korneev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Dmitry Vladimirovich Kuprash
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Denis Eriksonovich Demin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Hua X, Zhao C, Tian J, Wang J, Miao X, Zheng G, Wu M, Ye M, Liu Y, Zhou Y. A Ctnnb1 enhancer transcriptionally regulates Wnt signaling dosage to balance homeostasis and tumorigenesis of intestinal epithelia. eLife 2024; 13:RP98238. [PMID: 39320349 PMCID: PMC11424096 DOI: 10.7554/elife.98238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
The β-catenin-dependent canonical Wnt signaling is pivotal in organ development, tissue homeostasis, and cancer. Here, we identified an upstream enhancer of Ctnnb1 - the coding gene for β-catenin, named ieCtnnb1 (intestinal enhancer of Ctnnb1), which is crucial for intestinal homeostasis. ieCtnnb1 is predominantly active in the base of small intestinal crypts and throughout the epithelia of large intestine. Knockout of ieCtnnb1 led to a reduction in Ctnnb1 transcription, compromising the canonical Wnt signaling in intestinal crypts. Single-cell sequencing revealed that ieCtnnb1 knockout altered epithelial compositions and potentially compromised functions of small intestinal crypts. While deletion of ieCtnnb1 hampered epithelial turnovers in physiologic conditions, it prevented occurrence and progression of Wnt/β-catenin-driven colorectal cancers. Human ieCTNNB1 drove reporter gene expression in a pattern highly similar to mouse ieCtnnb1. ieCTNNB1 contains a single-nucleotide polymorphism associated with CTNNB1 expression levels in human gastrointestinal epithelia. The enhancer activity of ieCTNNB1 in colorectal cancer tissues was stronger than that in adjacent normal tissues. HNF4α and phosphorylated CREB1 were identified as key trans-factors binding to ieCTNNB1 and regulating CTNNB1 transcription. Together, these findings unveil an enhancer-dependent mechanism controlling the dosage of Wnt signaling and homeostasis in intestinal epithelia.
Collapse
Affiliation(s)
- Xiaojiao Hua
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Chen Zhao
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Junbao Wang
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Gen Zheng
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Mei Ye
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ying Liu
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Yan Zhou
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Jovanović B, Temko D, Stevens LE, Seehawer M, Fassl A, Murphy K, Anand J, Garza K, Gulvady A, Qiu X, Harper NW, Daniels VW, Xiao-Yun H, Ge JY, Alečković M, Pyrdol J, Hinohara K, Egri SB, Papanastasiou M, Vadhi R, Font-Tello A, Witwicki R, Peluffo G, Trinh A, Shu S, Diciaccio B, Ekram MB, Subedee A, Herbert ZT, Wucherpfennig KW, Letai AG, Jaffe JD, Sicinski P, Brown M, Dillon D, Long HW, Michor F, Polyak K. Heterogeneity and transcriptional drivers of triple-negative breast cancer. Cell Rep 2023; 42:113564. [PMID: 38100350 PMCID: PMC10842760 DOI: 10.1016/j.celrep.2023.113564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/05/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous disease with limited treatment options. To characterize TNBC heterogeneity, we defined transcriptional, epigenetic, and metabolic subtypes and subtype-driving super-enhancers and transcription factors by combining functional and molecular profiling with computational analyses. Single-cell RNA sequencing revealed relative homogeneity of the major transcriptional subtypes (luminal, basal, and mesenchymal) within samples. We found that mesenchymal TNBCs share features with mesenchymal neuroblastoma and rhabdoid tumors and that the PRRX1 transcription factor is a key driver of these tumors. PRRX1 is sufficient for inducing mesenchymal features in basal but not in luminal TNBC cells via reprogramming super-enhancer landscapes, but it is not required for mesenchymal state maintenance or for cellular viability. Our comprehensive, large-scale, multiplatform, multiomics study of both experimental and clinical TNBC is an important resource for the scientific and clinical research communities and opens venues for future investigation.
Collapse
Affiliation(s)
- Bojana Jovanović
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Temko
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Laura E Stevens
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Marco Seehawer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Anne Fassl
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine Murphy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jayati Anand
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kodie Garza
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Anushree Gulvady
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Xintao Qiu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nicholas W Harper
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Veerle W Daniels
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Huang Xiao-Yun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jennifer Y Ge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA
| | - Maša Alečković
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jason Pyrdol
- Departments of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Kunihiko Hinohara
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Shawn B Egri
- The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA
| | | | - Raga Vadhi
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alba Font-Tello
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Robert Witwicki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Guillermo Peluffo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Anne Trinh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Shaokun Shu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Benedetto Diciaccio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Muhammad B Ekram
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ashim Subedee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Zachary T Herbert
- Department of Molecular Biology Core Facility, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kai W Wucherpfennig
- Departments of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Anthony G Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jacob D Jaffe
- The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA
| | - Deborah Dillon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Franziska Michor
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA; Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA; Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
5
|
Santos M, Hwang JW, Bedford MT. CARM1 arginine methyltransferase as a therapeutic target for cancer. J Biol Chem 2023; 299:105124. [PMID: 37536629 PMCID: PMC10474102 DOI: 10.1016/j.jbc.2023.105124] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023] Open
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1) is an arginine methyltransferase that posttranslationally modifies proteins that regulate multiple levels of RNA production and processing. Its substrates include histones, transcription factors, coregulators of transcription, and splicing factors. CARM1 is overexpressed in many different cancer types, and often promotes transcription factor programs that are co-opted as drivers of the transformed cell state, a process known as transcription factor addiction. Targeting these oncogenic transcription factor pathways is difficult but could be addressed by removing the activity of the key coactivators on which they rely. CARM1 is ubiquitously expressed, and its KO is less detrimental in embryonic development than deletion of the arginine methyltransferases protein arginine methyltransferase 1 and protein arginine methyltransferase 5, suggesting that therapeutic targeting of CARM1 may be well tolerated. Here, we will summarize the normal in vivo functions of CARM1 that have been gleaned from mouse studies, expand on the transcriptional pathways that are regulated by CARM1, and finally highlight recent studies that have identified oncogenic properties of CARM1 in different biological settings. This review is meant to kindle an interest in the development of human drug therapies targeting CARM1, as there are currently no CARM1 inhibitors available for use in clinical trials.
Collapse
Affiliation(s)
- Margarida Santos
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Jee Won Hwang
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mark T Bedford
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
6
|
Sreekar N, Shrestha S. Bioinformatic Evaluation of Features on Cis-regulatory Elements at 6q25.1. Bioinform Biol Insights 2023; 17:11779322231167971. [PMID: 37124129 PMCID: PMC10134125 DOI: 10.1177/11779322231167971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
Eukaryotic non-coding regulatory features contribute significantly to cellular plasticity which on aberration leads to cellular malignancy. Enhancers are cis-regulatory elements that contribute to the development of resistance to endocrine therapy in estrogen receptor (ER)-positive breast cancer leading to poor clinical outcome. ER is vital for therapeutic targets in ER-positive breast cancer. Here, we review and report the different regulatory features present on ER with the objective to delineate potential mechanisms which may contribute to development of resistance. The UCSC Genome Browser, data mining, and bioinformatics tools were used to review enhancers, transcription factors (TFs), histone marks, long non-coding RNAs (lncRNAs), and variants residing in the non-coding region of the ER gene. We report 7 enhancers, 3 of which were rich in TF-binding sites and histone marks in a cell line-specific manner. Furthermore, some enhancers contain estrogen resistance variants and sites for lncRNA. Our review speculates putative models suggesting potential aberrations in gene regulation and expression if these regulatory landscapes and assemblies are altered. This review gives an interesting perspective in designing integrated in vitro studies including non-coding elements to study development of endocrine resistance in ER-positive breast cancer.
Collapse
Affiliation(s)
| | - Smeeta Shrestha
- Smeeta Shrestha, Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), 636921, Singapore.
| |
Collapse
|
7
|
Li Q, Xiao X, Chen B, Song G, Zeng K, Li B, Miao J, Liu C, Luan Y, Liu B. A predictive signature based on enhancer RNA associates with immune infiltration and aids treatment decision in clear cell renal cell carcinoma. Front Oncol 2022; 12:964838. [PMID: 36313627 PMCID: PMC9597358 DOI: 10.3389/fonc.2022.964838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a prevalent urinary malignancy. Despite the recent development of better diagnostic tools and therapy, the five-year survival rate for individuals with advanced and metastatic ccRCC remains dismal. Unfortunately, ccRCC is less susceptible to radiation and chemotherapy. Consequently, targeted therapy and immunotherapy play a crucial role in the treatment of ccRCC. Enhancer RNAs (eRNAs) are noncoding RNAs transcribed by enhancers. Extensive research has shown that eRNAs are implicated in a variety of cancer signaling pathways. However, the biological functions of eRNAs have not been systematically investigated in ccRCC. In this study, we conducted a comprehensive investigation of the role of eRNAs in the onset and management of ccRCC. Patient prognosis-influencing eRNAs and target genes were chosen to construct a predictive signature. On the basis of the median riskscore, ccRCC patients were split into high- and low-risk subgroups. The prediction efficiency was assessed in several cohorts, and multi-omics analysis was carried out to investigate the differences and underlying mechanisms between the high- and low-risk groups. In addition, we investigated its potential to facilitate clinical treatment choices. The riskscore might be used to forecast a patient’s response to immunotherapy and targeted therapy, giving a revolutionary method for selecting treatment regimens with pinpoint accuracy.
Collapse
Affiliation(s)
- Qinyu Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xueyan Xiao
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingliang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoda Song
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Beining Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianping Miao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaofan Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Bo Liu, ; Yang Luan, ; Chaofan Liu,
| | - Yang Luan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Bo Liu, ; Yang Luan, ; Chaofan Liu,
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Bo Liu, ; Yang Luan, ; Chaofan Liu,
| |
Collapse
|
8
|
Wan L, Li W, Meng Y, Hou Y, Chen M, Xu B. Inflammatory Immune-Associated eRNA: Mechanisms, Functions and Therapeutic Prospects. Front Immunol 2022; 13:849451. [PMID: 35514959 PMCID: PMC9063412 DOI: 10.3389/fimmu.2022.849451] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
The rapid development of multiple high-throughput sequencing technologies has made it possible to explore the critical roles and mechanisms of functional enhancers and enhancer RNAs (eRNAs). The inflammatory immune response, as a fundamental pathological process in infectious diseases, cancers and immune disorders, coordinates the balance between the internal and external environment of the organism. It has been shown that both active enhancers and intranuclear eRNAs are preferentially expressed over inflammation-related genes in response to inflammatory stimuli, suggesting that enhancer transcription events and their products influence the expression and function of inflammatory genes. Therefore, in this review, we summarize and discuss the relevant inflammatory roles and regulatory mechanisms of eRNAs in inflammatory immune cells, non-inflammatory immune cells, inflammatory immune diseases and tumors, and explore the potential therapeutic effects of enhancer inhibitors affecting eRNA production for diseases with inflammatory immune responses.
Collapse
Affiliation(s)
- Lilin Wan
- Medical School, Southeast University, Nanjing, China
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Wenchao Li
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Yuan Meng
- Department of Urology, Nanjing Lishui District People’s Hospital, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yue Hou
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Department of Urology, Nanjing Lishui District People’s Hospital, Zhongda Hospital, Southeast University, Nanjing, China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Department of Urology, Nanjing Lishui District People’s Hospital, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
9
|
Enhancer RNAs (eRNAs) in Cancer: The Jacks of All Trades. Cancers (Basel) 2022; 14:cancers14081978. [PMID: 35454885 PMCID: PMC9030334 DOI: 10.3390/cancers14081978] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary This review focuses on eRNAs and the several mechanisms by which they can regulate gene expression. In particular we describe here the most recent examples of eRNAs dysregulated in cancer or involved in the immune escape of tumor cells. Abstract Enhancer RNAs (eRNAs) are non-coding RNAs (ncRNAs) transcribed in enhancer regions. They play an important role in transcriptional regulation, mainly during cellular differentiation. eRNAs are tightly tissue- and cell-type specific and are induced by specific stimuli, activating promoters of target genes in turn. eRNAs usually have a very short half-life but in some cases, once activated, they can be stably expressed and acquire additional functions. Due to their critical role, eRNAs are often dysregulated in cancer and growing number of interactions with chromatin modifiers, transcription factors, and splicing machinery have been described. Enhancer activation and eRNA transcription have particular relevance also in inflammatory response, placing the eRNAs at the interplay between cancer and immune cells. Here, we summarize all the possible molecular mechanisms recently reported in association with eRNAs activity.
Collapse
|
10
|
Perumalsamy NK, Hemalatha C. Cis-regulatory elements (CREs) in spinal solitary fibrous tumours. Meta Gene 2022. [DOI: 10.1016/j.mgene.2022.101025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
11
|
Abstract
The epigenetic landscape, which in part includes DNA methylation, chromatin organization, histone modifications, and noncoding RNA regulation, greatly contributes to the heterogeneity that makes developing effective therapies for lung cancer challenging. This review will provide an overview of the epigenetic alterations that have been implicated in all aspects of cancer pathogenesis and progression as well as summarize clinical applications for targeting epigenetics in the treatment of lung cancer.
Collapse
Affiliation(s)
- Yvonne L Chao
- Department of Medicine, Division of Hematology and Oncology, University of North Carolina, Chapel Hill, North Carolina 27514, USA
| | - Chad V Pecot
- Department of Medicine, Division of Hematology and Oncology, University of North Carolina, Chapel Hill, North Carolina 27514, USA
| |
Collapse
|
12
|
Adhikary S, Roy S, Chacon J, Gadad SS, Das C. Implications of Enhancer Transcription and eRNAs in Cancer. Cancer Res 2021; 81:4174-4182. [PMID: 34016622 DOI: 10.1158/0008-5472.can-20-4010] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/03/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022]
Abstract
Despite extensive progress in developing anticancer therapies, therapy resistance remains a major challenge that promotes disease relapse. The changes that lead to therapy resistance can be intrinsically present or may be initiated during treatment. Genetic and epigenetic heterogeneity in tumors make it more challenging to deal with therapy resistance. Recent advances in genome-wide analyses have revealed that the deregulation of distal gene regulatory elements, such as enhancers, appears in several pathophysiological conditions, including cancer. Beyond the conventional function of enhancers in recruiting transcription factors to gene promoters, enhancer elements are also transcribed into noncoding RNAs known as enhancer RNAs (eRNA). Accumulating evidence suggests that uncontrolled enhancer activity with aberrant eRNA expression promotes oncogenesis. Interestingly, tissue-specific, transcribed eRNAs from active enhancers can serve as potential therapeutic targets or biomarkers in several cancer types. This review provides a comprehensive overview of the mechanisms of enhancer transcription and eRNAs as well as their potential roles in cancer and drug resistance.
Collapse
Affiliation(s)
- Santanu Adhikary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India.,Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Siddhartha Roy
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Jessica Chacon
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas
| | - Shrikanth S Gadad
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas. .,Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas.,Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, Texas.,Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynaecology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India. .,Homi Bhaba National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
13
|
iEnhancer-GAN: A Deep Learning Framework in Combination with Word Embedding and Sequence Generative Adversarial Net to Identify Enhancers and Their Strength. Int J Mol Sci 2021; 22:ijms22073589. [PMID: 33808317 PMCID: PMC8036415 DOI: 10.3390/ijms22073589] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/10/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
As critical components of DNA, enhancers can efficiently and specifically manipulate the spatial and temporal regulation of gene transcription. Malfunction or dysregulation of enhancers is implicated in a slew of human pathology. Therefore, identifying enhancers and their strength may provide insights into the molecular mechanisms of gene transcription and facilitate the discovery of candidate drug targets. In this paper, a new enhancer and its strength predictor, iEnhancer-GAN, is proposed based on a deep learning framework in combination with the word embedding and sequence generative adversarial net (Seq-GAN). Considering the relatively small training dataset, the Seq-GAN is designed to generate artificial sequences. Given that each functional element in DNA sequences is analogous to a “word” in linguistics, the word segmentation methods are proposed to divide DNA sequences into “words”, and the skip-gram model is employed to transform the “words” into digital vectors. In view of the powerful ability to extract high-level abstraction features, a convolutional neural network (CNN) architecture is constructed to perform the identification tasks, and the word vectors of DNA sequences are vertically concatenated to form the embedding matrices as the input of the CNN. Experimental results demonstrate the effectiveness of the Seq-GAN to expand the training dataset, the possibility of applying word segmentation methods to extract “words” from DNA sequences, the feasibility of implementing the skip-gram model to encode DNA sequences, and the powerful prediction ability of the CNN. Compared with other state-of-the-art methods on the training dataset and independent test dataset, the proposed method achieves a significantly improved overall performance. It is anticipated that the proposed method has a certain promotion effect on enhancer related fields.
Collapse
|
14
|
Liu Z, Chen SS, Clarke S, Veschi V, Thiele CJ. Targeting MYCN in Pediatric and Adult Cancers. Front Oncol 2021; 10:623679. [PMID: 33628735 PMCID: PMC7898977 DOI: 10.3389/fonc.2020.623679] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022] Open
Abstract
The deregulation of the MYC family of oncogenes, including c-MYC, MYCN and MYCL occurs in many types of cancers, and is frequently associated with a poor prognosis. The majority of functional studies have focused on c-MYC due to its broad expression profile in human cancers. The existence of highly conserved functional domains between MYCN and c-MYC suggests that MYCN participates in similar activities. MYC encodes a basic helix-loop-helix-leucine zipper (bHLH-LZ) transcription factor (TF) whose central oncogenic role in many human cancers makes it a highly desirable therapeutic target. Historically, as a TF, MYC has been regarded as “undruggable”. Thus, recent efforts focus on investigating methods to indirectly target MYC to achieve anti-tumor effects. This review will primarily summarize the recent progress in understanding the function of MYCN. It will explore efforts at targeting MYCN, including strategies aimed at suppression of MYCN transcription, destabilization of MYCN protein, inhibition of MYCN transcriptional activity, repression of MYCN targets and utilization of MYCN overexpression dependent synthetic lethality.
Collapse
Affiliation(s)
- Zhihui Liu
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Samuel S Chen
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Saki Clarke
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Veronica Veschi
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Carol J Thiele
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
15
|
Minnoye L, Taskiran II, Mauduit D, Fazio M, Van Aerschot L, Hulselmans G, Christiaens V, Makhzami S, Seltenhammer M, Karras P, Primot A, Cadieu E, van Rooijen E, Marine JC, Egidy G, Ghanem GE, Zon L, Wouters J, Aerts S. Cross-species analysis of enhancer logic using deep learning. Genome Res 2020; 30:1815-1834. [PMID: 32732264 PMCID: PMC7706731 DOI: 10.1101/gr.260844.120] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/15/2020] [Indexed: 12/23/2022]
Abstract
Deciphering the genomic regulatory code of enhancers is a key challenge in biology because this code underlies cellular identity. A better understanding of how enhancers work will improve the interpretation of noncoding genome variation and empower the generation of cell type-specific drivers for gene therapy. Here, we explore the combination of deep learning and cross-species chromatin accessibility profiling to build explainable enhancer models. We apply this strategy to decipher the enhancer code in melanoma, a relevant case study owing to the presence of distinct melanoma cell states. We trained and validated a deep learning model, called DeepMEL, using chromatin accessibility data of 26 melanoma samples across six different species. We show the accuracy of DeepMEL predictions on the CAGI5 challenge, where it significantly outperforms existing models on the melanoma enhancer of IRF4 Next, we exploit DeepMEL to analyze enhancer architectures and identify accurate transcription factor binding sites for the core regulatory complexes in the two different melanoma states, with distinct roles for each transcription factor, in terms of nucleosome displacement or enhancer activation. Finally, DeepMEL identifies orthologous enhancers across distantly related species, where sequence alignment fails, and the model highlights specific nucleotide substitutions that underlie enhancer turnover. DeepMEL can be used from the Kipoi database to predict and optimize candidate enhancers and to prioritize enhancer mutations. In addition, our computational strategy can be applied to other cancer or normal cell types.
Collapse
Affiliation(s)
- Liesbeth Minnoye
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - Ibrahim Ihsan Taskiran
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - David Mauduit
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - Maurizio Fazio
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | - Linde Van Aerschot
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
- Laboratory for Disease Mechanisms in Cancer, KU Leuven, 3000 Leuven, Belgium
| | - Gert Hulselmans
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - Valerie Christiaens
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - Samira Makhzami
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - Monika Seltenhammer
- Center for Forensic Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Division of Livestock Sciences (NUWI) - BOKU University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Panagiotis Karras
- VIB-KU Leuven Center for Cancer Biology, 3000 Leuven, Belgium
- KU Leuven, Department of Oncology KU Leuven, 3000 Leuven, Belgium
| | - Aline Primot
- CNRS-University of Rennes 1, UMR6290, Institute of Genetics and Development of Rennes, Faculty of Medicine, 35000 Rennes, France
| | - Edouard Cadieu
- CNRS-University of Rennes 1, UMR6290, Institute of Genetics and Development of Rennes, Faculty of Medicine, 35000 Rennes, France
| | - Ellen van Rooijen
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | - Jean-Christophe Marine
- VIB-KU Leuven Center for Cancer Biology, 3000 Leuven, Belgium
- KU Leuven, Department of Oncology KU Leuven, 3000 Leuven, Belgium
| | - Giorgia Egidy
- Université Paris-Saclay, INRA, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - Ghanem-Elias Ghanem
- Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Leonard Zon
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | - Jasper Wouters
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - Stein Aerts
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
16
|
Jiang H, Chen H, Wan P, Song S, Chen N. Downregulation of enhancer RNA EMX2OS is associated with poor prognosis in kidney renal clear cell carcinoma. Aging (Albany NY) 2020; 12:25865-25877. [PMID: 33234727 PMCID: PMC7803531 DOI: 10.18632/aging.202151] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/29/2020] [Indexed: 02/05/2023]
Abstract
Enhancer RNAs are a subclass of long non-coding RNAs transcribed from enhancer regions that play an important role in the transcriptional regulation of genes. However, their role in kidney renal clear cell carcinoma (KIRC) is largely unknown. Herein, we identified the key enhancer RNAs in KIRC via an integrated data analysis method. Gene expression profiles and clinical data of KIRC and 32 other cancer types were acquired using the University of California Santa Cruz Xena platform. Reported enhancer RNAs and genes regulated by them were selected as putative enhancer RNA-target pairs. Kaplan-Meier survival and correlation analyses were performed to identify the key enhancer RNAs. Finally, EMX2OS was identified as the enhancer RNA most associated with survival, with EMX2 as its target. EMX2OS downregulation was significantly associated with higher histological grade, advanced stage, and poorer prognosis. The results were validated in pan-cancer data from The Cancer Genome Atlas and RT-qPCR analysis of 12 pairs of KIRC and normal real-world samples. Functional enrichment analysis indicated that several metabolism-associated signaling pathways were enriched. This study demonstrated that EMX2OS is a key metabolism-associated enhancer RNA in KIRC with a favorable impact on survival and may be a novel therapeutic target in KIRC.
Collapse
Affiliation(s)
- Huiming Jiang
- Department of Urology, Meizhou People’s Hospital, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, Guangdong Province, P.R. China
| | - Haibin Chen
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515041, Guangdong Province, P.R. China
| | - Pei Wan
- Department of Urology, Meizhou People’s Hospital, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, Guangdong Province, P.R. China
| | - Shengda Song
- Department of Urology, Meizhou People’s Hospital, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, Guangdong Province, P.R. China
| | - Nanhui Chen
- Department of Urology, Meizhou People’s Hospital, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, Guangdong Province, P.R. China
| |
Collapse
|
17
|
A review on kinases phosphorylating the carboxyl-terminal domain of RNA polymerase II-Biological functions and inhibitors. Bioorg Chem 2020; 104:104318. [PMID: 33142427 DOI: 10.1016/j.bioorg.2020.104318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/18/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022]
Abstract
RNA polymerase II (RNA Pol II) plays a major role in gene transcription for eukaryote. One of the major modes of regulation in eukaryotes is the phosphorylation of the carboxyl-terminal domain (CTD) of RNA Pol II. The current study found that the phosphorylation of Ser2, Ser5, Ser7, Thr4 and Tyr1 among the heptapeptide repeats of CTD plays a key role in the transcription process. We therefore review the biological functions and inhibitors of kinases that phosphorylate these amino acid residues including transcriptional cyclin-dependent protein kinases (CDKs), bromodomain-containing protein 4 (BRD4), Polo-like kinases 3 (Plk3) and Abelson murine leukemia viral oncogene 1 and 2 (c-Abl1/2).
Collapse
|
18
|
Flebbe H, Hamdan FH, Kari V, Kitz J, Gaedcke J, Ghadimi BM, Johnsen SA, Grade M. Epigenome Mapping Identifies Tumor-Specific Gene Expression in Primary Rectal Cancer. Cancers (Basel) 2019; 11:cancers11081142. [PMID: 31404997 PMCID: PMC6721540 DOI: 10.3390/cancers11081142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
Epigenetic alterations play a central role in cancer development and progression. The acetylation of histone 3 at lysine 27 (H3K27ac) specifically marks active genes. While chromatin immunoprecipitation (ChIP) followed by next-generation sequencing (ChIP-seq) analyses are commonly performed in cell lines, only limited data are available from primary tumors. We therefore examined whether cancer-specific alterations in H3K27ac occupancy can be identified in primary rectal cancer. Tissue samples from primary rectal cancer and matched mucosa were obtained. ChIP-seq for H3K27ac was performed and differentially occupied regions were identified. The expression of selected genes displaying differential occupancy between tumor and mucosa were examined in gene expression data from an independent patient cohort. Differential expression of four proteins was further examined by immunohistochemistry. ChIP-seq for H3K27ac in primary rectal cancer and matched mucosa was successfully performed and revealed differential binding on 44 regions. This led to the identification of genes with increased H3K27ac, i.e., RIPK2, FOXQ1, KRT23, and EPHX4, which were also highly upregulated in primary rectal cancer in an independent dataset. The increased expression of these four proteins was confirmed by immunohistochemistry. This study demonstrates the feasibility of ChIP-seq-based epigenome mapping of primary rectal cancer and confirms the value of H3K27ac occupancy to predict gene expression differences.
Collapse
Affiliation(s)
- Hannah Flebbe
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Feda H Hamdan
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
- Gene Regulatory Mechanisms and Molecular Epigenetics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Vijayalakshmi Kari
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Julia Kitz
- Institute of Pathology, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Jochen Gaedcke
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - B Michael Ghadimi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Steven A Johnsen
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany.
- Gene Regulatory Mechanisms and Molecular Epigenetics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Marian Grade
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany.
| |
Collapse
|