1
|
Zeng Q, Li L, Chang T, Sun Y, Zheng B, Xue L, Liu C, Li X, Huang R, Gu J, An Z, Yao H, Zhou D, Fan J, Dai Y. Phosphorylation of POU3F3 Mediated Nuclear Translocation Promotes Proliferation in Non-Small Cell Lung Cancer through Accelerating ATP5PF Transcription and ATP Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411503. [PMID: 39932442 PMCID: PMC11967767 DOI: 10.1002/advs.202411503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/09/2025] [Indexed: 04/05/2025]
Abstract
Targeting oxidative phosphorylation (OXPHOS) through inhibiting the electron transport chain (ETC) has shown promising pre-clinical efficacy in cancer therapy. Although aerobic glycolysis is a hallmark of cancer, emerging evidence suggest OXPHOS is frequently enhanced, providing metabolic advantages for cell proliferation, metastasis, and drug resistance in a variety of aggressive cancer types including non-small cell lung cancer (NSCLC), yet the underlying molecular mechanisms remain elusive. Here it is reported that POU-domain containing family protein POU3F3 is translocated into the nuclei of NSCLC cell lines harboring mutant RAS, where it activates transcription of ATP5PF, an essential component of mitochondrial ATP synthase and consequent ATP production, leading to enhanced NSCLC proliferation and migration. Moreover, it is further found out that ERK1 phosphorylates POU3F3 at the S393 site in the cytoplasm and promotes the nuclear translocation of POU3F3 via receptor importin β1 in RAS mutant NSCLC cells. Mechanistically, RNA sequencing analysis combined with chromatin immunoprecipitation (ChIP) assay revealed that POU3F3 binds to the promoter of ATP5PF, leading to enhanced ATP5PF transcription and ATP production. Together, this study uncovers a novel RAS-POU3F3-ATP5PF axis in facilitating NSCLC progression, providing a new perspective on the understanding of molecular mechanisms for NSCLC progression.
Collapse
Affiliation(s)
- Qi‐Gang Zeng
- Nanhai hospital of Traditional Chinese MedicineJinan UniversityGuangdong528200China
| | - Le Li
- Nanhai hospital of Traditional Chinese MedicineJinan UniversityGuangdong528200China
- Department of Medical Biochemistry and Molecular BiologySchool of MedicineJinan UniversityGuangdong510632China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University)Ministry of EducationGuangdong510632China
| | - Tao Chang
- Nanhai hospital of Traditional Chinese MedicineJinan UniversityGuangdong528200China
- Department of Medical Biochemistry and Molecular BiologySchool of MedicineJinan UniversityGuangdong510632China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University)Ministry of EducationGuangdong510632China
| | - Yong Sun
- Nanhai hospital of Traditional Chinese MedicineJinan UniversityGuangdong528200China
- Department of Medical Biochemistry and Molecular BiologySchool of MedicineJinan UniversityGuangdong510632China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University)Ministry of EducationGuangdong510632China
| | - Bin Zheng
- Nanhai hospital of Traditional Chinese MedicineJinan UniversityGuangdong528200China
- Department of Medical Biochemistry and Molecular BiologySchool of MedicineJinan UniversityGuangdong510632China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University)Ministry of EducationGuangdong510632China
| | - Ling‐Na Xue
- Nanhai hospital of Traditional Chinese MedicineJinan UniversityGuangdong528200China
| | - Chao‐Ling Liu
- Nanhai hospital of Traditional Chinese MedicineJinan UniversityGuangdong528200China
| | - Xia‐Qing Li
- Institute of Nephrology and Blood PurificationThe First Affiliated HospitalJinan UniversityGuangdong510632China
- Nephrology departmentThe Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital)Jinan UniversityGuangdong517000China
| | - Ruo‐Tong Huang
- Department of Metabolism, Digestion, and ReproductionFaculty of MedicineImperial College LondonLondonW12 0NNUK
| | - Jia‐Xin Gu
- Department of Medical Biochemistry and Molecular BiologySchool of MedicineJinan UniversityGuangdong510632China
| | - Zhao‐Rong An
- Department of Medical Biochemistry and Molecular BiologySchool of MedicineJinan UniversityGuangdong510632China
| | - Hao‐Tao Yao
- Department of Medical Biochemistry and Molecular BiologySchool of MedicineJinan UniversityGuangdong510632China
| | - Dan‐Yang Zhou
- Department of RespiratoryNanjing First HospitalNanjing Medical UniversityJiangsu210012China
| | - Jun Fan
- Nanhai hospital of Traditional Chinese MedicineJinan UniversityGuangdong528200China
- Department of Medical Biochemistry and Molecular BiologySchool of MedicineJinan UniversityGuangdong510632China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University)Ministry of EducationGuangdong510632China
| | - Yong Dai
- Nanhai hospital of Traditional Chinese MedicineJinan UniversityGuangdong528200China
| |
Collapse
|
2
|
Sai Krishna AVS, Sinha S, Satyanarayana Rao MR, Donakonda S. The impact of PTEN status on glioblastoma multiforme: A glial cell type-specific study identifies unique prognostic markers. Comput Biol Med 2025; 184:109395. [PMID: 39531927 DOI: 10.1016/j.compbiomed.2024.109395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/11/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Glioblastoma multiforme (GBM) is the most invasive form of brain tumor, accounting for 5 % of the cases per 100,000 people in various countries. The phosphatase and tensin homolog deleted from chromosome 10 (PTEN) is a well-known tumor suppressor, and its alteration leads to a deleterious effect on GBM progression. The molecular mechanism of tumorigenesis in glial cell types, driven by PTEN status, is yet to be elucidated. In this study, we analyzed publicly available single-cell transcriptome profiles of PTEN wild-type (WT) and NULL GBM patients. We compared them with normal brain data to uncover many unique gene sets influenced by PTEN status. The co-expression network analysis of differentially expressed genes (DEGs) between normal brain and PTEN (WT and NULL) identified highly interconnected genes. The weighted gene co-expression network analysis (WGCNA), based on the DESeq2 algorithm, identified glial cell-type-specific modules in PTEN status-dependent bulk RNA expression profiles. We overlapped network module gene sets from single-cell and bulk transcriptome profiles, and shared genes were considered for further analysis. The hallmark pathway enrichment analysis of the genes unique to PTEN-WT and NULL revealed various tumor growth-related pathways across the glial cell types. Further characterization of PTEN-WT and PTEN-NULL networks belonging to the single-cell and bulk RNA datasets revealed that PTEN status influences the network modules in astrocytes, microglia, and oligodendrocyte precursor cells. An integrated influence value algorithm identified hub genes for each glial cell type. The prognostic analysis identified clinically relevant hub genes specific to the cell type in PTEN-WT: GLIPR2 (astrocytes), CFH, IL32, MXRA5 (microglia), and PTEN-NULL: ID1 (astrocytes) and LAT2 (microglia). Our glial cell type-level transcriptome analysis unearthed unique molecular pathways and prognostic markers in PTEN status-dependent GBM patients.
Collapse
Affiliation(s)
- A V S Sai Krishna
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Swati Sinha
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, MS Ramaiah University of Applied Sciences, Bengaluru, India
| | | | - Sainitin Donakonda
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany.
| |
Collapse
|
3
|
Li J, Qin Z, Li Y, Huang B, Xiao Q, Chen P, Luo Y, Zheng W, Zhang T, Zhang Z. Phosphorylation of IDH1 Facilitates Progestin Resistance in Endometrial Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310208. [PMID: 38582508 PMCID: PMC11187910 DOI: 10.1002/advs.202310208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/19/2024] [Indexed: 04/08/2024]
Abstract
The progestin regimen is one of the main therapeutic strategies for women with endometrial cancer who undergo conservative management. Although many patients respond well to initial therapy, progestin-refractory disease inevitably emerges, and the molecular basis underlying progestin resistance has not been comprehensively elucidated. Herein, they demonstrated progestin results in p38-dependent IDH1 Thr 77 phosphorylation (pT77-IDH1). pT77-IDH1 translocates into the nucleus and is recruited to chromatin through its interaction with OCT6. IDH1-produced α-ketoglutarate (αKG) then facilitates the activity of OCT6 to promote focal adhesion related target gene transcription to confer progestin resistance. Pharmacological inhibition of p38 or focal adhesion signaling sensitizes endometrial cancer cells to progestin in vivo. The study reveals p38-dependent pT77-IDH1 as a key mediator of progestin resistance and a promising target for improving the efficacy of progestin therapy.
Collapse
Affiliation(s)
- Jingjie Li
- Precision Research Center for Refractory DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Zuoshu Qin
- Precision Research Center for Refractory DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Yunqi Li
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Baozhu Huang
- Precision Research Center for Refractory DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Qimeng Xiao
- Precision Research Center for Refractory DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Peiqin Chen
- Precision Research Center for Refractory DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Yifan Luo
- Precision Research Center for Refractory DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Wenxin Zheng
- Department of PathologyUniversity of Texas Southwestern Medical CenterDallasTX75390USA
- Department of Obstetrics and GynecologyUniversity of Texas Southwestern Medical CenterDallasTX75390USA
- Simon Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTX75390USA
| | - Tao Zhang
- Department of OrthopedicsShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| | - Zhenbo Zhang
- Precision Research Center for Refractory DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Reproductive Medicine CenterDepartment of Obstetrics and GynecologyTongji hospitalSchool of MedicineTongji UniversityShanghai200065China
| |
Collapse
|
4
|
Wang P, Zhu J, Long Q, Wang Y, Xu H, Tao H, Wu B, Li J, Wu Y, Liu S. LncRNA SATB2-AS1 promotes tumor growth and metastasis and affects the tumor immune microenvironment in osteosarcoma by regulating SATB2. J Bone Oncol 2023; 41:100491. [PMID: 37601080 PMCID: PMC10436287 DOI: 10.1016/j.jbo.2023.100491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 08/22/2023] Open
Abstract
Our previous report has identified a lncRNA SATB2-AS1, which was significantly up-regulated in osteosarcoma tissue and promotes the proliferation of osteosarcoma cells in vitro. However, the mechanisms of SATB2-AS1 regulating the growth and metastasis of osteosarcoma cells in vivo and its role in the prognosis of osteosarcoma patients are still unclear. In this study, the transcriptome sequencing data of 87 patients with osteosarcoma from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database and 7 patients from our clinical center (GZFPH) was used to evaluate the importance of SATB2-AS1 and SATB2 on the prognosis. The effect of SATB2-AS1 on the growth and metastasis of osteosarcoma cells in vivo was verified by a mouse tumor model. The potential mechanisms of SATB2-AS1 regulating SATB2 were further explored by dual-luciferase reporter gene assay, RNA pull-down assay, and bioinformatics analysis. The results suggested that increased co-expression of SATB2-AS1 and SATB2 was significantly associated with poor overall survival (OS) and relapse-free survival (RFS), and was a biomarker for risk stratification in patients with osteosarcoma. Mechanistically, SATB2-AS1 promotes tumor growth and lung metastasis by regulating SATB2 in vivo. SATB2-AS1 directly binds to POU3F1 for mediating SATB2 expression in MNNG/HOS cells. In addition, SATB2-AS1 and SATB2 might be potential immunomodulators for negatively affecting immune cell infiltration by the IL-17 signaling pathway. In summary, SATB2-AS1 promoted tumor cell growth and lung metastasis by activating SATB2, thereby associated with poor prognosis in patients with osteosarcoma, which indicated that SATB2-AS1 and SATB2 might be novel biomarkers for risk stratification and promising therapeutic targets for osteosarcoma.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Oncology, the Second Affiliated Hospital, and School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Jianwei Zhu
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Qingqin Long
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Yan Wang
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Huihua Xu
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Huimin Tao
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Biwen Wu
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Jiajun Li
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Yong Wu
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Sihong Liu
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| |
Collapse
|
5
|
Zhang M, Li X, Zhang Q, Yang J, Liu G. Roles of macrophages on ulcerative colitis and colitis-associated colorectal cancer. Front Immunol 2023; 14:1103617. [PMID: 37006260 PMCID: PMC10062481 DOI: 10.3389/fimmu.2023.1103617] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Colitis-associated colorectal cancer is the most serious complication of ulcerative colitis. Long-term chronic inflammation increases the incidence of CAC in UC patients. Compared with sporadic colorectal cancer, CAC means multiple lesions, worse pathological type and worse prognosis. Macrophage is a kind of innate immune cell, which play an important role both in inflammatory response and tumor immunity. Macrophages are polarized into two phenotypes under different conditions: M1 and M2. In UC, enhanced macrophage infiltration produces a large number of inflammatory cytokines, which promote tumorigenesis of UC. M1 polarization has an anti-tumor effect after CAC formation, whereas M2 polarization promotes tumor growth. M2 polarization plays a tumor-promoting role. Some drugs have been shown to that prevent and treat CAC effectively by targeting macrophages.
Collapse
|
6
|
Yang J, Guo Q, Wang L, Yu S. POU Domain Class 2 Transcription Factor 2 Inhibits Ferroptosis in Cerebral Ischemia Reperfusion Injury by Activating Sestrin2. Neurochem Res 2023; 48:658-670. [PMID: 36306010 DOI: 10.1007/s11064-022-03791-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/12/2022] [Accepted: 10/12/2022] [Indexed: 02/07/2023]
Abstract
Cerebral ischemia reperfusion injury (CIRI) is the commonest cause of brain dysfunction. Up-regulation of POU domain class 2 transcription factor 2 (POU2F2) has been reported in patients with cerebral ischemia, while the role of POU2F2 in CIRI remains elusive. Middle cerebral artery occlusion/reperfusion (MCAO/R) in mice and oxygen and glucose deprivation/reperfusion (OGD/R) in mouse primary cortical neurons were used as models of CIRI injury in vivo and in vitro. Lentivirus-mediated POU2F2 knockdown further impaired CIRI induced by MCAO/R in mice, which was accompanied by increased-neurological deficits, cerebral infarct volume and neuronal loss. Our evidence suggested that POU2F2 deficiency deteriorated oxidative stress and ferroptosis according to the phenomenon such as the abatement of SOD, GSH, glutathione peroxidase 4 (GPX4) activity and accumulation of ROS, lipid ROS, 4-hydroxynonenal (4-HNE) and MDA. In vivo, primary cortical neurons with POU2F2 knockdown also showed worse neuronal damage, oxidative stress and ferroptosis. Sestrin2 (Sesn2) was reported as a neuroprotection gene and involved in ferroptosis mechanism. Up-regulation of Sesn2 was observed in the ischemic penumbra and OGD/R-induced neuronal cells. Further, we proved that POU2F2, as a transcription factor, could bind to Sesn2 promoter and positively regulate its expression. Sesn2 overexpression relieved oxidative stress and ferroptosis induced by POU2F2 knockdown in OGD/R-treated neurons. This research demonstrated that CIRI induced a compensatory increase of POU2F2 and Sesn2. Down-regulated POU2F2 exacerbated CIRI through the acceleration of oxidative stress and ferroptosis possibly by decreasing Sesn2 expression, which offers new sights into therapeutic mechanisms for CIRI.
Collapse
Affiliation(s)
- Jinghui Yang
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qian Guo
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, Jilin Province, China
| | - Lu Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, Jilin Province, China
| | - Shan Yu
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, Jilin Province, China.
| |
Collapse
|
7
|
Lin Y, Wang D, Zhao H, Li D, Li X, Lin L. Pou3f1 mediates the effect of Nfatc3 on ulcerative colitis-associated colorectal cancer by regulating inflammation. Cell Mol Biol Lett 2022; 27:75. [PMID: 36064319 PMCID: PMC9446766 DOI: 10.1186/s11658-022-00374-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 12/14/2022] Open
Abstract
Background Ulcerative colitis-associated colorectal cancer (UC-CRC) is an important complication of ulcerative colitis. Pou3f1 (POU class 3 homeobox 1) is a critical regulator for developmental events and cellular biological processes. However, the role of Pou3f1 in the development of UC-CRC is unclear. Methods In vivo, a UC-CRC mouse model was induced by azoxymethane (AOM) and dextran sulfate sodium (DSS). Body weight, colon length, mucosal damage, tumor formation, and survival rate were assessed to determine the progression of UC-CRC. Western blot, quantitative real-time PCR, ELISA, immunohistochemistry, immunofluorescence and TUNEL were performed to examine the severity of inflammation and tumorigenesis. In vitro, LPS-treated mouse bone marrow-derived macrophages (BMDMs) and RAW264.7 cells were used to study the role of Pou3f1 in inflammation. ChIP and luciferase reporter assays were used to confirm the interaction between Nfatc3 and Pou3f1. Results Pou3f1 expression was increased in the colons of UC-CRC mice, and its inhibition attenuated mucosal injury, reduced colon tumorigenesis and increased survival ratio. Knockdown of Pou3f1 suppressed cell proliferation and increased cell death in colon tumors. Both the in vivo and in vitro results showed that Pou3f1 depletion reduced the production of proinflammation mediators. In addition, ChIP and luciferase reporter assays demonstrated that Nfatc3 directly bound with the Pou3f1 promoter to induce its expression. The effect of Nfatc3 on the inflammatory response in macrophages was suppressed by Pou3f1 knockdown. Conclusion Overall, it outlines that Pou3f1 mediates the role of Nfatc3 in regulating macrophage inflammation and carcinogenesis in UC-CRC development. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00374-0.
Collapse
Affiliation(s)
- Yan Lin
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, China
| | - Dongxu Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, China
| | - Hong Zhao
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, China.,Department of Gastroenterology, The Second Affiliated Hospital of Shenyang Medical College, Shenyang, China
| | - Dongyue Li
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, China.,Department of Respiratory, Ansteel Group General Hospital, Anshan, China
| | - Xinning Li
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, China.,Medical Oncology Ward, Tieling Central Hospital, Tieling, China
| | - Lianjie Lin
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, China.
| |
Collapse
|
8
|
Lin J, Xia L, Oyang L, Liang J, Tan S, Wu N, Yi P, Pan Q, Rao S, Han Y, Tang Y, Su M, Luo X, Yang Y, Chen X, Yang L, Zhou Y, Liao Q. The POU2F1-ALDOA axis promotes the proliferation and chemoresistance of colon cancer cells by enhancing glycolysis and the pentose phosphate pathway activity. Oncogene 2022; 41:1024-1039. [PMID: 34997215 PMCID: PMC8837540 DOI: 10.1038/s41388-021-02148-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 01/20/2023]
Abstract
Cancer metabolic reprogramming enhances its malignant behaviors and drug resistance, which is regulated by POU domain transcription factors. This study explored the effect of POU domain class 2 transcription factor 1 (POU2F1) on metabolic reprogramming in colon cancer. The POU2F1 expression was analyzed in GEO dataset, TCGA cohorts and human colon cancer tissues by bioinformatics and immunohistochemistry. The effects of altered POU2F1 expression on proliferation, glucose metabolism and oxaliplatin sensitivity of colon cancer cells were tested. The impacts of POU2F1 on aldolase A (ALDOA) expression and malignant behaviors of colon cancer cells were examined. We found that up-regulated POU2F1 expression was associated with worse prognosis and oxaliplatin resistance in colon cancer. POU2F1 enhanced the proliferation, aerobic glycolysis and the pentose phosphate pathway (PPP) activity, but reduced oxidative stress and apoptosis in colon cancer cells, dependent on up-regulating ALDOA expression. Mechanistically, POU2F1 directly bound to the ALDOA promoter to enhance the ALDOA promoter activity in colon cancer cells. Moreover, activation of the POU2F1-ALDOA axis decreased the sensitivity to oxaliplatin in colon cancer cells. These data indicate that the POU2F1-ALDOA axis promotes the progression and oxaliplatin resistance by enhancing metabolic reprogramming in colon cancer. Our findings suggest that the POU2F1-ALDOA axis may be new therapeutic targets to overcome oxaliplatin resistance in colon cancer.
Collapse
Affiliation(s)
- Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jiaxin Liang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Pin Yi
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- University of South China, Hengyang, 421001, Hunan, China
| | - Qing Pan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- University of South China, Hengyang, 421001, Hunan, China
| | - Shan Rao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Min Su
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yiqing Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xiaohui Chen
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Lixia Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
9
|
DNA Repair Inhibition Leads to Active Export of Repetitive Sequences to the Cytoplasm Triggering an Inflammatory Response. J Neurosci 2021; 41:9286-9307. [PMID: 34593604 DOI: 10.1523/jneurosci.0845-21.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/25/2021] [Accepted: 09/01/2021] [Indexed: 01/02/2023] Open
Abstract
Adult-onset neurodegenerative diseases are often accompanied by evidence of a chronic inflammation that includes activation of microglial cells and altered levels of brain cytokines. Aspects of this response are likely secondary reactions to neurodegeneration, but for many illnesses the inflammation may itself be an early and even causative disease event. In such cases, the inflammation is referred to as "sterile" as it occurs in the absence of an actual bacterial or viral pathogen. A potent trigger of sterile inflammation in CNS microglia has been shown to be the presence of DNA in the cytoplasm (cytoDNA) induced either by direct DNA damage or by inhibited DNA repair. We have shown that cytoDNA comes from the cell nucleus as a result of insufficient DNA damage repair. Using wild-type and Atm -/- mouse microglia, we extend these observations here by showing that its genomic origins are not random, but rather are heavily biased toward transcriptionally inactive, intergenic regions, in particular repetitive elements and AT-rich sequences. Once released from the genome, in both males and females, we show that cytoDNA is actively exported to the cytoplasm by a CRM1-dependent mechanism. In the cytoplasm, it is degraded either by a cytosolic exonuclease, Trex1, or an autophagy pathway that ends with degradation in the lysosome. Blocking the accumulation of cytoDNA prevents the emergence of the sterile inflammation reaction. These findings offer new insights into the emergence of sterile inflammation and offer novel approaches that may be of use in combatting a wide range of neurodegenerative conditions.SIGNIFICANCE STATEMENT Sterile inflammation describes a state where the defenses of the immune system are activated in the absence of a true pathogen. A potent trigger of this unorthodox response is the presence of DNA in the cytoplasm, which immune cells interpret as an invading virus or pathogen. We show that when DNA damage increases, fragments of the cell's own genome are actively exported to the cytoplasm where they are normally degraded. If this degradation is incomplete an immune reaction is triggered. Both age and stress increase DNA damage, and as age-related neurodegenerative diseases are frequently accompanied by a chronic low-level inflammation, strategies that reduce the induction of cytoplasmic DNA or speed its clearance become attractive therapeutic targets.
Collapse
|
10
|
Wu Y, Zhang X, Wang J, Jin G, Zhang X. Research progress of the transcription factor Brn4 (Review). Mol Med Rep 2021; 23:179. [PMID: 33398372 PMCID: PMC7809911 DOI: 10.3892/mmr.2020.11818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
Brain 4 (Brn4) is a transcription factor belonging to the POU3 family, and it is important for the embryonic development of the neural tube, inner ear and pancreas. In addition, it serves a crucial role in neural stem cell differentiation and reprogramming. The present review aimed to summarize the chromosomal location, species homology, protein molecular structure and tissue distribution of Brn4, in addition to its biological processes, with the aim of providing a reference of its structure and function for further studies, and its potential use as a gene therapy target.
Collapse
Affiliation(s)
- Yuying Wu
- Department of Anatomy, Co-Innovation Center of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xunrui Zhang
- Department of Clinical Medicine, Faculty of Medicine, Xinglin College, Nantong University, Nantong, Jiangsu 226008, P.R. China
| | - Jue Wang
- Department of Anatomy, Co-Innovation Center of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Guohua Jin
- Department of Anatomy, Co-Innovation Center of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xinhua Zhang
- Department of Anatomy, Co-Innovation Center of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|