1
|
Tsai CL, Tang YH, Yang LY, Chao A, Wang CJ, Lin CY, Lai CH. Inhibition of nucleophosmin/B23 sensitizes ovarian cancer cells to immune check-point blockade via PD-L1 in ovarian cancer. J Formos Med Assoc 2024; 123:1045-1056. [PMID: 38821736 DOI: 10.1016/j.jfma.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 03/05/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) that against programmed cell death protein-1 (PD-1) and its ligand PD-L1 have been approved as a promising treatment of many human cancers. However, the responses to these ICIs were limited in patients with ovarian cancer. Studies have indicated that the response to PD-1/PD-L1 blockade might be correlated with the PD-L1 expression level in cancer cells. Nucleophosmin (NPM/B23) was found to be a potential target for immunotherapy. Whether NPM/B23 plays a role in cancer-associated immunity, such as PD-1/PD-L1 axis, and its underlying mechanisms remain largely unknown in ovarian cancer. METHODS We applied ovarian cancer cell lines as research models. The effect of modulating PD-L1 by NPM/B23 was subsequently confirmed via Western blot, flow cytometry, qRT-PCR, luciferase reporter assays, and immunoprecipitation. Protein stability and ubiquitin assay assays were used to analyze the interplay between NPM/B23 and NF-ĸB/p65 in PD-L1 regulation. The MOSEC/Luc xenograft mouse model was used to validate the role of NPM/B23-PD-L1 through tumor growth in vivo. RESULTS Our results revealed that NPM/B23 negatively regulates PD-L1 expression via a protein complex with NF-κB/p65 and through an IFN-γ pathway. Moreover, NPM/B23 inhibitor/modulator sensitized ovarian cancer cells to the anti-PD-1 antibody by regulating PD-L1 expression in the immunocompetent mouse model. Compared to anti-PD-1 antibody alone, a combination of anti-PD-1 antibody and NPM/B23 inhibitor/modulator showed reduced tumorigenesis and increased CD8+ T-cell expansion, thus contributing to prolonged survival on MOSEC/Luc-bearing mouse model. CONCLUSION Targeting NPM/B23 is a novel and potential therapeutic approach to sensitize ovarian cancer cells to immunotherapy.
Collapse
Affiliation(s)
- Chia-Lung Tsai
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Yun-Hsin Tang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Branch, and Chang Gung University, College of Medicine, Taoyuan, Taiwan; Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taiwan
| | - Lan-Yan Yang
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan; Biostatics Unit, and Clinical Trial Center, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taoyuan, Taiwan; Clinical Informatics and Medical Statistics Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Angel Chao
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Branch, and Chang Gung University, College of Medicine, Taoyuan, Taiwan; Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taiwan
| | - Chin-Jung Wang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Branch, and Chang Gung University, College of Medicine, Taoyuan, Taiwan; Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taiwan
| | - Chiao-Yun Lin
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Branch, and Chang Gung University, College of Medicine, Taoyuan, Taiwan; Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taiwan.
| | - Chyong-Huey Lai
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Branch, and Chang Gung University, College of Medicine, Taoyuan, Taiwan; Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taiwan.
| |
Collapse
|
2
|
Ruan Y, Xu H, Ji X. High expression of NPM1 via the Wnt/β-catenin signalling pathway might predict poor prognosis for patients with prostate adenocarcinoma. Clin Exp Pharmacol Physiol 2022; 49:525-535. [PMID: 35108408 DOI: 10.1111/1440-1681.13628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 11/29/2022]
Abstract
Prostate adenocarcinoma (PRAD) occurs only in males and has a higher incidence rate than other cancers. NPM1 is a nucleocytoplasmic shuttling protein that participates in the development of multiple tumours. The aim of this research was to explore the effect of the upregulation or downregulation of the NPM1 protein on the malignancy of prostate cancer and its possible signalling pathway. Prostate adenocarcinoma cell lines were used in this study, including RWPE-1, PC3, LNCap, and 22RV1 cells. Our research revealed that NPM1 was widely expressed in the PRAD cell lines, as determined by Western blotting, and that the levels of NPM1 protein were positively correlated with the degree of malignancy of the PRAD cell lines. Through interference and overexpression experiments, we found that PC3 cells growth was inhibited after NPM1 knockdown and that this inhibition was partly reversed by CTNNB1 overexpression; in contrast, PC3 cells growth was promoted after NPM1 overexpression, and this promotion was partly reversed by CTNNB1 knockdown, suggesting that NPM1 and CTNNB1 play important roles in the progression of prostate cancer cells via the Wnt/β-catenin signalling pathway. NPM1 may serve as an important biomarker and candidate therapeutic for patients with prostate cancer.
Collapse
Affiliation(s)
- Yong Ruan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, 550025, China.,College of Animal Science, Guizhou University, Guiyang, 550025, China.,Medical College, Guizhou University, Guiyang, 550025, China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, 550025, China.,College of Animal Science, Guizhou University, Guiyang, 550025, China.,Medical College, Guizhou University, Guiyang, 550025, China
| | - Xinqin Ji
- College of Animal Science, Guizhou University, Guiyang, 550025, China.,Medical College, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
3
|
Pharmacological Treatment of Advanced, Persistent or Metastatic Endometrial Cancer: State of the Art and Perspectives of Clinical Research for the Special Issue "Diagnosis and Management of Endometrial Cancer". Cancers (Basel) 2021; 13:cancers13246155. [PMID: 34944775 PMCID: PMC8699529 DOI: 10.3390/cancers13246155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/27/2021] [Accepted: 12/03/2021] [Indexed: 01/05/2023] Open
Abstract
Patients with metastatic or recurrent endometrial cancer (EC) not suitable for surgery and/or radiotherapy are candidates for pharmacological treatment frequently with unsatisfactory clinical outcomes. The purpose of this paper was to review the results obtained with chemotherapy, hormonal therapy, biological agents and immune checkpoint inhibitors in this clinical setting. The combination of carboplatin (CBDCA) + paclitaxel (PTX) is the standard first-line chemotherapy capable of achieving objective response rates (ORRs) of 43-62%, a median progression-free survival (PFS) of 5.3-15 months and a median overall survival (OS) of 13.2-37.0 months, respectively, whereas hormonal therapy is sometimes used in selected patients with slow-growing steroid receptor-positive EC. The combination of endocrine therapy with m-TOR inhibitors or cyclin-dependent kinase 4/6 inhibitors is currently under evaluation. Disappointing ORRs have been associated with epidermal growth factor receptor (EGFR) inhibitors, HER-2 inhibitors and multi-tyrosine kinase inhibitors used as single agents, and clinical trials evaluating the addition of bevacizumab to CBDCA + PTX have reported conflicting results. Immune checkpoint inhibitors, and especially pembrolizumab and dostarlimab, have achieved an objective response in 27-47% of highly pretreated patients with microsatellite instability-high (MSI-H)/mismatch repair (MMR)-deficient (-d) EC. In a recent study, the combination of lenvatinib + pembrolizumab produced a 24-week response rate of 38% in patients with highly pretreated EC, ranging from 64% in patients with MSI-H/MMR-d to 36% in those with microsatellite stable/MMR-proficient tumors. Four trials are currently investigating the addition of immune checkpoint inhibitors to PTX + CBDCA in primary advanced or recurrent EC, and two trials are comparing pembrolizumab + lenvatinib versus either CBDCA + PTX as a first-line treatment of advanced or recurrent EC or versus single-agent chemotherapy in advanced, recurrent or metastatic EC after one prior platinum-based chemotherapy.
Collapse
|
4
|
A Patient-Derived Xenograft Model of Dedifferentiated Endometrial Carcinoma: A Proof-of-Concept Study for the Identification of New Molecularly Informed Treatment Approaches. Cancers (Basel) 2021; 13:cancers13235962. [PMID: 34885073 PMCID: PMC8656552 DOI: 10.3390/cancers13235962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Reliable animal models of human malignancies are paramount for preclinical studies of novel treatment approaches. Here, we successfully developed a patient-derived xenograft (PDX) model of dedifferentiated endometrial carcinoma (DEC)–an uncommon uterine malignancy that is generally unresponsive to standard chemo- and radiotherapy. The murine model–termed PDX-mLung–was established through the implantation of lung metastatic lesions obtained from a woman with DEC. Histologic and molecular findings revealed that PDX-mLung was highly similar to the parent human malignant lesions (both primary DEC and lung metastases). Importantly, molecular analyses revealed that PDX-mLung exhibited druggable alterations including a FGFR2 mutation and CCNE2 amplification. The former was targeted with the FGFR inhibitor lenvatinib while the latter with the cell cycle inhibitor palbociclib. The combination of the two drugs exhibited synergistic therapeutic effects against in vivo tumor growth. Collectively, these data illustrate the value of PDX models for preclinical testing of new molecularly informed therapies in difficult-to-treat gynecologic malignancies. Our results may also prompt further clinical research to examine whether the combination of lenvatinib and palbociclib has potential to improve clinical outcomes of women with DEC. Abstract Conventional treatment of dedifferentiated endometrial carcinoma (DEC)–an uncommon and highly aggressive uterine malignancy–is beset by high failure rates. A line of research that holds promise to overcome these limitations is tailored treatments targeted on specific molecular alterations. However, suitable preclinical platforms to allow a reliable implementation of this approach are still lacking. Here, we developed a patient-derived xenograft (PDX) model for preclinical testing of investigational drugs informed by molecular data. The model–termed PDX-mLung was established in mice implanted with lung metastatic lesions obtained from a patient with DEC. Histologic and whole-exome genetic analyses revealed a high degree of identity between PDX-mLung and the patient’s parental lesions (both primary DEC and lung metastases). Interestingly, molecular analyses revealed that PDX-mLung harbored druggable alterations including a FGFR2 mutation and CCNE2 amplification. Targeted combined treatment with the FGFR inhibitor lenvatinib and the cell cycle inhibitor palbociclib was found to exert synergistic therapeutic effects against in vivo tumor growth. Based on the results of RNA sequencing, lenvatinib and palbociclib were found to exert anti-tumor effects by interfering interferon signaling and activating hormonal pathways, respectively. Collectively, these data provide proof-of-concept evidence on the value of PDX models for preclinical testing of molecularly informed drug therapy in difficult-to-treat human malignancies. Further clinical research is needed to examine more rigorously the potential usefulness of the lenvatinib and palbociclib combination in patients with DEC.
Collapse
|
5
|
Lin CY, Wang CC, Wu RC, Yang LY, Chang CB, Pan YB, Chao A, Lai CH. Inhibition of BIRC2 Sensitizes α7-HPV-Related Cervical Squamous Cell Carcinoma to Chemotherapy. Int J Mol Sci 2021; 22:11020. [PMID: 34681681 PMCID: PMC8539319 DOI: 10.3390/ijms222011020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 01/30/2023] Open
Abstract
The α7-human papillomavirus (HPV)-related cervical squamous cell carcinoma (SCC) is associated with poor prognosis. We compared the genomic profiles of this disease in a cohort corresponding to the 2001-2014 period with various responses to radiotherapy or concurrent chemoradiation through microRNA (miR) profiling involving miR 4.0 array and human transcriptome array 2.0 analyses. A real-time quantitative polymerase chain reaction was then conducted to identify the predictive biomarkers. A significantly lower expression of miR143-3p in recurrent tumors (p = 0.0309) relative to that in nonrecurrent tumors was observed. The miR143-3p targeted the mRNA expression of the baculoviral inhibitor of the apoptosis protein (IAP) repeat-containing 2 (BIRC2; p = 0.0261). The BIRC2 protein levels (p = 0.0023) were significantly higher in recurrent tumors than in nonrecurrent tumors. Moreover, the miR-143-3p sensitized the response of α7-HPV-related cervical SCC to chemotherapy by targeting BIRC2. A combination of BIRC2-inhibitor LCL161 and topotecan exerted synergistic effects on cancer cells and animal tumor models. In a pooled cohort of α7-HPV-related cervical SCC (including mixed infections with non-α7-HPV) treated between 1993 and 2014, high BIRC2 expression was associated with significantly worse outcomes (cancer-specific survival, hazard ratio (HR) = 1.42, p = 0.008; progression-free survival, HR = 1.64; p = 0.005). Summarily, BIRC2 constitutes a novel prognostic factor and therapeutic target for α7-HPV-related cervical SCC.
Collapse
Affiliation(s)
- Chiao-Yun Lin
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Branch and Chang Gung University College of Medicine, Taoyuan 333, Taiwan; (C.-Y.L.); (C.-B.C.); (A.C.)
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Linkou Branch Taoyuan, Taoyuan 333, Taiwan; (C.-C.W.); (R.-C.W.)
| | - Chun-Chieh Wang
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Linkou Branch Taoyuan, Taoyuan 333, Taiwan; (C.-C.W.); (R.-C.W.)
- Departments of Radiation Oncology, Chang Gung Memorial Hospital, Linkou Branch Taoyuan, Taoyuan 333, Taiwan
| | - Ren-Chin Wu
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Linkou Branch Taoyuan, Taoyuan 333, Taiwan; (C.-C.W.); (R.-C.W.)
- Department of Pathology, Chang Gung Memorial Hospital, Linkou Branch and Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Lan-Yan Yang
- Biostatics Unit, Clinical Trial Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 333, Taiwan;
- Clinical Informatics and Medical Statistics Research Center, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Chen-Bin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Branch and Chang Gung University College of Medicine, Taoyuan 333, Taiwan; (C.-Y.L.); (C.-B.C.); (A.C.)
| | - Yu-Bin Pan
- Biostatics Unit, Clinical Trial Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 333, Taiwan;
| | - Angel Chao
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Branch and Chang Gung University College of Medicine, Taoyuan 333, Taiwan; (C.-Y.L.); (C.-B.C.); (A.C.)
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Linkou Branch Taoyuan, Taoyuan 333, Taiwan; (C.-C.W.); (R.-C.W.)
| | - Chyong-Huey Lai
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Branch and Chang Gung University College of Medicine, Taoyuan 333, Taiwan; (C.-Y.L.); (C.-B.C.); (A.C.)
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Linkou Branch Taoyuan, Taoyuan 333, Taiwan; (C.-C.W.); (R.-C.W.)
| |
Collapse
|
6
|
Zheng S, Li X, Deng T, Liu R, Bai J, Zuo T, Guo Y, Chen J. KPNA2 promotes renal cell carcinoma proliferation and metastasis via NPM. J Cell Mol Med 2021; 25:9255-9267. [PMID: 34469024 PMCID: PMC8500977 DOI: 10.1111/jcmm.16846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 07/06/2021] [Accepted: 07/26/2021] [Indexed: 02/03/2023] Open
Abstract
Karyopherin α2 (KPNA2), involved in nucleocytoplasmic transport, has been reported to be up‐regulated in tumorigenesis. However, comprehensive studies of KPNA2 functions in renal cell carcinoma (RCC) are still lacking. In this study, we aim to investigate the roles of KPNA2 in kidney tumour development. Our results showed that down‐regulation of KPNA2 inhibited the proliferation and invasion of kidney tumour cell cells in vitro, while the cell cycle arrest and cellular apoptosis were induced once KPNA2 was silenced. Repression of KPNA2 was proved to be efficient to repress tumorigenesis and development of kidney tumour in in nude mice. Furthermore, one related participator, NPM, was identified based on Co‐IP/MS and bioinformatics analyses. The up‐regulation of NPM attenuates the efficiency of knockdown KPNA2. These results indicated that KPNA2 may regulate NPM to play a crucial role for kidney tumour development.
Collapse
Affiliation(s)
- Song Zheng
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaofan Li
- Department of Hematology, Fujian Institute of Hematology, Union Hospital, Fujian Medical University, Fuzhou, China.,Fujian Provincial Key Laboratory on Hematology, Fujian Medical University, Fuzhou, China
| | - Ting Deng
- Department of Gynecology, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Rong Liu
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Junjie Bai
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Teng Zuo
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yinan Guo
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jianhui Chen
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
7
|
Nucleophosmin/B23 promotes endometrial cancer cell escape from macrophage phagocytosis by increasing CD24 expression. J Mol Med (Berl) 2021; 99:1125-1137. [PMID: 33954835 DOI: 10.1007/s00109-021-02079-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/22/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
Despite recent therapeutic breakthroughs, advanced and/or recurrent endometrial cancer still poses a significant health burden globally. While immunotherapy can theoretically lead to durable responses, the benefits to patients remain limited. In an effort to identify novel immunotherapeutic targets, we specifically focused on the potential role of nucleophosmin (NPM, also known as B23) - a nucleolar phosphoprotein involved in tumorigenesis - in cancer immune evasion. Expression profiling with oligonucleotide microarrays was conducted to identify differentially expressed genes in NPM/B23-silenced endometrial cancer cells. CD24 - a heat-stable antigen commonly overexpressed in solid tumors and a target for cancer immunotherapy - was identified as one of the key NPM/B23-regulated molecules. We found that NPM/B23 was capable of inducing CD24 expression, with the Sp1 binding site in the CD24 promoter being essential for NPM/B23-mediated transcriptional activation. Interestingly, NPM/B23 silencing in endometrial cancer cells enhanced phagocytic removal by macrophages through a decreased exposure of CD24 on the cell surface. Conversely, restoration of CD24 expression in NPM/B23-silenced endometrial cancer cells inhibited macrophage-mediated phagocytosis. These results indicate that NPM/B23-driven CD24 overexpression enables endometrial cancer cells to evade from phagocytosis. We further suggest that CD24 may serve as a novel target for endometrial cancer immunotherapy. KEY MESSAGES: NPM/B23 induced CD24 expression in endometrial tumorigenesis. Sp1 binding site in the CD24 promoter is essential for the activation. NPM/B23 silencing enhanced phagocytosis by macrophages through decrease of CD24 on cancer cells. Restoration of CD24 expression in NPM/B23-silenced cancer cells inhibited macrophage-mediated phagocytosis.
Collapse
|
8
|
He S, Fang X, Xia X, Hou T, Zhang T. Targeting CDK9: A novel biomarker in the treatment of endometrial cancer. Oncol Rep 2020; 44:1929-1938. [PMID: 32901849 PMCID: PMC7551504 DOI: 10.3892/or.2020.7746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/21/2020] [Indexed: 12/18/2022] Open
Abstract
Endometrial cancer is one of the three major malignant tumors of the female reproductive system. Although cyclin-dependent kinase 9 (CDK9) has a definitive pathogenic role in various types of cancer, little is known concerning its function in endometrial cancer. Our study was conducted to evaluate the expression and therapeutic potential of CDK9 in endometrial cancer. CDK9 expression was determined by immunohistochemistry in endometrial cancer tissues constructed with paired primary, metastatic, and recurrent tumor tissues from 32 endometrial cancer patients. Small interfering RNA (siRNA) and inhibitors of CDK9 were used to evaluate the effect of CDK9 inhibition on the anti-apoptotic activity and proliferation in endometrial cancer cells. Colony formation assay and wound-healing assays were adopted to assess clonal formation and migratory capacity. The results of the immunohistochemistry demonstrated that CDK9 was highly expressed in the human endometrial cancer cell lines; moreover, it was elevated in metastatic and recurrent endometrial tumor tissue compared when compared with that in patient-matched primary endometrial tumor tissue. Knockdown of CDK9 with siRNA and inhibition of CDK9 activity with the inhibitor suppressed cell proliferation and promoted apoptosis in endometrial cancer. In conclusion, our results provide evidence that CDK9 may be a potential prognostic biomarker and a promising therapeutic target for the treatment of endometrial cancer in the future.
Collapse
Affiliation(s)
- Shasha He
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| | - Xiaoling Fang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| | - Xiaomeng Xia
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| | - Tao Hou
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| | - Tingting Zhang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| |
Collapse
|