1
|
Wachter E, Fox LH, Lu Z, Jones AD, Casto ND, Waltz SE. RON Receptor Signaling and the Tumor Microenvironment. Genes (Basel) 2025; 16:437. [PMID: 40282397 PMCID: PMC12026484 DOI: 10.3390/genes16040437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
The immune microenvironment plays a critical role in tumor growth and development. Immune activation within the tumor microenvironment is dynamic and can be modulated by tumor intrinsic and extrinsic signaling. The RON receptor tyrosine kinase is canonically associated with growth signaling and wound healing, and this receptor is frequently overexpressed in a variety of cancers. Epithelial cells, macrophages, dendritic cells, and fibroblasts express RON, presenting an important axis by which RON overexpressing tumors influence the tumor microenvironment. This review synthesizes the existing literature on the roles of tumor cell-intrinsic and -extrinsic RON signaling, highlighting areas of interest and gaps in knowledge that show potential for future studies.
Collapse
Affiliation(s)
- Emily Wachter
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Levi H. Fox
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Zhixin Lu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Angelle D. Jones
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Nicholas D. Casto
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Susan E. Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
- Research Service, Cincinnati Veterans Affairs Hospital Medical Center, Cincinnati, OH 45220, USA
| |
Collapse
|
2
|
Hirao H, Honda M, Tomita M, Li L, Adawy A, Xue W, Hibi T. Intravital Imaging of Immune Responses in the Cancer Microenvironment. Cancer Med 2025; 14:e70899. [PMID: 40257446 PMCID: PMC12010765 DOI: 10.1002/cam4.70899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/18/2025] [Accepted: 04/09/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND To date, many types of immune cells have been identified, but their precise role in cancer immunity remains unclear. Understanding the immune responses involved in cancer and the cancer microenvironment is becoming increasingly important for elucidating disease mechanisms. In recent years, the application of intravital imaging in cancer research has provided new insights into the mechanisms of cancer-specific immune events, including innate and adaptive immunity. RESULTS In this review, we focus on the emerging role of intravital imaging in cancer research and describe how cancer and immune cells can be observed using intravital imaging in vivo. We also discuss new insights gained by this state-of-the-art technique. CONCLUSIONS Intravital imaging is a relatively new field of research that offers significant advantages, including the ability to directly capture cell-cell interactions, pathophysiology, and immune cell dynamics in the cancer microenvironment in vivo.
Collapse
Affiliation(s)
- Hiroki Hirao
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Masaki Honda
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Masahiro Tomita
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Lianbo Li
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Ahmad Adawy
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Weijie Xue
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Taizo Hibi
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| |
Collapse
|
3
|
Przygodzka P, Szulc-Kielbik I, Kielbik M, Pacholczyk M, Klink M. Neuromedin U in the tumor microenvironment - Possible actions in tumor progression. Biochim Biophys Acta Rev Cancer 2025; 1880:189269. [PMID: 39842617 DOI: 10.1016/j.bbcan.2025.189269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
Tumor microenvironment (TME) has become a major focus of cancer research as a promising therapeutic target. TME comprises cancer cells surrounded by nonmalignant cells, vessels, lymphoid organs, immune cells, nerves, intercellular components, molecules and metabolites located within or near the tumor lesion. Neuromedin U (NMU), a secretory peptide identified in the TME, has gained much attention as an important player in cancer and nonmalignant cell crosstalk. NMU receptors were detected in cancer cells as well as in nonmalignant TME components, such as immune, stromal and endothelial cells. We propose here to discuss the concept that NMU secreted by cancer cells activates cellular components of TME and thus contributes to the formation of microenvironment that favors tumor growth and cancer progression. We summarized the available data on cancer tissues and cell types that have been identified as a source of NMU and/or receptor-expressing NMU targets. We made a critical selection of NMU-receptor positive cell types that are known components of the TME of most malignant tumors. Finally, we discussed whether NMUs and NMU receptors represent a potential therapeutic target for cancer treatment, and summarized information on the tools available to modulate their activity.
Collapse
Affiliation(s)
- Patrycja Przygodzka
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland.
| | - Izabela Szulc-Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland
| | - Michal Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland
| | - Marcin Pacholczyk
- Silesian University of Technology, Department of Systems Biology and Engineering, 16 Akademicka Str., 44-100 Gliwice, Poland
| | - Magdalena Klink
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland
| |
Collapse
|
4
|
Kzhyshkowska J, Shen J, Larionova I. Targeting of TAMs: can we be more clever than cancer cells? Cell Mol Immunol 2024; 21:1376-1409. [PMID: 39516356 PMCID: PMC11607358 DOI: 10.1038/s41423-024-01232-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
АBSTRACT: With increasing incidence and geography, cancer is one of the leading causes of death, reduced quality of life and disability worldwide. Principal progress in the development of new anticancer therapies, in improving the efficiency of immunotherapeutic tools, and in the personification of conventional therapies needs to consider cancer-specific and patient-specific programming of innate immunity. Intratumoral TAMs and their precursors, resident macrophages and monocytes, are principal regulators of tumor progression and therapy resistance. Our review summarizes the accumulated evidence for the subpopulations of TAMs and their increasing number of biomarkers, indicating their predictive value for the clinical parameters of carcinogenesis and therapy resistance, with a focus on solid cancers of non-infectious etiology. We present the state-of-the-art knowledge about the tumor-supporting functions of TAMs at all stages of tumor progression and highlight biomarkers, recently identified by single-cell and spatial analytical methods, that discriminate between tumor-promoting and tumor-inhibiting TAMs, where both subtypes express a combination of prototype M1 and M2 genes. Our review focuses on novel mechanisms involved in the crosstalk among epigenetic, signaling, transcriptional and metabolic pathways in TAMs. Particular attention has been given to the recently identified link between cancer cell metabolism and the epigenetic programming of TAMs by histone lactylation, which can be responsible for the unlimited protumoral programming of TAMs. Finally, we explain how TAMs interfere with currently used anticancer therapeutics and summarize the most advanced data from clinical trials, which we divide into four categories: inhibition of TAM survival and differentiation, inhibition of monocyte/TAM recruitment into tumors, functional reprogramming of TAMs, and genetic enhancement of macrophages.
Collapse
Affiliation(s)
- Julia Kzhyshkowska
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 1-3, 68167, Mannheim, Germany.
- German Red Cross Blood Service Baden-Württemberg - Hessen, Friedrich-Ebert Str. 107, 68167, Mannheim, Germany.
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050, Lenina av.36, Tomsk, Russia.
- Bashkir State Medical University of the Ministry of Health of Russia, 450000, Teatralnaya Street, 2a, Ufa, Russia.
| | - Jiaxin Shen
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 1-3, 68167, Mannheim, Germany
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050, Lenina av.36, Tomsk, Russia
- Bashkir State Medical University of the Ministry of Health of Russia, 450000, Teatralnaya Street, 2a, Ufa, Russia
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009, Kooperativnyi st, Tomsk, Russia
| |
Collapse
|
5
|
Deo A, Sleeman JP, Shaked Y. The role of host response to chemotherapy: resistance, metastasis and clinical implications. Clin Exp Metastasis 2024; 41:495-507. [PMID: 37999904 DOI: 10.1007/s10585-023-10243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
Chemotherapy remains the primary treatment for most metastatic cancers. However, the response to chemotherapy and targeted agents is often transient, and concurrent development of resistance is the primary impediment to effective cancer therapy. Strategies to overcome resistance to treatment have focused on cancer cell intrinsic factors and the tumor microenvironment (TME). Recent evidence indicates that systemic chemotherapy has a significant impact on the host that either facilitates tumor growth, allowing metastatic spread, or renders treatment ineffective. These host responses include the release of bone marrow-derived cells, activation of stromal cells in the TME, and induction of different molecular effectors. Here, we provide an overview of chemotherapy-induced systemic host responses that support tumor aggressiveness and metastasis, and which contribute to therapy resistance. Studying host responses to chemotherapy provides a solid basis for the development of adjuvant strategies to improve treatment outcomes and delay resistance to chemotherapy. This review discusses the emerging field of host response to cancer therapy, and its preclinical and potential clinical implications, explaining how under certain circumstances, these host effects contribute to metastasis and resistance to chemotherapy.
Collapse
Affiliation(s)
- Abhilash Deo
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jonathan P Sleeman
- European Centre for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Karlsruhe Institute for Technology (KIT), IBCS-BIP, Campus Nord, 76344, Eggenstein- Leopoldshafen, Germany
| | - Yuval Shaked
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
6
|
Surve CR, Duran CL, Ye X, Chen X, Lin Y, Harney AS, Wang Y, Sharma VP, Stanley ER, Cox D, McAuliffe JC, Entenberg D, Oktay MH, Condeelis JS. Signaling events at TMEM doorways provide potential targets for inhibiting breast cancer dissemination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574676. [PMID: 38260319 PMCID: PMC10802469 DOI: 10.1101/2024.01.08.574676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Tumor cell intravasation is essential for metastatic dissemination, but its exact mechanism is incompletely understood. We have previously shown that in breast cancer, the direct and stable association of a tumor cell expressing Mena, a Tie2hi/VEGFhi macrophage, and a vascular endothelial cell, creates an intravasation portal, called a "tumor microenvironment of metastasis" (TMEM) doorway, for tumor cell intravasation, leading to dissemination to distant sites. The density of TMEM doorways, also called TMEM doorway score, is a clinically validated prognostic marker of distant metastasis in breast cancer patients. Although we know that tumor cells utilize TMEM doorway-associated transient vascular openings to intravasate, the precise signaling mechanisms involved in TMEM doorway function are only partially understood. Using two mouse models of breast cancer and an in vitro assay of intravasation, we report that CSF-1 secreted by the TMEM doorway tumor cell stimulates local secretion of VEGF-A from the Tie2hi TMEM doorway macrophage, leading to the dissociation of endothelial junctions between TMEM doorway associated endothelial cells, supporting tumor cell intravasation. Acute blockade of CSF-1R signaling decreases macrophage VEGF-A secretion as well as TMEM doorway-associated vascular opening, tumor cell trans-endothelial migration, and dissemination. These new insights into signaling events regulating TMEM doorway function should be explored further as treatment strategies for metastatic disease.
Collapse
Affiliation(s)
- Chinmay R. Surve
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
| | - Camille L. Duran
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York
| | - Xianjun Ye
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
| | - Xiaoming Chen
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Yu Lin
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Allison S. Harney
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
| | - Yarong Wang
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
| | - Ved P. Sharma
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
| | - E. Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Dianne Cox
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - John C. McAuliffe
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York
| | - David Entenberg
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
| | - Maja H. Oktay
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York
| | - John S. Condeelis
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
7
|
Banerjee K, Kerzel T, Bekkhus T, de Souza Ferreira S, Wallmann T, Wallerius M, Landwehr LS, Agardy DA, Schauer N, Malmerfeldt A, Bergh J, Bartish M, Hartman J, Östman A, Squadrito ML, Rolny C. VEGF-C-expressing TAMs rewire the metastatic fate of breast cancer cells. Cell Rep 2023; 42:113507. [PMID: 38041815 DOI: 10.1016/j.celrep.2023.113507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 12/04/2023] Open
Abstract
The expression of pro-lymphangiogenic VEGF-C in primary tumors is associated with sentinel lymph node metastasis in most solid cancer types. However, the impact of VEGF-C on distant organ metastasis remains unclear. Perivascular tumor-associated macrophages (TAMs) play a crucial role in guiding hematogenous spread of cancer cells by establishing metastatic pathways within the tumor microenvironment. This process supports breast cancer cell intravasation and metastatic dissemination. We show here that VEGF-C-expressing TAMs reduce the dissemination of mammary cancer cells to the lungs while concurrently increasing lymph node metastasis. These TAMs express podoplanin and interact with normalized tumor blood vessels expressing VEGFR3. Moreover, clinical data suggest inverse association between VEGF-C-expressing TAMs and breast cancer malignancy. Thus, our study elucidates the paradoxical role of VEGF-C-expressing TAMs in redirecting cancer cells to preferentially disseminate to lymph nodes rather than to lungs, partially achieved by normalizing tumor blood vessels and promoting lymphangiogenesis.
Collapse
Affiliation(s)
- Kaveri Banerjee
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Thomas Kerzel
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita Salute San Raffaele University, 20132 Milan, Italy
| | - Tove Bekkhus
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | | | - Tatjana Wallmann
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Majken Wallerius
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | | | | | - Nele Schauer
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Anna Malmerfeldt
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Jonas Bergh
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden; Breast Center, Karolinska Comprehensive Cancer Center and Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Margarita Bartish
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden; Gerald Bronfman Department of Oncology, Segal Cancer Centre, Lady Davis Institute and Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | - Johan Hartman
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden; Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Arne Östman
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Mario Leonardo Squadrito
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita Salute San Raffaele University, 20132 Milan, Italy.
| | - Charlotte Rolny
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden.
| |
Collapse
|
8
|
Farahani MK, Gharibshahian M, Rezvani A, Vaez A. Breast cancer brain metastasis: from etiology to state-of-the-art modeling. J Biol Eng 2023; 17:41. [PMID: 37386445 DOI: 10.1186/s13036-023-00352-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 05/02/2023] [Indexed: 07/01/2023] Open
Abstract
Currently, breast carcinoma is the most common form of malignancy and the main cause of cancer mortality in women worldwide. The metastasis of cancer cells from the primary tumor site to other organs in the body, notably the lungs, bones, brain, and liver, is what causes breast cancer to ultimately be fatal. Brain metastases occur in as many as 30% of patients with advanced breast cancer, and the 1-year survival rate of these patients is around 20%. Many researchers have focused on brain metastasis, but due to its complexities, many aspects of this process are still relatively unclear. To develop and test novel therapies for this fatal condition, pre-clinical models are required that can mimic the biological processes involved in breast cancer brain metastasis (BCBM). The application of many breakthroughs in the area of tissue engineering has resulted in the development of scaffold or matrix-based culture methods that more accurately imitate the original extracellular matrix (ECM) of metastatic tumors. Furthermore, specific cell lines are now being used to create three-dimensional (3D) cultures that can be used to model metastasis. These 3D cultures satisfy the requirement for in vitro methodologies that allow for a more accurate investigation of the molecular pathways as well as a more in-depth examination of the effects of the medication being tested. In this review, we talk about the latest advances in modeling BCBM using cell lines, animals, and tissue engineering methods.
Collapse
Affiliation(s)
| | - Maliheh Gharibshahian
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Alireza Rezvani
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Zhang X, Bai W, Hu L, Ha H, Du Y, Xiong W, Wang H, Shang P. The pleiotropic mode and molecular mechanism of macrophages in promoting tumor progression and metastasis. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:91-104. [PMID: 36071369 DOI: 10.1007/s12094-022-02932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023]
Abstract
Macrophages are the most abundant immune cells in primary and metastatic tumor tissues. Studies have shown that macrophages mainly exhibit a tumor-promoting phenotype and play a key role in tumor progression and metastasis. Therefore, many macrophage-targeted drugs have entered clinical trials. However, compared to preclinical studies, some clinical trial results showed that macrophage-targeted therapy did not achieve the desired effect. This may be because most of what we know about macrophages comes from in vitro experiments and animal models, while macrophages in the more complex human microenvironment are still poorly understood. With the development of technologies such as single-cell RNA sequencing, we have gained a new understanding of the origin, classification and functional mechanism of tumor-associated macrophages. Therefore, this study reviewed the recent progress of macrophages in promoting tumor progression and metastasis, aiming to provide some help for the formulation of optimal strategies for macrophage-targeted therapy.
Collapse
Affiliation(s)
- Xingxing Zhang
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Wenxiu Bai
- Ultrasonic Special Examination Department, Tai An TSCM Hospital, Taian, 271000, Shandong, China
| | - Lisha Hu
- Ultrasonic Special Examination Department, Tai An TSCM Hospital, Taian, 271000, Shandong, China
| | - Hualan Ha
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Yuelin Du
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Wei Xiong
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Hongbo Wang
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Panfeng Shang
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
10
|
Entenberg D, Oktay MH, Condeelis JS. Intravital imaging to study cancer progression and metastasis. Nat Rev Cancer 2023; 23:25-42. [PMID: 36385560 PMCID: PMC9912378 DOI: 10.1038/s41568-022-00527-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
Navigation through the bulk tumour, entry into the blood vasculature, survival in the circulation, exit at distant sites and resumption of proliferation are all steps necessary for tumour cells to successfully metastasize. The ability of tumour cells to complete these steps is highly dependent on the timing and sequence of the interactions that these cells have with the tumour microenvironment (TME), including stromal cells, the extracellular matrix and soluble factors. The TME thus plays a major role in determining the overall metastatic phenotype of tumours. The complexity and cause-and-effect dynamics of the TME cannot currently be recapitulated in vitro or inferred from studies of fixed tissue, and are best studied in vivo, in real time and at single-cell resolution. Intravital imaging (IVI) offers these capabilities, and recent years have been a time of immense growth and innovation in the field. Here we review some of the recent advances in IVI of mammalian models of cancer and describe how IVI is being used to understand cancer progression and metastasis, and to develop novel treatments and therapies. We describe new techniques that allow access to a range of tissue and cancer types, novel fluorescent reporters and biosensors that allow fate mapping and the probing of functional and phenotypic states, and the clinical applications that have arisen from applying these techniques, reporters and biosensors to study cancer. We finish by presenting some of the challenges that remain in the field, how to address them and future perspectives.
Collapse
Affiliation(s)
- David Entenberg
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| | - Maja H Oktay
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| | - John S Condeelis
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
11
|
Assessment of MRI to estimate metastatic dissemination risk and prometastatic effects of chemotherapy. NPJ Breast Cancer 2022; 8:101. [PMID: 36056005 PMCID: PMC9440218 DOI: 10.1038/s41523-022-00463-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
Metastatic dissemination in breast cancer is regulated by specialized intravasation sites called “tumor microenvironment of metastasis” (TMEM) doorways, composed of a tumor cell expressing the actin-regulatory protein Mena, a perivascular macrophage, and an endothelial cell, all in stable physical contact. High TMEM doorway number is associated with an increased risk of distant metastasis in human breast cancer and mouse models of breast carcinoma. Here, we developed a novel magnetic resonance imaging (MRI) methodology, called TMEM Activity-MRI, to detect TMEM-associated vascular openings that serve as the portal of entry for cancer cell intravasation and metastatic dissemination. We demonstrate that TMEM Activity-MRI correlates with primary tumor TMEM doorway counts in both breast cancer patients and mouse models, including MMTV-PyMT and patient-derived xenograft models. In addition, TMEM Activity-MRI is reduced in mouse models upon treatment with rebastinib, a specific and potent TMEM doorway inhibitor. TMEM Activity-MRI is an assay that specifically measures TMEM-associated vascular opening (TAVO) events in the tumor microenvironment, and as such, can be utilized in mechanistic studies investigating molecular pathways of cancer cell dissemination and metastasis. Finally, we demonstrate that TMEM Activity-MRI increases upon treatment with paclitaxel in mouse models, consistent with prior observations that chemotherapy enhances TMEM doorway assembly and activity in human breast cancer. Our findings suggest that TMEM Activity-MRI is a promising precision medicine tool for localized breast cancer that could be used as a non-invasive test to determine metastatic risk and serve as an intermediate pharmacodynamic biomarker to monitor therapeutic response to agents that block TMEM doorway-mediated dissemination.
Collapse
|
12
|
NAD(P)H fluorescence lifetime imaging of live intestinal nematodes reveals metabolic crosstalk between parasite and host. Sci Rep 2022; 12:7264. [PMID: 35508502 PMCID: PMC9068778 DOI: 10.1038/s41598-022-10705-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
Infections with intestinal nematodes have an equivocal impact: they represent a burden for human health and animal husbandry, but, at the same time, may ameliorate auto-immune diseases due to the immunomodulatory effect of the parasites. Thus, it is key to understand how intestinal nematodes arrive and persist in their luminal niche and interact with the host over long periods of time. One basic mechanism governing parasite and host cellular and tissue functions, metabolism, has largely been neglected in the study of intestinal nematode infections. Here we use NADH (nicotinamide adenine dinucleotide) and NADPH (nicotinamide adenine dinucleotide phosphate) fluorescence lifetime imaging of explanted murine duodenum infected with the natural nematode Heligmosomoides polygyrus and define the link between general metabolic activity and possible metabolic pathways in parasite and host tissue, during acute infection. In both healthy and infected host intestine, energy is effectively produced, mainly via metabolic pathways resembling oxidative phosphorylation/aerobic glycolysis features. In contrast, the nematodes shift their energy production from balanced fast anaerobic glycolysis-like and effective oxidative phosphorylation-like metabolic pathways, towards mainly anaerobic glycolysis-like pathways, back to oxidative phosphorylation/aerobic glycolysis-like pathways during their different life cycle phases in the submucosa versus the intestinal lumen. Additionally, we found an increased NADPH oxidase (NOX) enzymes-dependent oxidative burst in infected intestinal host tissue as compared to healthy tissue, which was mirrored by a similar defense reaction in the parasites. We expect that, the here presented application of NAD(P)H-FLIM in live tissues constitutes a unique tool to study possible shifts between metabolic pathways in host-parasite crosstalk, in various parasitic intestinal infections.
Collapse
|
13
|
Dotse E, Lim KH, Wang M, Wijanarko KJ, Chow KT. An Immunological Perspective of Circulating Tumor Cells as Diagnostic Biomarkers and Therapeutic Targets. Life (Basel) 2022; 12:323. [PMID: 35207611 PMCID: PMC8878951 DOI: 10.3390/life12020323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/19/2022] Open
Abstract
Immune modulation is a hallmark of cancer. Cancer-immune interaction shapes the course of disease progression at every step of tumorigenesis, including metastasis, of which circulating tumor cells (CTCs) are regarded as an indicator. These CTCs are a heterogeneous population of tumor cells that have disseminated from the tumor into circulation. They have been increasingly studied in recent years due to their importance in diagnosis, prognosis, and monitoring of treatment response. Ample evidence demonstrates that CTCs interact with immune cells in circulation, where they must evade immune surveillance or modulate immune response. The interaction between CTCs and the immune system is emerging as a critical point by which CTCs facilitate metastatic progression. Understanding the complex crosstalk between the two may provide a basis for devising new diagnostic and treatment strategies. In this review, we will discuss the current understanding of CTCs and the complex immune-CTC interactions. We also present novel options in clinical interventions, targeting the immune-CTC interfaces, and provide some suggestions on future research directions.
Collapse
Affiliation(s)
- Eunice Dotse
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| | - King H. Lim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| | - Meijun Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| | - Kevin Julio Wijanarko
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia;
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia
| | - Kwan T. Chow
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| |
Collapse
|
14
|
Frankman ZD, Jiang L, Schroeder JA, Zohar Y. Application of Microfluidic Systems for Breast Cancer Research. MICROMACHINES 2022; 13:152. [PMID: 35208277 PMCID: PMC8877872 DOI: 10.3390/mi13020152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023]
Abstract
Cancer is a disease in which cells in the body grow out of control; breast cancer is the most common cancer in women in the United States. Due to early screening and advancements in therapeutic interventions, deaths from breast cancer have declined over time, although breast cancer remains the second leading cause of cancer death among women. Most deaths are due to metastasis, as cancer cells from the primary tumor in the breast form secondary tumors in remote sites in distant organs. Over many years, the basic biological mechanisms of breast cancer initiation and progression, as well as the subsequent metastatic cascade, have been studied using cell cultures and animal models. These models, although extremely useful for delineating cellular mechanisms, are poor predictors of physiological responses, primarily due to lack of proper microenvironments. In the last decade, microfluidics has emerged as a technology that could lead to a paradigm shift in breast cancer research. With the introduction of the organ-on-a-chip concept, microfluidic-based systems have been developed to reconstitute the dominant functions of several organs. These systems enable the construction of 3D cellular co-cultures mimicking in vivo tissue-level microenvironments, including that of breast cancer. Several reviews have been presented focusing on breast cancer formation, growth and metastasis, including invasion, intravasation, and extravasation. In this review, realizing that breast cancer can recur decades following post-treatment disease-free survival, we expand the discussion to account for microfluidic applications in the important areas of breast cancer detection, dormancy, and therapeutic development. It appears that, in the future, the role of microfluidics will only increase in the effort to eradicate breast cancer.
Collapse
Affiliation(s)
- Zachary D. Frankman
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA;
| | - Linan Jiang
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA;
| | - Joyce A. Schroeder
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA;
| | - Yitshak Zohar
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA;
| |
Collapse
|
15
|
Chen JM, Luo B, Ma R, Luo XX, Chen YS, Li Y. Lymphatic Endothelial Markers and Tumor Lymphangiogenesis Assessment in Human Breast Cancer. Diagnostics (Basel) 2021; 12:diagnostics12010004. [PMID: 35054174 PMCID: PMC8774380 DOI: 10.3390/diagnostics12010004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 12/11/2022] Open
Abstract
Metastasis via lymphatic vessels or blood vessels is the leading cause of death for breast cancer, and lymphangiogenesis and angiogenesis are critical prerequisites for the tumor invasion–metastasis cascade. The research progress for tumor lymphangiogenesis has tended to lag behind that for angiogenesis due to the lack of specific markers. With the discovery of lymphatic endothelial cell (LEC) markers, growing evidence demonstrates that the LEC plays an active role in lymphatic formation and remodeling, tumor cell growth, invasion and intravasation, tumor–microenvironment remodeling, and antitumor immunity. However, some studies have drawn controversial conclusions due to the variation in the LEC markers and lymphangiogenesis assessments used. In this study, we review recent findings on tumor lymphangiogenesis, the most commonly used LEC markers, and parameters for lymphangiogenesis assessments, such as the lymphatic vessel density and lymphatic vessel invasion in human breast cancer. An in-depth understanding of tumor lymphangiogenesis and LEC markers can help to illustrate the mechanisms and distinct roles of lymphangiogenesis in breast cancer progression, which will help in exploring novel potential predictive biomarkers and therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Jia-Mei Chen
- Center of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (J.-M.C.); (X.-X.L.)
| | - Bo Luo
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China;
| | - Ru Ma
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital of Capital Medical University, Beijing 100038, China;
| | - Xi-Xi Luo
- Center of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (J.-M.C.); (X.-X.L.)
| | - Yong-Shun Chen
- Center of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (J.-M.C.); (X.-X.L.)
- Correspondence: (Y.-S.C.); (Y.L.); Tel.: +86-027-88048911 (Y.-S.C.); +86-010-63926525 (Y.L.)
| | - Yan Li
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital of Capital Medical University, Beijing 100038, China;
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
- Correspondence: (Y.-S.C.); (Y.L.); Tel.: +86-027-88048911 (Y.-S.C.); +86-010-63926525 (Y.L.)
| |
Collapse
|
16
|
Sharma VP, Tang B, Wang Y, Duran CL, Karagiannis GS, Xue EA, Entenberg D, Borriello L, Coste A, Eddy RJ, Kim G, Ye X, Jones JG, Grunblatt E, Agi N, Roy S, Bandyopadhyaya G, Adler E, Surve CR, Esposito D, Goswami S, Segall JE, Guo W, Condeelis JS, Wakefield LM, Oktay MH. Live tumor imaging shows macrophage induction and TMEM-mediated enrichment of cancer stem cells during metastatic dissemination. Nat Commun 2021; 12:7300. [PMID: 34911937 PMCID: PMC8674234 DOI: 10.1038/s41467-021-27308-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/13/2021] [Indexed: 12/23/2022] Open
Abstract
Cancer stem cells (CSCs) play an important role during metastasis, but the dynamic behavior and induction mechanisms of CSCs are not well understood. Here, we employ high-resolution intravital microscopy using a CSC biosensor to directly observe CSCs in live mice with mammary tumors. CSCs display the slow-migratory, invadopod-rich phenotype that is the hallmark of disseminating tumor cells. CSCs are enriched near macrophages, particularly near macrophage-containing intravasation sites called Tumor Microenvironment of Metastasis (TMEM) doorways. Substantial enrichment of CSCs occurs on association with TMEM doorways, contributing to the finding that CSCs represent >60% of circulating tumor cells. Mechanistically, stemness is induced in non-stem cancer cells upon their direct contact with macrophages via Notch-Jagged signaling. In breast cancers from patients, the density of TMEM doorways correlates with the proportion of cancer cells expressing stem cell markers, indicating that in human breast cancer TMEM doorways are not only cancer cell intravasation portals but also CSC programming sites.
Collapse
Affiliation(s)
- Ved P Sharma
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Binwu Tang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Yarong Wang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Camille L Duran
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - George S Karagiannis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Emily A Xue
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David Entenberg
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Lucia Borriello
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anouchka Coste
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Surgery, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert J Eddy
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gina Kim
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xianjun Ye
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joan G Jones
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Eli Grunblatt
- Department of Biology, Yeshiva University, New York, NY, USA
| | - Nathan Agi
- Department of Biology, Yeshiva University, New York, NY, USA
| | - Sweta Roy
- Department of Biology, Yeshiva University, New York, NY, USA
| | | | - Esther Adler
- Department of Pathology, NYU Langone Medical Center, New York, NY, USA
| | - Chinmay R Surve
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dominic Esposito
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sumanta Goswami
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Biology, Yeshiva University, New York, NY, USA
| | - Jeffrey E Segall
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wenjun Guo
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Surgery, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Lalage M Wakefield
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, USA.
| | - Maja H Oktay
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
17
|
Maddipati R, Norgard RJ, Baslan T, Rathi KS, Zhang A, Saeid A, Higashihara T, Wu F, Kumar A, Annamalai V, Bhattacharya S, Raman P, Adkisson CA, Pitarresi JR, Wengyn MD, Yamazoe T, Li J, Balli D, LaRiviere MJ, Ngo TVC, Folkert IW, Millstein ID, Bermeo J, Carpenter EL, McAuliffe JC, Oktay MH, Brekken RA, Lowe SW, Iacobuzio-Donahue CA, Notta F, Stanger BZ. MYC levels regulate metastatic heterogeneity in pancreatic adenocarcinoma. Cancer Discov 2021; 12:542-561. [PMID: 34551968 PMCID: PMC8831468 DOI: 10.1158/2159-8290.cd-20-1826] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 07/26/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022]
Abstract
The degree of metastatic disease varies widely amongst cancer patients and impacts clinical outcomes. However, the biological and functional differences that drive the extent of metastasis are poorly understood. We analyzed primary tumors and paired metastases using a multi-fluorescent lineage-labeled mouse model of pancreatic ductal adenocarcinoma (PDAC) - a tumor type where most patients present with metastases. Genomic and transcriptomic analysis revealed an association between metastatic burden and gene amplification or transcriptional upregulation of MYC and its downstream targets. Functional experiments showed that MYC promotes metastasis by recruiting tumor associated macrophages (TAMs), leading to greater bloodstream intravasation. Consistent with these findings, metastatic progression in human PDAC was associated with activation of MYC signaling pathways and enrichment for MYC amplifications specifically in metastatic patients. Collectively, these results implicate MYC activity as a major determinant of metastatic burden in advanced PDAC.
Collapse
Affiliation(s)
| | - Robert J Norgard
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Timour Baslan
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center
| | - Komal S Rathi
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia
| | - Amy Zhang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research
| | - Asal Saeid
- The University of Texas Southwestern Medical Center
| | | | - Feng Wu
- The University of Texas Southwestern Medical Center
| | - Angad Kumar
- Internal Medicine, The University of Texas Southwestern Medical Center
| | - Valli Annamalai
- Department of Internal Medicine, The University of Texas Southwestern Medical Center
| | | | | | | | | | | | - Taiji Yamazoe
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Jinyang Li
- School of Medicine, University of Pennsylvania
| | - David Balli
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania
| | | | - Tuong-Vi C Ngo
- Division of Surgical Oncology, Department of Surgery, and Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center
| | | | - Ian D Millstein
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Jonathan Bermeo
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center
| | | | - John C McAuliffe
- Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center
| | | | - Rolf A Brekken
- Hamon Center for Therapeutic Oncology Research, Departments of Surgery and Pharmacology, UT Southwestern Medical Center at Dallas
| | - Scott W Lowe
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center
| | | | | | - Ben Z Stanger
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
18
|
Wessels DJ, Pujol C, Pradhan N, Lusche DF, Gonzalez L, Kelly SE, Martin EM, Voss ER, Park YN, Dailey M, Sugg SL, Phadke S, Bashir A, Soll DR. Directed movement toward, translocation along, penetration into and exit from vascular networks by breast cancer cells in 3D. Cell Adh Migr 2021; 15:224-248. [PMID: 34338608 PMCID: PMC8331046 DOI: 10.1080/19336918.2021.1957527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We developed a computer-assisted platform using laser scanning confocal microscopy to 3D reconstruct in real-time interactions between metastatic breast cancer cells and human umbilical vein endothelial cells (HUVECs). We demonstrate that MB-231 cancer cells migrate toward HUVEC networks, facilitated by filopodia, migrate along the network surfaces, penetrate into and migrate within the HUVEC networks, exit and continue migrating along network surfaces. The system is highly amenable to 3D reconstruction and computational analyses, and assessments of the effects of potential anti-metastasis monoclonal antibodies and other drugs. We demonstrate that an anti-RHAMM antibody blocks filopodium formation and all of the behaviors that we found take place between MB-231 cells and HUVEC networks.
Collapse
Affiliation(s)
- Deborah J Wessels
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Claude Pujol
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Nikash Pradhan
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Daniel F Lusche
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Luis Gonzalez
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Sydney E Kelly
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Elizabeth M Martin
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Edward R Voss
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Yang-Nim Park
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Michael Dailey
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Sonia L Sugg
- Department of Surgery, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Sneha Phadke
- Department of Internal Medicine, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Amani Bashir
- Department of Pathology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - David R Soll
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
19
|
Hsu MY, Hsieh CH, Huang YT, Chu SY, Chen CM, Lee WJ, Liu SJ. Enhanced Paclitaxel Efficacy to Suppress Triple-Negative Breast Cancer Progression Using Metronomic Chemotherapy with a Controlled Release System of Electrospun Poly-d-l-Lactide-Co-Glycolide (PLGA) Nanofibers. Cancers (Basel) 2021; 13:cancers13133350. [PMID: 34283075 PMCID: PMC8268060 DOI: 10.3390/cancers13133350] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Treatment of metastatic triple-negative breast cancer (TNBC) relies on chemotherapy. To improve the efficacy of chemotherapy and avoid systemic toxicity, metronomic chemotherapy using continuous administration of low-dose chemotherapy could be a solution. The paclitaxel-loaded PLGA nanofibers allow for continuous and prolonged drug release, which is compatible with the concept of metronomic chemotherapy. The animal study revealed that the strategy successfully inhibited the growth of the primary tumor and distant metastasis without sarcopenia. These data offer new insights into the role of drug-loaded nanofibers in the treatment of metastatic TNBC. Abstract Triple-negative breast cancer (TNBC) is highly aggressive and responds poorly to conventional chemotherapy. The challenge of TNBC therapy is to maximize the efficacies of conventional chemotherapeutic agents and reduce their toxicities. Metronomic chemotherapy using continuous low-dose chemotherapy has been proposed as a new treatment option, but this approach is limited by the selection of drugs. To improve antitumor therapeutic effects, we developed electrospun paclitaxel-loaded poly-d-l-lactide-co-glycolide (PLGA) nanofibers as a topical implantable delivery device for controlled drug release and site-specific treatment. The subcutaneously implanted paclitaxel-loaded nanofibrous membrane in mice was compatible with the concept of metronomic chemotherapy; it significantly enhanced antitumor activity, inhibited local tumor growth, constrained distant metastasis, and prolonged survival compared with intraperitoneal paclitaxel injection. Furthermore, under paclitaxel-loaded nanofiber treatment, systemic toxicity was low with a persistent increase in lean body weight in mice; in contrast, body weight decreased in other groups. The paclitaxel-loaded nanofibrous membranes provided sustained drug release and site-specific treatment by directly targeting and changing the tumor microenvironment, resulting in low systemic toxicity and a significant improvement in the therapeutic effect and safety compared with conventional chemotherapy. Thus, metronomic chemotherapy with paclitaxel-loaded nanofibrous membranes offers a promising strategy for the treatment of TNBC.
Collapse
Affiliation(s)
- Ming-Yi Hsu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; (M.-Y.H.); (Y.-T.H.); (S.-Y.C.); (C.-M.C.)
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Cheng-Hsien Hsieh
- Department of Emergency Medicine, En-Chu-Kong Hospital, New Taipei City 23741, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Ting Huang
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; (M.-Y.H.); (Y.-T.H.); (S.-Y.C.); (C.-M.C.)
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Sung-Yu Chu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; (M.-Y.H.); (Y.-T.H.); (S.-Y.C.); (C.-M.C.)
| | - Chien-Ming Chen
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; (M.-Y.H.); (Y.-T.H.); (S.-Y.C.); (C.-M.C.)
| | - Wei-Jiunn Lee
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11695, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (W.-J.L.); (S.-J.L.); Tel.: +886-2-2930-7930 (ext. 2551/2547) (W.-J.L.); +886-3-2118166 (S.-J.L.)
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
- Correspondence: (W.-J.L.); (S.-J.L.); Tel.: +886-2-2930-7930 (ext. 2551/2547) (W.-J.L.); +886-3-2118166 (S.-J.L.)
| |
Collapse
|
20
|
Sznurkowska MK, Aceto N. The gate to metastasis: key players in cancer cell intravasation. FEBS J 2021; 289:4336-4354. [PMID: 34077633 PMCID: PMC9546053 DOI: 10.1111/febs.16046] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/19/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023]
Abstract
Metastasis is a leading cause of cancer‐related death and consists of a sequence of events including tumor expansion, intravasation of cancer cells into the circulation, survival in the bloodstream, extravasation at distant sites, and subsequent organ colonization. Particularly, intravasation is a process whereby cancer cells transverse the endothelium and leave the primary tumor site, pioneering the metastatic cascade. The identification of those mechanisms that trigger the entry of cancer cells into the bloodstream may reveal fundamentally novel ways to block metastasis at its start. Multiple factors have been implicated in cancer progression, yet, signals that unequivocally provoke the detachment of cancer cells from the primary tumor are still under investigation. Here, we discuss the role of intrinsic properties of cancer cells, tumor microenvironment, and mechanical cues in the intravasation process, outlining studies that suggest the involvement of various factors and highlighting current understanding and open questions in the field.
Collapse
Affiliation(s)
- Magdalena K Sznurkowska
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, Switzerland
| | - Nicola Aceto
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, Switzerland.,Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Switzerland
| |
Collapse
|
21
|
Delprat V, Michiels C. A bi-directional dialog between vascular cells and monocytes/macrophages regulates tumor progression. Cancer Metastasis Rev 2021; 40:477-500. [PMID: 33783686 PMCID: PMC8213675 DOI: 10.1007/s10555-021-09958-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023]
Abstract
Cancer progression largely depends on tumor blood vessels as well on immune cell infiltration. In various tumors, vascular cells, namely endothelial cells (ECs) and pericytes, strongly regulate leukocyte infiltration into tumors and immune cell activation, hence the immune response to cancers. Recently, a lot of compelling studies unraveled the molecular mechanisms by which tumor vascular cells regulate monocyte and tumor-associated macrophage (TAM) recruitment and phenotype, and consequently tumor progression. Reciprocally, TAMs and monocytes strongly modulate tumor blood vessel and tumor lymphatic vessel formation by exerting pro-angiogenic and lymphangiogenic effects, respectively. Finally, the interaction between monocytes/TAMs and vascular cells is also impacting several steps of the spread of cancer cells throughout the body, a process called metastasis. In this review, the impact of the bi-directional dialog between blood vascular cells and monocytes/TAMs in the regulation of tumor progression is discussed. All together, these data led to the design of combinations of anti-angiogenic and immunotherapy targeting TAMs/monocyte whose effects are briefly discussed in the last part of this review.
Collapse
Affiliation(s)
- Victor Delprat
- Biochemistry and Cellular Biology Research Unit (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61 Rue de Bruxelles, B-5000, Namur, Belgium
| | - Carine Michiels
- Biochemistry and Cellular Biology Research Unit (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61 Rue de Bruxelles, B-5000, Namur, Belgium.
| |
Collapse
|
22
|
Jana S, Muscarella RA, Jones D. The Multifaceted Effects of Breast Cancer on Tumor-Draining Lymph Nodes. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1353-1363. [PMID: 34043978 DOI: 10.1016/j.ajpath.2021.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 12/31/2022]
Abstract
Breast cancer (BC) accounts for significant morbidity and mortality among women worldwide. About one in three patients with breast cancer present with lymph node (LN) metastasis and LN status is one of the most important prognostic predictors in patients with BC. In addition to their prognostic value, LNs initiate adaptive immunity against BC. Yet, BC cells often avoid immune-mediated destruction in LNs. This review provides an overview of the ways by which BC cells modulate LN stromal and hematopoietic cells to promote metastasis and immune evasion.
Collapse
Affiliation(s)
- Samir Jana
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Ronald A Muscarella
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Dennis Jones
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
23
|
Banstola A, Poudel K, Pathak S, Shrestha P, Kim JO, Jeong JH, Yook S. Hypoxia-Mediated ROS Amplification Triggers Mitochondria-Mediated Apoptotic Cell Death via PD-L1/ROS-Responsive, Dual-Targeted, Drug-Laden Thioketal Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22955-22969. [PMID: 33969998 DOI: 10.1021/acsami.1c03594] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Amalgamation of the reactive oxygen species (ROS)-responsive stimulus with nanoparticles has gained considerable interest owing to their high tumor specificity. Hypoxia plays a pivotal role in the acceleration of intracellular ROS production. Herein, we report the construction of a cancer cell (PD-L1)- and ROS-responsive, dual-targeted, temozolomide (TMZ)-laden nanosystem which offers a better anticancer effect in a hypoxic tumor microenvironment. A dual-targeted system boosted permeation in the cancer cells. Hypoxic conditions elevating the high ROS level accelerated the in situ release of TMZ from anti-PD-L1-TKNPs. Hyperaccumulated ROS engendered from TMZ caused oxidative damage leading to mitochondria-mediated apoptosis. TMZ fabricated in the multifunctional nanosystem (anti-PD-L1-TMZ-TKNPs) provided excellent tumor accumulation and retarded tumor growth under in vivo conditions. The elevated apoptosis effect with the activation of an apoptotic marker, DNA double-strand breakage marker, and downregulation of the angiogenesis marker in the tumor tissue following treatment with anti-PD-L1-TMZ-TKNPs exerts robust anticancer effect. Collectively, the nanoconstruct offers deep tumor permeation and high drug release and broadens the application of the ROS-responsive nanosystem for a successful anticancer effect.
Collapse
Affiliation(s)
- Asmita Banstola
- College of Pharmacy, Keimyung University, Daegu 42601, South Korea
| | - Kishwor Poudel
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Shiva Pathak
- Division of Blood and Bone Marrow Transplantation, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Prakash Shrestha
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, Daegu 42601, South Korea
| |
Collapse
|
24
|
Güç E, Pollard JW. Redefining macrophage and neutrophil biology in the metastatic cascade. Immunity 2021; 54:885-902. [PMID: 33979586 DOI: 10.1016/j.immuni.2021.03.022] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/08/2020] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Tumor cells metastasize to distant organs through a complex series of events that are driven by tumor intrinsic and extrinsic factors. In particular, non-malignant stromal cells, including immune cells, modify tumor metastatic behavior. Of these cells, tumor-associated innate immune cells, particularly macrophages and neutrophils, suppress the cytotoxic activity of innate and adaptive killer cells and interact with tumor cells to promote their growth and malignancy. These findings in mouse cancer models suggest that targeting these sub-populations of immune cells holds therapeutic promise in treating metastatic disease. In this review, we describe the origin and role of the macrophages, neutrophils, and their progenitors in the metastatic cascade and suggest strategies that might enhance cancer therapy.
Collapse
Affiliation(s)
- Esra Güç
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Jeffrey W Pollard
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
25
|
Ye T, Liu J, Zhao W, Gao S, Wang S, Wu F, Zhou H. The hypothesis of tumor-associated macrophages mediating semi-phagocytosis of cancer cells in distant metastasis. Future Oncol 2021; 17:1125-1129. [PMID: 33557616 DOI: 10.2217/fon-2020-1101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Tweetable abstract Tumor-associated macrophages might promote the distant metastasis of tumor cells by semi-phagocytosis. The authors propose that this newly discovered process occurs in tumor-associated macrophages and may lead to a novel approach for blocking cancer metastasis.
Collapse
Affiliation(s)
- Tingpei Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Junjiang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Wei Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Shengtao Gao
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Shimeng Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Fanglong Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| |
Collapse
|
26
|
Coste A, Karagiannis GS, Wang Y, Xue EA, Lin Y, Skobe M, Jones JG, Oktay MH, Condeelis JS, Entenberg D. Hematogenous Dissemination of Breast Cancer Cells From Lymph Nodes Is Mediated by Tumor MicroEnvironment of Metastasis Doorways. Front Oncol 2020; 10:571100. [PMID: 33194666 PMCID: PMC7649363 DOI: 10.3389/fonc.2020.571100] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/17/2020] [Indexed: 11/24/2022] Open
Abstract
In primary breast tumors, cancer cells hematogenously disseminate through doorways in the vasculature composed of three-cell complexes (known as Tumor MicroEnvironment of Metastasis) comprising a perivascular macrophage, a tumor cell overexpressing the actin-regulatory protein Mammalian Enabled (Mena), and an endothelial cell, all in direct physical contact. It has been previously shown that once tumor cells establish lymph node metastases in patients, TMEM doorways form in the metastatic tumor cell nests. However, it has not been established if such lymph node-TMEM doorways actively transit tumor cells into the peripheral circulation and on to tertiary sites. To address this question in this short report, we used a mouse model of lymph node metastasis to demonstrate that TMEM doorways: (1) exist in tumor-positive lymph nodes of mice, (2) are restricted to the blood vascular endothelium, (3) serve as a mechanism for further dissemination to peripheral sites such as to the lungs, and (4) their activity can be abrogated by a pharmaceutical intervention. Our data suggest that cancer cell dissemination via TMEM doorways is a common mechanism of breast cancer cell dissemination to distant sites and thus the pharmacological targeting of TMEM may be necessary, even after resection of the primary tumor, to suppress cancer cell dissemination.
Collapse
Affiliation(s)
- Anouchka Coste
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Department of Surgery, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| | - George S Karagiannis
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| | - Yarong Wang
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| | - Emily A Xue
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| | - Yu Lin
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| | - Mihaela Skobe
- Department of Oncological Sciences and Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joan G Jones
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Department of Epidemiology and Population Health, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| | - Maja H Oktay
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Department of Surgery, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| | - David Entenberg
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| |
Collapse
|
27
|
Borriello L, Karagiannis GS, Duran CL, Coste A, Oktay MH, Entenberg D, Condeelis JS. The role of the tumor microenvironment in tumor cell intravasation and dissemination. Eur J Cell Biol 2020; 99:151098. [PMID: 32800278 DOI: 10.1016/j.ejcb.2020.151098] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/15/2020] [Accepted: 06/29/2020] [Indexed: 01/11/2023] Open
Abstract
Metastasis, a process that requires tumor cell dissemination followed by tumor growth, is the primary cause of death in cancer patients. An essential step of tumor cell dissemination is intravasation, a process by which tumor cells cross the blood vessel endothelium and disseminate to distant sites. Studying this process is of utmost importance given that intravasation in the primary tumor, as well as the secondary and tertiary metastases, is the key step in the systemic spread of tumor cells, and that this process continues even after removal of the primary tumor. High-resolution intravital imaging of the tumor microenvironment of breast carcinoma has revealed that tumor cell intravasation exclusively occurs at doorways, termed "Tumor MicroEnvironment of Metastasis" (TMEM), composed of three different cell types: a Tie2high/VEGFhigh perivascular macrophage, a Mena overexpressing tumor cell, and an endothelial cell, all in direct contact. In this review article, we discuss the interactions between these cell types, the subsequent signaling events which lead to tumor cell intravasation, and the role of invadopodia in supporting tumor cell invasion and dissemination. We end our review by discussing how the knowledge acquired from the use of intravital imaging is now leading to new clinical trials targeting tumor cell dissemination and preventing metastatic progression.
Collapse
Affiliation(s)
- Lucia Borriello
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.
| | - George S Karagiannis
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Camille L Duran
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Anouchka Coste
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Department of Surgery, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Maja H Oktay
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Department of Pathology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - David Entenberg
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Department of Surgery, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
28
|
Avagliano A, Fiume G, Ruocco MR, Martucci N, Vecchio E, Insabato L, Russo D, Accurso A, Masone S, Montagnani S, Arcucci A. Influence of Fibroblasts on Mammary Gland Development, Breast Cancer Microenvironment Remodeling, and Cancer Cell Dissemination. Cancers (Basel) 2020; 12:E1697. [PMID: 32604738 PMCID: PMC7352995 DOI: 10.3390/cancers12061697] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
The stromal microenvironment regulates mammary gland development and tumorigenesis. In normal mammary glands, the stromal microenvironment encompasses the ducts and contains fibroblasts, the main regulators of branching morphogenesis. Understanding the way fibroblast signaling pathways regulate mammary gland development may offer insights into the mechanisms of breast cancer (BC) biology. In fact, the unregulated mammary fibroblast signaling pathways, associated with alterations in extracellular matrix (ECM) remodeling and branching morphogenesis, drive breast cancer microenvironment (BCM) remodeling and cancer growth. The BCM comprises a very heterogeneous tissue containing non-cancer stromal cells, namely, breast cancer-associated fibroblasts (BCAFs), which represent most of the tumor mass. Moreover, the different components of the BCM highly interact with cancer cells, thereby generating a tightly intertwined network. In particular, BC cells activate recruited normal fibroblasts in BCAFs, which, in turn, promote BCM remodeling and metastasis. Thus, comparing the roles of normal fibroblasts and BCAFs in the physiological and metastatic processes, could provide a deeper understanding of the signaling pathways regulating BC dissemination. Here, we review the latest literature describing the structure of the mammary gland and the BCM and summarize the influence of epithelial-mesenchymal transition (EpMT) and autophagy in BC dissemination. Finally, we discuss the roles of fibroblasts and BCAFs in mammary gland development and BCM remodeling, respectively.
Collapse
Affiliation(s)
- Angelica Avagliano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (G.F.); (E.V.)
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
| | - Nunzia Martucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Eleonora Vecchio
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (G.F.); (E.V.)
| | - Luigi Insabato
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (L.I.); (D.R.)
| | - Daniela Russo
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (L.I.); (D.R.)
| | - Antonello Accurso
- Department of General, Oncological, Bariatric and Endocrine-Metabolic Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Stefania Masone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Stefania Montagnani
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| |
Collapse
|
29
|
Nikolaou S, Machesky LM. The stressful tumour environment drives plasticity of cell migration programmes, contributing to metastasis. J Pathol 2020; 250:612-623. [PMID: 32057095 PMCID: PMC7216910 DOI: 10.1002/path.5395] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/21/2020] [Accepted: 02/10/2020] [Indexed: 12/19/2022]
Abstract
Tumours evolve to cope with environmental stresses or challenges such as nutrient starvation, depletion of survival factors, and unbalanced mechanical forces. The uncontrolled growth and aberrant deregulation of core cell homeostatic pathways induced by genetic mutations create an environment of stress. Here, we explore how the adaptations of tumours to the changing environment can drive changes in the motility machinery of cells, affecting migration, invasion, and metastasis. Tumour cells can invade individually or collectively, or they can be extruded out of the surrounding epithelium. These mechanisms are thought to be modifications of normal processes occurring during development or tissue repair. Therefore, tumours may activate these pathways in response to environmental stresses, enabling them to survive in hostile environments and spread to distant sites. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Savvas Nikolaou
- Division of Cancer Metastasis and RecurrenceCRUK Beatson InstituteGlasgowUK
| | - Laura M Machesky
- Division of Cancer Metastasis and RecurrenceCRUK Beatson InstituteGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
30
|
Validation of an Automated Quantitative Digital Pathology Approach for Scoring TMEM, a Prognostic Biomarker for Metastasis. Cancers (Basel) 2020; 12:cancers12040846. [PMID: 32244564 PMCID: PMC7226227 DOI: 10.3390/cancers12040846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 11/25/2022] Open
Abstract
Metastasis causes ~90% of breast cancer mortality. However, standard prognostic tests based mostly on proliferation genes do not measure metastatic potential. Tumor MicroEnvironment of Metastasis (TMEM), an immunohistochemical biomarker for doorways on blood vessels that support tumor cell dissemination is prognostic for metastatic outcome in breast cancer patients. Studies quantifying TMEM doorways have involved manual scoring by pathologists utilizing static digital microscopy: a labor-intensive process unsuitable for use in clinical practice. We report here a validation study evaluating a new quantitative digital pathology (QDP) tool (TMEM-DP) for identification and quantification of TMEM doorways that closely mimics pathologists’ workflow and reduces pathologists’ variability to levels suitable for use in a clinical setting. Blinded to outcome, QDP was applied to a nested case-control study consisting of 259 matched case-control pairs. Sixty subjects of these were manually scored by five pathologists, digitally recorded using whole slide imaging (WSI), and then used for algorithm development and optimization. Validation was performed on the remainder of the cohort. TMEM-DP shows excellent reproducibility and concordance and reduces pathologist time from ~60 min to ~5 min per case. Concordance between manual scoring and TMEM-DP was found to be >0.79. These results show that TMEM-DP is capable of accurately identifying and scoring TMEM doorways (also known as MetaSite score) equivalent to pathologists.
Collapse
|