1
|
CHOI JINHO, PARK JOODONG, CHOI SEUNGHEE, KO EUNSU, JANG HYEJUNG, PARK KYUNGSOON. ELK3-ID4 axis governs the metastatic features of triple negative breast cancer. Oncol Res 2023; 32:127-138. [PMID: 38188675 PMCID: PMC10767247 DOI: 10.32604/or.2023.042945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/08/2023] [Indexed: 01/09/2024] Open
Abstract
Purpose Cancer cell metastasis is a multistep process, and the mechanism underlying extravasation remains unclear. ELK3 is a transcription factor that plays a crucial role in regulating various cellular processes, including cancer metastasis. Based on the finding that ELK3 promotes the metastasis of triple-negative breast cancer (TNBC), we investigated whether ELK3 regulates the extravasation of TNBC by forming the ELK3-ID4 axis. ID4 functions as a transcriptional regulator that interacts with other transcription factors, inhibiting their activity and subsequently influencing various biological processes associated with cell differentiation, survival, growth, and metastasis. Methods We assessed the correlation between the expression of ELK3 and that of ID4 in TNBCs using bioinformatics analyses, QRT-PCR, western blot analysis, luciferase reporter assays, and chromatin immunoprecipitation. Migration, adhesion, invasion, and lung metastasis assays were employed to determine whether the ELK3-ID4 axis regulates the metastatic features of TNBC. Results We found that ELK3 binds directly to a binding motif close to the ID4 promoter to repress promoter activity. The expression of E-cadherin in TNBC was regulated by the ELK3-ID4 axis. In vitro and in vivo analyses showed that inhibiting ID4 expression in ELK3-knockdown MDA-MB-231 (ELK3KD) cells restored the ability to extravasate and metastasize. Conclusion The results indicate that the ELK3 regulates ID4 promoter activity, and that the ELK3-ID4 axis regulates the metastatic characteristics of TNBC cells. Additionally, the data suggest that the ELK3-ID4 axis regulates metastasis of TNBCs by modulating expression of E-cadherin.
Collapse
Affiliation(s)
- JIN-HO CHOI
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - JOO DONG PARK
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - SEUNG HEE CHOI
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - EUN-SU KO
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - HYE JUNG JANG
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - KYUNG-SOON PARK
- Department of Biomedical Science, CHA University, Seongnam, Korea
| |
Collapse
|
2
|
Otálora-Otálora BA, López-Kleine L, Rojas A. Lung Cancer Gene Regulatory Network of Transcription Factors Related to the Hallmarks of Cancer. Curr Issues Mol Biol 2023; 45:434-464. [PMID: 36661515 PMCID: PMC9857713 DOI: 10.3390/cimb45010029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
The transcriptomic analysis of microarray and RNA-Seq datasets followed our own bioinformatic pipeline to identify a transcriptional regulatory network of lung cancer. Twenty-six transcription factors are dysregulated and co-expressed in most of the lung cancer and pulmonary arterial hypertension datasets, which makes them the most frequently dysregulated transcription factors. Co-expression, gene regulatory, coregulatory, and transcriptional regulatory networks, along with fibration symmetries, were constructed to identify common connection patterns, alignments, main regulators, and target genes in order to analyze transcription factor complex formation, as well as its synchronized co-expression patterns in every type of lung cancer. The regulatory function of the most frequently dysregulated transcription factors over lung cancer deregulated genes was validated with ChEA3 enrichment analysis. A Kaplan-Meier plotter analysis linked the dysregulation of the top transcription factors with lung cancer patients' survival. Our results indicate that lung cancer has unique and common deregulated genes and transcription factors with pulmonary arterial hypertension, co-expressed and regulated in a coordinated and cooperative manner by the transcriptional regulatory network that might be associated with critical biological processes and signaling pathways related to the acquisition of the hallmarks of cancer, making them potentially relevant tumor biomarkers for lung cancer early diagnosis and targets for the development of personalized therapies against lung cancer.
Collapse
Affiliation(s)
- Beatriz Andrea Otálora-Otálora
- Grupo de Investigación INPAC, Unidad de Investigación, Fundación Universitaria Sanitas, Bogotá 110131, Colombia
- Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 11001, Colombia
| | - Liliana López-Kleine
- Departamento de Estadística, Universidad Nacional de Colombia, Bogotá 11001, Colombia
- Correspondence: (L.L.-K.); (A.R.)
| | - Adriana Rojas
- Facultad de Medicina, Instituto de Genética Humana, Pontificia Universidad Javeriana, Bogotá 110211, Colombia
- Correspondence: (L.L.-K.); (A.R.)
| |
Collapse
|
3
|
Qin W, Zhang J, Rong R, Zhang L, Gao H, Liu C, Ren Q, Zheng G, Wang J, Meng L, Qiao S, Qian R, Zhou C, Wang H, Zhang Y. Osteoglycin (OGN) promotes tumorigenesis of pancreatic cancer cell via targeting ID4. Tissue Cell 2022; 78:101867. [DOI: 10.1016/j.tice.2022.101867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 12/01/2022]
|
4
|
Han MH, Min KW, Noh YK, Kim JM, Cheong JH, Ryu JI, Won YD, Koh SH, Park YM. Identification of genes from ten oncogenic pathways associated with mortality and disease progression in glioblastoma. Front Oncol 2022; 12:965638. [PMID: 36033456 PMCID: PMC9399757 DOI: 10.3389/fonc.2022.965638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant brain tumor with an extremely poor prognosis. The Cancer Genome Atlas (TCGA) database has been used to confirm the roles played by 10 canonical oncogenic signaling pathways in various cancers. The purpose of this study was to evaluate the expression of genes in these 10 canonical oncogenic signaling pathways, which are significantly related to mortality and disease progression in GBM patients. Clinicopathological information and mRNA expression data of 525 patients with GBM were obtained from TCGA database. Gene sets related to the 10 oncogenic signaling pathways were investigated via Gene Set Enrichment Analysis. Multivariate Cox regression analysis was performed for all the genes significantly associated with mortality and disease progression for each oncogenic signaling pathway in GBM patients. We found 12 independent genes from the 10 oncogenic signaling pathways that were significantly related to mortality and disease progression in GBM patients. Considering the roles of these 12 significant genes in cancer, we suggest possible mechanisms affecting the prognosis of GBM. We also observed that the expression of 6 of the genes significantly associated with a poor prognosis of GBM, showed negative correlations with CD8+ T-cells in GBM tissue. Using a large-scale open database, we identified 12 genes belonging to 10 well-known oncogenic canonical pathways, which were significantly associated with mortality and disease progression in patients with GBM. We believe that our findings will contribute to a better understanding of the mechanisms underlying the pathophysiology of GBM in the future.
Collapse
Affiliation(s)
- Myung-Hoon Han
- Department of Neurosurgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, South Korea
| | - Kyueng-Whan Min
- Department of Pathology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, South Korea
- *Correspondence: Kyueng-Whan Min, ; Yung-Kyun Noh,
| | - Yung-Kyun Noh
- Department of Computer Science, Hanyang University, Seoul, South Korea
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, South Korea
- *Correspondence: Kyueng-Whan Min, ; Yung-Kyun Noh,
| | - Jae Min Kim
- Department of Neurosurgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, South Korea
| | - Jin Hwan Cheong
- Department of Neurosurgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, South Korea
| | - Je Il Ryu
- Department of Neurosurgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, South Korea
| | - Yu Deok Won
- Department of Neurosurgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, South Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, South Korea
| | - Young Mi Park
- Department of Pediatrics, Gangneung Asan Hospital, Ulsan University College of Medicine, Gangneung-si, South Korea
| |
Collapse
|
5
|
Chen JT, Hsu YL, Hsu YC, Tseng YH, Liu MH, Weng CW, Lin CH, Pan SH, Chen JJ, Wang CC. Id2 exerts tumor suppressor properties in lung cancer through its effects on cancer cell invasion and migration. Front Oncol 2022; 12:801300. [PMID: 35982951 PMCID: PMC9379288 DOI: 10.3389/fonc.2022.801300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background Despite advances in prognosis and treatment of lung adenocarcinoma (LADC), a notable non–small cell lung cancer subtype, patient outcomes are still unsatisfactory. New insight on novel therapeutic strategies for LADC may be gained from a more comprehensive understanding of cancer progression mechanisms. Such strategies could reduce the mortality and morbidity of patients with LADC. In our previous study, we performed cDNA microarray screening and found an inverse relationship between inhibitor of DNA binding 2 (Id2) expression levels and the invasiveness of LADC cells. Materials and Methods To identify the functional roles of Id2 and its action mechanisms in LADC progression, we successfully established several Id2-overexpressing and Id2-silenced LADC cell clones. Subsequently, we examined in vitro the effects exerted by Id2 on cell morphology, proliferation, colony formation, invasive, and migratory activities and examined in vivo those exerted by Id2 on cell metastasis. The mechanisms underlying the action of Id2 were investigated using RNA-seq and pathway analyses. Furthermore, the correlations of Id2 with its target gene expression and clinical outcomes were calculated. Results Our data revealed that Id2 overexpression could inhibit LADC cells’ migratory, invasive, proliferation, and colony formation capabilities. Silencing Id2 expression in LADC cells reversed the aforementioned inhibitory effects, and knockdown of Id2 increased LADC cells’ metastatic abilities in vivo. Bioinformatics analysis revealed that these effects of Id2 on cancer progression might be regulated by focal adhesion kinase (FAK) signaling and CD44/Twist expression. Furthermore, in online clinical database analysis, patients with LADC whose Id2 expression levels were high and FAK/Twist expression levels were low had superior clinical outcomes.
Collapse
Affiliation(s)
- Jian-Ting Chen
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yuan-Ling Hsu
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Yi-Hsin Tseng
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Ming-Han Liu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Chia-Wei Weng
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Hao Lin
- Department of Nephrology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
| | - Szu-Hua Pan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Jeremy J.W. Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Chi-Chung Wang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
- *Correspondence: Chi-Chung Wang,
| |
Collapse
|
6
|
Kuo YH, Wang YX, Peng WH, Chi NY, Lee TH, Wang CC. Coriloxin Exerts Antitumor Effects in Human Lung Adenocarcinoma Cells. Int J Mol Sci 2022; 23:ijms23073991. [PMID: 35409350 PMCID: PMC8999459 DOI: 10.3390/ijms23073991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
Both in Taiwan and around the world, lung cancer is a primary cause of cancer-related deaths. In Taiwan, the most prevalent form of lung cancer is lung adenocarcinoma, a type of non-small-cell lung carcinoma. Although numerous lung cancer therapies are available, their clinical outcomes are unsatisfactory. Natural products, including fungal metabolites, are excellent sources of pharmaceutical compounds used in cancer treatment. We employed in vitro cell invasion, cell proliferation, cell migration, cell viability, and colony formation assays with the aim of evaluating the effects of coriloxin, isolated from fermented broths of Nectria balsamea YMJ94052402, on human lung adenocarcinoma CL1-5 and/or A549 cells. The potential targets regulated by coriloxin were examined through Western blot analysis. The cytotoxic effect of coriloxin was more efficiently exerted on lung adenocarcinoma cells than on bronchial epithelial cells. Moreover, low-concentration coriloxin significantly suppressed adenocarcinoma cells’ proliferative, migratory, and clonogenic abilities. These inhibitory effects were achieved through ERK/AKT inactivation, epithelial–mesenchymal transition regulation, and HLJ1 expression. Our findings suggest that coriloxin can be used as a multitarget anticancer agent. Further investigations of the application of coriloxin as an adjuvant therapy in lung cancer treatment are warranted.
Collapse
Affiliation(s)
- Yu-Hsuan Kuo
- Department of Oncology, Chi-Mei Hospital, Tainan 710402, Taiwan;
| | - Yi-Xuan Wang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (Y.-X.W.); (W.-H.P.); (N.-Y.C.)
| | - Wan-Hua Peng
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (Y.-X.W.); (W.-H.P.); (N.-Y.C.)
| | - Nian-Yu Chi
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (Y.-X.W.); (W.-H.P.); (N.-Y.C.)
| | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, Taipei 106319, Taiwan;
| | - Chi-Chung Wang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (Y.-X.W.); (W.-H.P.); (N.-Y.C.)
- Correspondence: ; Tel.: +886-22905-2039; Fax: +886-2-2905-3415
| |
Collapse
|
7
|
Song P, Chen J, Zhang X, Yin X. Construction of competitive endogenous RNA network related to circular RNA and prognostic nomogram model in lung adenocarcinoma. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:9806-9821. [PMID: 34814370 DOI: 10.3934/mbe.2021481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Early researches have revealed that circular RNA (circRNA) had the potential of biomarkers and could affect tumor progression through regulatory networks. However, few research focused on the function of circRNA in lung adenocarcinoma and the regulation mechanism of competitive endogenous RNA. In present study, through differential expression analysis, 10 circRNAs, 98 miRNAs(microRNA) and 2497 mRNAs were screened. Based on the 10 circRNAs and related databases, a competitive endogenous RNA regulatory network (ceRNA network) containing 7 circRNAs, 13 miRNAs and 147 mRNAs was constructed. KEGG and GO analysis suggested that 147 mRNAs were obviously enriched in biological pathway related to LUAD. By constructing a PPI network, 12 hub genes were identified by MCODE. The result of survival analysis showed that 10 hub genes (BIRC5, MKI67, CENPF, RRM2, BUB1, MELK, CEP55, CDK1, NEK2, TOP2A) were significantly related to the survival of LUAD. We randomly divided 483 clinical data into two parts: train set and validation set. The train set was used for Cox regression analysis, 3 prognostic factors (stage, T, CDK1) were screened. The nomogram model was constructed based on stage, T and CDK1. The model was evaluated by ROC curve, calibration chart, Kaplan-Meier (KM) curve and validation set data. The results indicated that the model has good accuracy. Our study elucidated the regulatory mechanism of circRNA in lung adenocarcinoma, and the nomogram model also provided insight for the clinical analysis of lung adenocarcinoma.
Collapse
Affiliation(s)
- Pingping Song
- School of Mathematics and Statistics, Southwest University, Chongqing 400715, China
| | - Jing Chen
- School of Science, Southwest University of Science and Technology, Sichuan 621000, China
| | - Xu Zhang
- School of Mathematics and Statistics, Southwest University, Chongqing 400715, China
| | - Xiaofeng Yin
- School of Mathematics and Statistics, Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
Id4 Suppresses the Growth and Invasion of Colorectal Cancer HCT116 Cells through CK18-Related Inhibition of AKT and EMT Signaling. JOURNAL OF ONCOLOGY 2021; 2021:6660486. [PMID: 33936204 PMCID: PMC8060092 DOI: 10.1155/2021/6660486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/19/2021] [Accepted: 04/02/2021] [Indexed: 01/05/2023]
Abstract
Id4 is one of the inhibitors of DNA-binding proteins (Id) and involved in the pathogenesis of numerous cancers. The specific mechanism underlying the Id4-mediated regulation of proliferation, invasion, and metastasis of colorectal cancer (CRC) cells is still largely unclear. In the present study, results showed CRC cells had a lower baseline Id4 expression than normal intestinal epithelial NCM460 cells. In order to explore the role of Id4 in the tumorigenicity, CRC HCT116 cells with stable Id4 expression were used, and results showed Id4 overexpression arrested the cell cycle at the G0/G1 phase, inhibited the cell proliferation and the colony formation, as well as suppressed the migration and invasion. In the in vivo model, Id4 overexpression inhibited the tumor growth and metastasis in the nude mice. Furthermore, Id4 overexpression upregulated the expression of proteins associated with cell proliferation, inhibited the PI3K/AKT pathway, and suppressed epithelial-mesenchymal transition (EMT) of HCT116 cells. Moreover, Id4 significantly decreased cytokeratin 18 (CK18) expression, but CK18 overexpression in Id4 expressing HCT116-Id4 cells rescued the activation of AKT, p-AKT, MMP2, MMP7, and E-cadherin. Collectively, our study indicated Id4 may inhibit CRC growth and metastasis through inhibiting the PI3K/AKT pathway in a CK18-dependent manner and suppressing EMT. Id4 may become a target for the treatment of CRC.
Collapse
|
9
|
Han CL, Chen XR, Lan A, Hsu YL, Wu PS, Hung PF, Hung CL, Pan SH. N-glycosylated GPNMB ligand independently activates mutated EGFR signaling and promotes metastasis in NSCLC. Cancer Sci 2021; 112:1911-1923. [PMID: 33706413 PMCID: PMC8088973 DOI: 10.1111/cas.14872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
Lung cancer is the leading cause of cancer‐related death worldwide. As well as the identified role of epidermal growth factor receptor (EGFR), its association with driver mutations has improved the therapeutics for patients with lung cancer harboring EGFR mutations. These patients usually display shorter overall survival and a higher tendency to develop distant metastasis compared with those carrying the wild‐type EGFR. Nevertheless, the way to control mutated EGFR signaling remains unclear. Here, we performed membrane proteomic analysis to determine potential components that may act with EGFR mutations to promote lung cancer malignancy. Expression of transmembrane glycoprotein non‐metastatic melanoma protein B (GPNMB) was positively correlated with the status of mutated EGFR in non‐small‐cell lung cancer (NSCLC). This protein was not only overexpressed but also highly glycosylated in EGFR‐mutated, especially EGFR‐L858R mutated, NSCLC cells. Further examination showed that GPNMB could activate mutated EGFR without ligand stimulation and could bind to the C‐terminus of EGFR, assist phosphorylation at Y845, turn on downstream STAT3 signaling, and promote cancer metastasis. Moreover, we also found that Asn134 (N134) glycosylation of GPNMB played a crucial role in this ligand‐independent regulation. Depleting N134‐glycosylation on GPNMB could dramatically inhibit binding of GPNMB to mutated EGFR, blocking its downstream signaling, and ultimately inhibiting cancer metastasis in NSCLC. Clarifying the role of N‐glycosylated GPNMB in regulating the ligand‐independent activation of mutated EGFR may soon give new insight into the development of novel therapeutics for NSCLC.
Collapse
Affiliation(s)
- Chia-Li Han
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Xuan-Ren Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Albert Lan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yuan-Ling Hsu
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Shan Wu
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Pei-Fang Hung
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Lieh Hung
- Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| | - Szu-Hua Pan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan.,Doctoral Degree Program of Translational Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
10
|
Zhang X, Du L, Han J, Li X, Wang H, Zheng G, Wang Y, Yang Y, Hu Y, Wang C. Novel long non-coding RNA LINC02323 promotes epithelial-mesenchymal transition and metastasis via sponging miR-1343-3p in lung adenocarcinoma. Thorac Cancer 2020; 11:2506-2516. [PMID: 32643848 PMCID: PMC7471025 DOI: 10.1111/1759-7714.13562] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND We have previously developed a unique metastasis-associated signature consisting of six long non-coding RNAs (lncRNAs), including a novel lncRNA, namely LINC02323. In the present study, we aimed to investigate the underlying roles of LINC02323 in the migration, invasion and TGF-β-induced epithelial-mesenchymal transition (EMT) of lung adenocarcinoma (LUAD) cells. METHODS The distribution of LINC02323 was detected by the nuclear-plasma separation experiment. Cell proliferation was assessd by MTT assay, and cell migration and invation were detected by transwell assays. EMT was detected by RT-qPCR and western blotting. Interaction between miRNA and LINC02323 was predicted by starBase v2.0 and confirmed by the double luciferase reporting system. RESULTS LINC02323 was distributed in the cytoplasm and nucleus. The overexpression or deletion of LINC02323 did not affect the proliferation of LUAD cells, while significantly affected the migration and invasion of LUAD cells. TGF-β-induced EMT process was significantly affected by both RNA interference (RNAi) and overexpression of LINC02323. The predicted results showed that there were binding sites between LINC02323 and miR-1343-3p. The expression of LINC02323 was found to be negatively correlated with miR-1343-3p in LUAD by analyzing The Cancer Genome Atlas (TCGA) database. The double luciferase reporting system, RT-qPCR and western blotting experiments confirmed that LINC02323 could bind to miR-1343-3p, which bound to TGF-β receptor 1 (TGFBR1). Inhibition of miR-1343-3p reversed LINC02323 silencing-mediated suppression of migration, invasion and EMT. CONCLUSIONS LINC02323 acts as a competing endogenous RNA (ceRNA), which sponged miR-1343-3p to upregulate the TGFBR1 expression and promote the EMT and metastasis in LUAD. KEY POINTS SIGNIFICANT FINDINGS OF THE STUDY: LINC02323 promotes epithelial-mesenchymal transition and metastasis via sponging miR-1343-3p in lung adenocarcinoma. WHAT THIS STUDY ADDS LINC02323 is a key molecule in the process of invasion and metastasis of LUAD and might be used as a potential target in metastatic cancer.
Collapse
Affiliation(s)
- Xiaoshi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Jingyi Han
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoli Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Hongchun Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Guixi Zheng
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Yongmei Yang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|