1
|
Kamynina M, Rozenberg JM, Kushchenko AS, Dmitriev SE, Modestov A, Kamashev D, Gaifullin N, Shaban N, Suntsova M, Emelianova A, Buzdin AA. Forced Overexpression and Knockout Analysis of SLC30A and SLC39A Family Genes Suggests Their Involvement in Establishing Resistance to Cisplatin in Human Cancer Cells. Int J Mol Sci 2024; 25:12049. [PMID: 39596116 PMCID: PMC11594112 DOI: 10.3390/ijms252212049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The metabolism of zinc and manganese plays a pivotal role in cancer progression by mediating cancer cell growth and metastasis. The SLC30A family proteins SLC30A3 and SLC30A10 mediate the efflux of zinc, manganese, and probably other transition element ions outside the cytoplasm to the extracellular space or into intracellular membrane compartments. The SLC39A family members SLC39A8 and SLC39A14 are their functional antagonists that transfer these ions into the cytoplasm. Recently, the SLC30A10 gene was suggested as a promising methylation biomarker of colorectal cancer. Here, we investigated whether forced overexpression or inactivation of SLC30A and SLC39A family genes has an impact on the phenotype of cancer cells and their sensitivity to cancer therapeutics. In the human colon adenocarcinoma HCT-15 and duodenal adenocarcinoma HuTu80 cell lines, we generated clones with knockouts of the SLC39A8 and SLC39A14 genes and forced overexpression of the SLC30A3, SLC30A10, and SLC39A8 genes. Gene expression in the mutant and control cells was assessed by RNA sequencing. The cell growth rate, mitochondrial activity, zinc accumulation, and sensitivity to the drugs cetuximab and cisplatin were investigated in functional tests. Overexpression or depletion of SLC30A or SLC39A family genes resulted in the deep reshaping of intracellular signaling and provoked hyperactivation of mitochondrial respiration. Variation in the expression of the SLC30A/SLC39A genes did not increase the sensitivity to cetuximab but significantly altered the sensitivity to cisplatin: overexpression of SLC30A10 resulted in an ~2.7-4 times increased IC50 of cisplatin, and overexpression of SLC30A3 resulted in an ~3.3 times decreased IC50 of cisplatin. The SLC30A/SLC39A genes should be considered as potential cancer drug resistance biomarkers and putative therapeutic targets.
Collapse
Affiliation(s)
- Margarita Kamynina
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.M.); (D.K.); (N.S.); (M.S.); (A.E.); (A.A.B.)
| | | | - Artem S. Kushchenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.S.K.); (S.E.D.)
| | - Sergey E. Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.S.K.); (S.E.D.)
| | - Aleksander Modestov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.M.); (D.K.); (N.S.); (M.S.); (A.E.); (A.A.B.)
| | - Dmitry Kamashev
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.M.); (D.K.); (N.S.); (M.S.); (A.E.); (A.A.B.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Nurshat Gaifullin
- Faculty of Fundamental Medicine, Moscow State University, 119992 Moscow, Russia;
| | - Nina Shaban
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.M.); (D.K.); (N.S.); (M.S.); (A.E.); (A.A.B.)
| | - Maria Suntsova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.M.); (D.K.); (N.S.); (M.S.); (A.E.); (A.A.B.)
| | - Anna Emelianova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.M.); (D.K.); (N.S.); (M.S.); (A.E.); (A.A.B.)
| | - Anton A. Buzdin
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.M.); (D.K.); (N.S.); (M.S.); (A.E.); (A.A.B.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), 1200 Brussels, Belgium
| |
Collapse
|
2
|
Shaban N, Raevskiy M, Zakharova G, Shipunova V, Deyev S, Suntsova M, Sorokin M, Buzdin A, Kamashev D. Human Blood Serum Counteracts EGFR/HER2-Targeted Drug Lapatinib Impact on Squamous Carcinoma SK-BR-3 Cell Growth and Gene Expression. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:487-506. [PMID: 38648768 DOI: 10.1134/s000629792403009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/17/2024] [Accepted: 02/20/2024] [Indexed: 04/25/2024]
Abstract
Lapatinib is a targeted therapeutic inhibiting HER2 and EGFR proteins. It is used for the therapy of HER2-positive breast cancer, although not all the patients respond to it. Using human blood serum samples from 14 female donors (separately taken or combined), we found that human blood serum dramatically abolishes the lapatinib-mediated inhibition of growth of the human breast squamous carcinoma SK-BR-3 cell line. This antagonism between lapatinib and human serum was associated with cancelation of the drug induced G1/S cell cycle transition arrest. RNA sequencing revealed 308 differentially expressed genes in the presence of lapatinib. Remarkably, when combined with lapatinib, human blood serum showed the capacity of restoring both the rate of cell growth, and the expression of 96.1% of the genes expression of which were altered by the lapatinib treatment alone. Co-administration of EGF with lapatinib also restores the cell growth and cancels alteration of expression of 95.8% of the genes specific to lapatinib treatment of SK-BR-3 cells. Differential gene expression analysis also showed that in the presence of human serum or EGF, lapatinib was unable to inhibit the Toll-Like Receptor signaling pathway and alter expression of genes linked to the Gene Ontology term of Focal adhesion.
Collapse
Affiliation(s)
- Nina Shaban
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
- The National Medical Research Center for Endocrinology, Moscow, 117036, Russia
| | - Mikhail Raevskiy
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
| | - Galina Zakharova
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
| | - Victoria Shipunova
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Sergey Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
- "Biomarker" Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420008, Russia
| | - Maria Suntsova
- The National Medical Research Center for Endocrinology, Moscow, 117036, Russia.
- Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Maksim Sorokin
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia.
- Sechenov First Moscow State Medical University, Moscow, 119991, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), Brussels, 1200, Belgium
| | - Anton Buzdin
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
- The National Medical Research Center for Endocrinology, Moscow, 117036, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Dmitri Kamashev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
- The National Medical Research Center for Endocrinology, Moscow, 117036, Russia
- Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| |
Collapse
|
3
|
Kamashev D, Shaban N, Lebedev T, Prassolov V, Suntsova M, Raevskiy M, Gaifullin N, Sekacheva M, Garazha A, Poddubskaya E, Sorokin M, Buzdin A. Human Blood Serum Can Diminish EGFR-Targeted Inhibition of Squamous Carcinoma Cell Growth through Reactivation of MAPK and EGFR Pathways. Cells 2023; 12:2022. [PMID: 37626832 PMCID: PMC10453612 DOI: 10.3390/cells12162022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Regardless of the presence or absence of specific diagnostic mutations, many cancer patients fail to respond to EGFR-targeted therapeutics, and a personalized approach is needed to identify putative (non)responders. We found previously that human peripheral blood and EGF can modulate the activities of EGFR-specific drugs on inhibiting clonogenity in model EGFR-positive A431 squamous carcinoma cells. Here, we report that human serum can dramatically abolish the cell growth rate inhibition by EGFR-specific drugs cetuximab and erlotinib. We show that this phenomenon is linked with derepression of drug-induced G1S cell cycle transition arrest. Furthermore, A431 cell growth inhibition by cetuximab, erlotinib, and EGF correlates with a decreased activity of ERK1/2 proteins. In turn, the EGF- and human serum-mediated rescue of drug-treated A431 cells restores ERK1/2 activity in functional tests. RNA sequencing revealed 1271 and 1566 differentially expressed genes (DEGs) in the presence of cetuximab and erlotinib, respectively. Erlotinib- and cetuximab-specific DEGs significantly overlapped. Interestingly, the expression of 100% and 75% of these DEGs restores to the no-drug level when EGF or a mixed human serum sample, respectively, is added along with cetuximab. In the case of erlotinib, EGF and human serum restore the expression of 39% and 83% of DEGs, respectively. We further assessed differential molecular pathway activation levels and propose that EGF/human serum-mediated A431 resistance to EGFR drugs can be largely explained by reactivation of the MAPK signaling cascade.
Collapse
Affiliation(s)
- Dmitri Kamashev
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia;
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (N.S.); (A.B.)
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia;
| | - Nina Shaban
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (N.S.); (A.B.)
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia;
| | - Timofey Lebedev
- Engelhardt Institute of Molecular Biology, Moscow 119991, Russia; (T.L.); (V.P.)
| | - Vladimir Prassolov
- Engelhardt Institute of Molecular Biology, Moscow 119991, Russia; (T.L.); (V.P.)
| | - Maria Suntsova
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia;
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (M.R.); (E.P.)
| | - Mikhail Raevskiy
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (M.R.); (E.P.)
| | - Nurshat Gaifullin
- Department of Pathology, Faculty of Medicine, Lomonosov Moscow State University, Moscow 119992, Russia;
| | - Marina Sekacheva
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (M.R.); (E.P.)
| | - Andrew Garazha
- Oncobox Ltd., Moscow 121205, Russia;
- Omicsway Corp., Walnut, CA 91789, USA
| | - Elena Poddubskaya
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (M.R.); (E.P.)
| | - Maksim Sorokin
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia;
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia;
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), 1200 Brussels, Belgium
| | - Anton Buzdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (N.S.); (A.B.)
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia;
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (M.R.); (E.P.)
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), 1200 Brussels, Belgium
| |
Collapse
|
4
|
Pan-cancer antagonistic inhibition pattern of ATM-driven G2/M checkpoint pathway vs other DNA repair pathways. DNA Repair (Amst) 2023; 123:103448. [PMID: 36657260 DOI: 10.1016/j.dnarep.2023.103448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/22/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
DNA repair mechanisms keep genome integrity and limit tumor-associated alterations and heterogeneity, but on the other hand they promote tumor survival after radiation and genotoxic chemotherapies. We screened pathway activation levels of 38 DNA repair pathways in nine human cancer types (gliomas, breast, colorectal, lung, thyroid, cervical, kidney, gastric, and pancreatic cancers). We took RNAseq profiles of the experimental 51 normal and 408 tumor samples, and from The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium databases - of 500/407 normal and 5752/646 tumor samples, and also 573 normal and 984 tumor proteomic profiles from Proteomic Data Commons portal. For all the samplings we observed a congruent trend that all cancer types showed inhibition of G2/M arrest checkpoint pathway compared to the normal samples, and relatively low activities of p53-mediated pathways. In contrast, other DNA repair pathways were upregulated in most of the cancer types. The G2/M checkpoint pathway was statistically significantly downregulated compared to the other DNA repair pathways, and this inhibition was strongly impacted by antagonistic regulation of (i) promitotic genes CCNB and CDK1, and (ii) GADD45 genes promoting G2/M arrest. At the DNA level, we found that ATM, TP53, and CDKN1A genes accumulated loss of function mutations, and cyclin B complex genes - transforming mutations. These findings suggest importance of activation for most of DNA repair pathways in cancer progression, with remarkable exceptions of G2/M checkpoint and p53-related pathways which are downregulated and neutrally activated, respectively.
Collapse
|
5
|
Sorokin M, Rabushko E, Rozenberg JM, Mohammad T, Seryakov A, Sekacheva M, Buzdin A. Clinically relevant fusion oncogenes: detection and practical implications. Ther Adv Med Oncol 2022; 14:17588359221144108. [PMID: 36601633 PMCID: PMC9806411 DOI: 10.1177/17588359221144108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/22/2022] [Indexed: 12/28/2022] Open
Abstract
Mechanistically, chimeric genes result from DNA rearrangements and include parts of preexisting normal genes combined at the genomic junction site. Some rearranged genes encode pathological proteins with altered molecular functions. Those which can aberrantly promote carcinogenesis are called fusion oncogenes. Their formation is not a rare event in human cancers, and many of them were documented in numerous study reports and in specific databases. They may have various molecular peculiarities like increased stability of an oncogenic part, self-activation of tyrosine kinase receptor moiety, and altered transcriptional regulation activities. Currently, tens of low molecular mass inhibitors are approved in cancers as the drugs targeting receptor tyrosine kinase (RTK) oncogenic fusion proteins, that is, including ALK, ABL, EGFR, FGFR1-3, NTRK1-3, MET, RET, ROS1 moieties. Therein, the presence of the respective RTK fusion in the cancer genome is the diagnostic biomarker for drug prescription. However, identification of such fusion oncogenes is challenging as the breakpoint may arise in multiple sites within the gene, and the exact fusion partner is generally unknown. There is no gold standard method for RTK fusion detection, and many alternative experimental techniques are employed nowadays to solve this issue. Among them, RNA-seq-based methods offer an advantage of unbiased high-throughput analysis of only transcribed RTK fusion genes, and of simultaneous finding both fusion partners in a single RNA-seq read. Here we focus on current knowledge of biology and clinical aspects of RTK fusion genes, related databases, and laboratory detection methods.
Collapse
Affiliation(s)
| | - Elizaveta Rabushko
- Moscow Institute of Physics and Technology,
Dolgoprudny, Moscow Region, Russia,I.M. Sechenov First Moscow State Medical
University, Moscow, Russia
| | | | - Tharaa Mohammad
- Moscow Institute of Physics and Technology,
Dolgoprudny, Moscow Region, Russia
| | | | - Marina Sekacheva
- I.M. Sechenov First Moscow State Medical
University, Moscow, Russia
| | - Anton Buzdin
- Moscow Institute of Physics and Technology,
Dolgoprudny, Moscow Region, Russia,I.M. Sechenov First Moscow State Medical
University, Moscow, Russia,Shemyakin-Ovchinnikov Institute of Bioorganic
Chemistry, Moscow, Russia,PathoBiology Group, European Organization for
Research and Treatment of Cancer (EORTC), Brussels, Belgium
| |
Collapse
|
6
|
OncoboxPD: human 51 672 molecular pathways database with tools for activity calculating and visualization. Comput Struct Biotechnol J 2022; 20:2280-2291. [PMID: 35615022 PMCID: PMC9120235 DOI: 10.1016/j.csbj.2022.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 12/29/2022] Open
Abstract
OncoboxPD (Oncobox pathway databank) available at https://open.oncobox.com is the collection of 51 672 uniformly processed human molecular pathways. Superposition of all pathways formed interactome graph of protein–protein interactions and metabolic reactions containing 361 654 interactions and 64 095 molecular participants. Pathways are uniformly classified by biological processes, and each pathway node is algorithmically functionally annotated by specific activator/repressor role. This enables online calculation of statistically supported pathway activation levels (PALs) with the built-in bioinformatic tool using custom RNA/protein expression profiles. Each pathway can be visualized as static or dynamic graph, where vertices are molecules participating in a pathway and edges are interactions or reactions between them. Differentially expressed nodes in a pathway can be visualized in two-color mode with user-defined color scale. For every comparison, OncoboxPD also generates a graph summarizing top up- and downregulated pathways.
Collapse
|
7
|
Seryakov A, Magomedova Z, Suntsova M, Prokofieva A, Rabushko E, Glusker A, Makovskaia L, Zolotovskaia M, Buzdin A, Sorokin M. RNA Sequencing for Personalized Treatment of Metastatic Leiomyosarcoma: Case Report. Front Oncol 2021; 11:666001. [PMID: 34527573 PMCID: PMC8435728 DOI: 10.3389/fonc.2021.666001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/11/2021] [Indexed: 01/14/2023] Open
Abstract
Uterine leiomyosarcoma (UL) is a rare malignant tumor that develops from the uterine smooth muscle tissue. Due to the low frequency and lack of sufficient data from clinical trials there is currently no effective treatment that is routinely accepted for UL. Here we report a case of a 65-years-old female patient with metastatic UL, who progressed on ifosfamide and doxorubicin therapy and developed severe hypertensive crisis after administration of second line pazopanib, which lead to treatment termination. Rapid progression of the tumor stressed the need for the alternative treatment options. We performed RNA sequencing and whole exome sequencing profiling of the patient's biopsy and applied Oncobox bioinformatic algorithm to prioritize targeted therapeutics. No clinically relevant mutations associated with drug efficiencies were found, but the Oncobox transcriptome analysis predicted regorafenib as the most effective targeted treatment option. Regorafenib administration resulted in a complete metabolic response which lasted for 10 months. In addition, RNA sequencing analysis revealed a novel cancer fusion transcript of YWHAE gene with fusion partner JAZF1. Several chimeric transcripts for YWHAE and JAZF1 genes were previously found in uterine neoplasms and some of them were associated with tumor prognosis. However, their combination was detected in this study for the first time. Taken together, these findings evidence that RNA sequencing may complement analysis of clinically relevant mutations and enhance management of oncological patients by suggesting putative treatment options.
Collapse
Affiliation(s)
| | - Zaynab Magomedova
- The Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maria Suntsova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anastasia Prokofieva
- The Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Elizaveta Rabushko
- The Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander Glusker
- The Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Lyudmila Makovskaia
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Marianna Zolotovskaia
- Laboratory of Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anton Buzdin
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- OmicsWay Corp, Walnut, CA, United States
| | - Maxim Sorokin
- The Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- OmicsWay Corp, Walnut, CA, United States
| |
Collapse
|
8
|
Pavlov YI. The Study of Cancer Susceptibility Genes. Cancers (Basel) 2021; 13:cancers13092258. [PMID: 34066717 PMCID: PMC8125815 DOI: 10.3390/cancers13092258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
- Youri I. Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Departments of Biochemistry and Molecular Biology, Microbiology and Pathology, Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics and Biotechnology, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
| |
Collapse
|
9
|
Using proteomic and transcriptomic data to assess activation of intracellular molecular pathways. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 127:1-53. [PMID: 34340765 DOI: 10.1016/bs.apcsb.2021.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Analysis of molecular pathway activation is the recent instrument that helps to quantize activities of various intracellular signaling, structural, DNA synthesis and repair, and biochemical processes. This may have a deep impact in fundamental research, bioindustry, and medicine. Unlike gene ontology analyses and numerous qualitative methods that can establish whether a pathway is affected in principle, the quantitative approach has the advantage of exactly measuring the extent of a pathway up/downregulation. This results in emergence of a new generation of molecular biomarkers-pathway activation levels, which reflect concentration changes of all measurable pathway components. The input data can be the high-throughput proteomic or transcriptomic profiles, and the output numbers take both positive and negative values and positively reflect overall pathway activation. Due to their nature, the pathway activation levels are more robust biomarkers compared to the individual gene products/protein levels. Here, we review the current knowledge of the quantitative gene expression interrogation methods and their applications for the molecular pathway quantization. We consider enclosed bioinformatic algorithms and their applications for solving real-world problems. Besides a plethora of applications in basic life sciences, the quantitative pathway analysis can improve molecular design and clinical investigations in pharmaceutical industry, can help finding new active biotechnological components and can significantly contribute to the progressive evolution of personalized medicine. In addition to the theoretical principles and concepts, we also propose publicly available software for the use of large-scale protein/RNA expression data to assess the human pathway activation levels.
Collapse
|
10
|
Kamashev D, Sorokin M, Kochergina I, Drobyshev A, Vladimirova U, Zolotovskaia M, Vorotnikov I, Shaban N, Raevskiy M, Kuzmin D, Buzdin A. Human blood serum can donor-specifically antagonize effects of EGFR-targeted drugs on squamous carcinoma cell growth. Heliyon 2021; 7:e06394. [PMID: 33748471 PMCID: PMC7966997 DOI: 10.1016/j.heliyon.2021.e06394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/29/2020] [Accepted: 02/25/2021] [Indexed: 02/09/2023] Open
Abstract
Many patients fail to respond to EGFR-targeted therapeutics, and personalized diagnostics is needed to identify putative responders. We investigated 1630 colorectal and lung squamous carcinomas and 1357 normal lung and colon samples and observed huge variation in EGFR pathway activation in both cancerous and healthy tissues, irrespectively on EGFR gene mutation status. We investigated whether human blood serum can affect squamous carcinoma cell growth and EGFR drug response. We demonstrate that human serum antagonizes the effects of EGFR-targeted drugs erlotinib and cetuximab on A431 squamous carcinoma cells by increasing IC50 by about 2- and 20-fold, respectively. The effects on clonogenicity varied significantly across the individual serum samples in every experiment, with up to 100% differences. EGF concentration could explain many effects of blood serum samples, and EGFR ligands-depleted serum showed lesser effect on drug sensitivity.
Collapse
Affiliation(s)
- Dmitry Kamashev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, 8-2, Trubetskaya St., Moscow 119992, Russia
| | - Maksim Sorokin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, 8-2, Trubetskaya St., Moscow 119992, Russia
- Moscow Institute of Physics and Technology (National Research University), Moscow Region 141700, Russia
| | - Irina Kochergina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia
| | - Aleksey Drobyshev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, 8-2, Trubetskaya St., Moscow 119992, Russia
- Moscow Institute of Physics and Technology (National Research University), Moscow Region 141700, Russia
| | - Uliana Vladimirova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, 8-2, Trubetskaya St., Moscow 119992, Russia
| | - Marianna Zolotovskaia
- Moscow Institute of Physics and Technology (National Research University), Moscow Region 141700, Russia
| | - Igor Vorotnikov
- Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia
| | - Nina Shaban
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia
- Moscow Institute of Physics and Technology (National Research University), Moscow Region 141700, Russia
| | - Mikhail Raevskiy
- Moscow Institute of Physics and Technology (National Research University), Moscow Region 141700, Russia
- OmicsWay Corp., Walnut, CA, USA
| | - Denis Kuzmin
- Moscow Institute of Physics and Technology (National Research University), Moscow Region 141700, Russia
| | - Anton Buzdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, 8-2, Trubetskaya St., Moscow 119992, Russia
- Moscow Institute of Physics and Technology (National Research University), Moscow Region 141700, Russia
| |
Collapse
|
11
|
Vladimirova U, Rumiantsev P, Zolotovskaia M, Albert E, Abrosimov A, Slashchuk K, Nikiforovich P, Chukhacheva O, Gaifullin N, Suntsova M, Zakharova G, Glusker A, Nikitin D, Garazha A, Li X, Kamashev D, Drobyshev A, Kochergina-Nikitskaya I, Sorokin M, Buzdin A. DNA repair pathway activation features in follicular and papillary thyroid tumors, interrogated using 95 experimental RNA sequencing profiles. Heliyon 2021; 7:e06408. [PMID: 33748479 PMCID: PMC7970325 DOI: 10.1016/j.heliyon.2021.e06408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/22/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
DNA repair can prevent mutations and cancer development, but it can also restore damaged tumor cells after chemo and radiation therapy. We performed RNA sequencing on 95 human pathological thyroid biosamples including 17 follicular adenomas, 23 follicular cancers, 3 medullar cancers, 51 papillary cancers and 1 poorly differentiated cancer. The gene expression profiles are annotated here with the clinical and histological diagnoses and, for papillary cancers, with BRAF gene V600E mutation status. DNA repair molecular pathway analysis showed strongly upregulated pathway activation levels for most of the differential pathways in the papillary cancer and moderately upregulated pattern in the follicular cancer, when compared to the follicular adenomas. This was observed for the BRCA1, ATM, p53, excision repair, and mismatch repair pathways. This finding was validated using independent thyroid tumor expression dataset PRJEB11591. We also analyzed gene expression patterns linked with the radioiodine resistant thyroid tumors (n = 13) and identified 871 differential genes that according to Gene Ontology analysis formed two functional groups: (i) response to topologically incorrect protein and (ii) aldo-keto reductase (NADP) activity. We also found RNA sequencing reads for two hybrid transcripts: one in-frame fusion for well-known NCOA4-RET translocation, and another frameshift fusion of ALK oncogene with a new partner ARHGAP12. The latter could probably support increased expression of truncated ALK downstream from 4th exon out of 28. Both fusions were found in papillary thyroid cancers of follicular histologic subtype with node metastases, one of them (NCOA4-RET) for the radioactive iodine resistant tumor. The differences in DNA repair activation patterns may help to improve therapy of different thyroid cancer types under investigation and the data communicated may serve for finding additional markers of radioiodine resistance.
Collapse
Affiliation(s)
- Uliana Vladimirova
- I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Pavel Rumiantsev
- Endocrinology Research Centre, Moscow, 117312, Russia
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | | | | | | | | | | | | | - Nurshat Gaifullin
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Maria Suntsova
- I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | | | - Alexander Glusker
- I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Daniil Nikitin
- Omicsway Corp., Walnut, CA, 91789, USA
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | | | - Xinmin Li
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Dmitriy Kamashev
- I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Alexei Drobyshev
- I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | | | - Maxim Sorokin
- I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
- Omicsway Corp., Walnut, CA, 91789, USA
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Anton Buzdin
- I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
- Omicsway Corp., Walnut, CA, 91789, USA
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| |
Collapse
|
12
|
Knyazeva M, Korobkina E, Karizky A, Sorokin M, Buzdin A, Vorobyev S, Malek A. Reciprocal Dysregulation of MiR-146b and MiR-451 Contributes in Malignant Phenotype of Follicular Thyroid Tumor. Int J Mol Sci 2020; 21:E5950. [PMID: 32824921 PMCID: PMC7503510 DOI: 10.3390/ijms21175950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 01/08/2023] Open
Abstract
Over the last few years, incidental thyroid nodules are being diagnosed with increasing frequency with the use of highly sensitive imaging techniques. The ultrasound thyroid gland examination, followed by the fine-needle aspiration cytology is the standard diagnostic approach. However, in cases of the follicular nature of nodules, cytological diagnosis is not enough. Analysis of miRNAs in the biopsy presents a promising approach. Increasing our knowledge of miRNA's role in follicular carcinogenesis, and development of the appropriate the miRNA analytical technologies are required to implement miRNA-based tests in clinical practice. We used material from follicular thyroid nodes (n.84), grouped in accordance with their invasive properties. The invasion-associated miRNAs expression alterations were assayed. Expression data were confirmed by highly sensitive two-tailed RT-qPCR. Reciprocally dysregulated miRNAs pair concentration ratios were explored as a diagnostic parameter using receiver operation curve (ROC) analysis. A new bioinformatics method (MiRImpact) was applied to evaluate the biological significance of the observed expression alterations. Coupled experimental and computational approaches identified reciprocal dysregulation of miR-146b and miR-451 as important attributes of follicular cell malignant transformation and follicular thyroid cancer progression. Thus, evaluation of combined dysregulation of miRNAs relevant to invasion and metastasis can help to distinguish truly malignant follicular thyroid cancer from indolent follicular adenoma.
Collapse
Affiliation(s)
- Margarita Knyazeva
- Subcellular technology Lab., N. N. Petrov National Medical Center of Oncology, 197758 Saint Petersburg, Russia; (M.K.); (E.K.)
- Oncosystem Company Limited, 121205 Moscow, Russia
- Institute of Biomedical Systems and Biotechnologies, Peter the Great Saint. Petersburg Polytechnic University (SPbPU), 195251 Saint Petersburg, Russia
| | - Ekaterina Korobkina
- Subcellular technology Lab., N. N. Petrov National Medical Center of Oncology, 197758 Saint Petersburg, Russia; (M.K.); (E.K.)
- Oncosystem Company Limited, 121205 Moscow, Russia
| | - Alexey Karizky
- Information Technologies and Programming Faculty, Information Technologies, Mechanics and Optics (ITMO) University, 197101 Saint-Petersburg, Russia;
| | - Maxim Sorokin
- Institute of Personalized Medicine, I.M. Sechenov First Moscow State Medical University, 119048 Moscow, Russia; (M.S.); (A.B.)
- Omicsway Corporation, Walnut, CA 91789, USA
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Anton Buzdin
- Institute of Personalized Medicine, I.M. Sechenov First Moscow State Medical University, 119048 Moscow, Russia; (M.S.); (A.B.)
- Omicsway Corporation, Walnut, CA 91789, USA
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Sergey Vorobyev
- National Center of Clinical Morphological Diagnostics, 192283 Saint Petersburg, Russia;
| | - Anastasia Malek
- Subcellular technology Lab., N. N. Petrov National Medical Center of Oncology, 197758 Saint Petersburg, Russia; (M.K.); (E.K.)
- Oncosystem Company Limited, 121205 Moscow, Russia
| |
Collapse
|
13
|
Moisseev A, Albert E, Lubarsky D, Schroeder D, Clark J. Transcriptomic and Genomic Testing to Guide Individualized Treatment in Chemoresistant Gastric Cancer Case. Biomedicines 2020; 8:biomedicines8030067. [PMID: 32210001 PMCID: PMC7148467 DOI: 10.3390/biomedicines8030067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 12/20/2022] Open
Abstract
Gastric cancer is globally the fifth leading cause of cancer death. We present a case report describing the unique genomic characteristics of an Epstein–Barr virus-negative gastric cancer with esophageal invasion and regional lymph node metastasis. Genomic tests were performed first with the stomach biopsy using platforms FoundationOne, OncoDNA, and Oncopanel at Dana Farber Institute. Following neoadjuvant chemotherapy, residual tumor was resected and the stomach and esophageal residual tumor samples were compared with the initial biopsy by whole exome sequencing and molecular pathway analysis platform Oncobox. Copy number variation profiling perfectly matched the whole exome sequencing results. A moderate agreement was seen between the diagnostic platforms in finding mutations in the initial biopsy. Final data indicate somatic activating mutation Q546K in PIK3CA gene, somatic frameshifts in PIH1D1 and FBXW7 genes, stop-gain in TP53BP1, and a few somatic mutations of unknown significance. RNA sequencing analysis revealed upregulated expressions of MMP7, MMP9, BIRC5, and PD-L1 genes and strongly differential regulation of several molecular pathways linked with the mutations identified. According to test results, the patient received immunotherapy with anti-PD1 therapy and is now free of disease for 2 years. Our data suggest that matched tumor and normal tissue analyses have a considerable advantage over tumor biopsy-only genomic tests in stomach cancer.
Collapse
Affiliation(s)
- Alexey Moisseev
- Institute for personalized medicine, I.M. Sechenov First Moscow State Medical University, 119048 Moscow, Russia;
- Correspondence: ; Tel.: +7(926)1443639
| | - Eugene Albert
- Institute for personalized medicine, I.M. Sechenov First Moscow State Medical University, 119048 Moscow, Russia;
| | | | - David Schroeder
- Wellesley Internal Medicine, 372 Washington St Ste 2, Wellesley Hills, MA 02481, USA;
| | - Jeffrey Clark
- Department of Hematology and Oncology, Massachusetts General Hospital, 55 Fruit Street Boston, MA 02114, USA;
| |
Collapse
|
14
|
Zolotovskaia MA, Sorokin MI, Petrov IV, Poddubskaya EV, Moiseev AA, Sekacheva MI, Borisov NM, Tkachev VS, Garazha AV, Kaprin AD, Shegay PV, Giese A, Kim E, Roumiantsev SA, Buzdin AA. Disparity between Inter-Patient Molecular Heterogeneity and Repertoires of Target Drugs Used for Different Types of Cancer in Clinical Oncology. Int J Mol Sci 2020; 21:E1580. [PMID: 32111026 PMCID: PMC7084891 DOI: 10.3390/ijms21051580] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Inter-patient molecular heterogeneity is the major declared driver of an expanding variety of anticancer drugs and personalizing their prescriptions. Here, we compared interpatient molecular heterogeneities of tumors and repertoires of drugs or their molecular targets currently in use in clinical oncology. We estimated molecular heterogeneity using genomic (whole exome sequencing) and transcriptomic (RNA sequencing) data for 4890 tumors taken from The Cancer Genome Atlas database. For thirteen major cancer types, we compared heterogeneities at the levels of mutations and gene expression with the repertoires of targeted therapeutics and their molecular targets accepted by the current guidelines in oncology. Totally, 85 drugs were investigated, collectively covering 82 individual molecular targets. For the first time, we showed that the repertoires of molecular targets of accepted drugs did not correlate with molecular heterogeneities of different cancer types. On the other hand, we found that the clinical recommendations for the available cancer drugs were strongly congruent with the gene expression but not gene mutation patterns. We detected the best match among the drugs usage recommendations and molecular patterns for the kidney, stomach, bladder, ovarian and endometrial cancers. In contrast, brain tumors, prostate and colorectal cancers showed the lowest match. These findings provide a theoretical basis for reconsidering usage of targeted therapeutics and intensifying drug repurposing efforts.
Collapse
Affiliation(s)
- Marianna A. Zolotovskaia
- Oncobox ltd., Moscow, 121205, Russia; (I.V.P.); (A.A.B.)
- Department of Oncology, Hematology and Radiotherapy of Pediatric Faculty, Pirogov Russian National Research Medical University, Moscow, 117997, Russia;
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia;
| | - Maxim I. Sorokin
- I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia (E.V.P.); (A.A.M.)
- Omicsway Corp., Walnut, CA, 91789, USA; (V.S.T.); (A.V.G.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Ivan V. Petrov
- Oncobox ltd., Moscow, 121205, Russia; (I.V.P.); (A.A.B.)
| | - Elena V. Poddubskaya
- I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia (E.V.P.); (A.A.M.)
| | - Alexey A. Moiseev
- I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia (E.V.P.); (A.A.M.)
| | - Marina I. Sekacheva
- I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia (E.V.P.); (A.A.M.)
| | - Nicolas M. Borisov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia;
- I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia (E.V.P.); (A.A.M.)
- Omicsway Corp., Walnut, CA, 91789, USA; (V.S.T.); (A.V.G.)
| | | | | | - Andrey D. Kaprin
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Moscow 125284, Russia;
| | - Peter V. Shegay
- Center for Innovative Radiological and Regenerative Technologies of the Ministry of Health of the Russian Federation, Obninsk 249030, Russia;
| | - Alf Giese
- Orthocentrum Hamburg, Hamburg, Germany; or
| | - Ella Kim
- Johannes Gutenberg University Mainz, Mainz, Germany;
| | - Sergey A. Roumiantsev
- Department of Oncology, Hematology and Radiotherapy of Pediatric Faculty, Pirogov Russian National Research Medical University, Moscow, 117997, Russia;
| | - Anton A. Buzdin
- Oncobox ltd., Moscow, 121205, Russia; (I.V.P.); (A.A.B.)
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia;
- I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia (E.V.P.); (A.A.M.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| |
Collapse
|