1
|
Byrne AJ, Bright SA, McKeown JP, Bergin A, Twamley B, McElligott AM, Noorani S, Kandwal S, Fayne D, O’Boyle NM, Williams DC, Meegan MJ. Synthesis and Pro-Apoptotic Effects of Nitrovinylanthracenes and Related Compounds in Chronic Lymphocytic Leukaemia (CLL) and Burkitt's Lymphoma (BL). Molecules 2023; 28:8095. [PMID: 38138584 PMCID: PMC10746112 DOI: 10.3390/molecules28248095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic lymphocytic leukaemia (CLL) is a malignancy of the immune B lymphocyte cells and is the most common leukaemia diagnosed in developed countries. In this paper, we report the synthesis and antiproliferative effects of a series of (E)-9-(2-nitrovinyl)anthracenes and related nitrostyrene compounds in CLL cell lines and also in Burkitt's lymphoma (BL) cell lines, a rare form of non-Hodgkin's immune B-cell lymphoma. The nitrostyrene scaffold was identified as a lead structure for the development of effective compounds targeting BL and CLL. The series of structurally diverse nitrostyrenes was synthesised via Henry-Knoevenagel condensation reactions. Single-crystal X-ray analysis confirmed the structure of (E)-9-chloro-10-(2-nitrobut-1-en-1-yl)anthracene (19f) and the related 4-(anthracen-9-yl)-1H-1,2,3-triazole (30a). The (E)-9-(2-nitrovinyl)anthracenes 19a, 19g and 19i-19m were found to elicit potent antiproliferative effects in both BL cell lines EBV-MUTU-1 (chemosensitive) and EBV+ DG-75 (chemoresistant) with >90% inhibition at 10 μM. Selected (E)-9-(2-nitrovinyl)anthracenes demonstrated potent antiproliferative activity in CLL cell lines, with IC50 values of 0.17 μM (HG-3) and 1.3 μM (PGA-1) for compound 19g. The pro-apoptotic effects of the most potent compounds 19a, 19g, 19i, 19l and 19m were demonstrated in both CLL cell lines HG-3 and PGA-1. The (E)-nitrostyrene and (E)-9-(2-nitrovinyl)anthracene series of compounds offer potential for further development as novel chemotherapeutics for CLL.
Collapse
Affiliation(s)
- Andrew J. Byrne
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (J.P.M.); (M.J.M.)
| | - Sandra A. Bright
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (S.K.); (D.F.); (D.C.W.)
| | - James. P. McKeown
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (J.P.M.); (M.J.M.)
| | - Adam Bergin
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (J.P.M.); (M.J.M.)
| | - Brendan Twamley
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland;
| | - Anthony M. McElligott
- Discipline of Haematology, School of Medicine, Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College, Dublin 8, D08 W9RT Dublin, Ireland;
| | - Sara Noorani
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (J.P.M.); (M.J.M.)
| | - Shubhangi Kandwal
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (S.K.); (D.F.); (D.C.W.)
| | - Darren Fayne
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (S.K.); (D.F.); (D.C.W.)
| | - Niamh M. O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (J.P.M.); (M.J.M.)
| | - D. Clive Williams
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (S.K.); (D.F.); (D.C.W.)
| | - Mary J. Meegan
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (J.P.M.); (M.J.M.)
| |
Collapse
|
2
|
Salama MM, Aborehab NM, El Mahdy NM, Zayed A, Ezzat SM. Nanotechnology in leukemia: diagnosis, efficient-targeted drug delivery, and clinical trials. Eur J Med Res 2023; 28:566. [PMID: 38053150 DOI: 10.1186/s40001-023-01539-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/18/2023] [Indexed: 12/07/2023] Open
Abstract
Leukemia is a group of malignant disorders which affect the blood and blood-forming tissues in the bone marrow, lymphatic system, and spleen. Many types of leukemia exist; thus, their diagnosis and treatment are somewhat complicated. The use of conventional strategies for treatment such as chemotherapy and radiotherapy may develop many side effects and toxicity. Hence, modern research is concerned with the development of specific nano-formulations for targeted delivery of anti-leukemic drugs avoiding toxic effects on normal cells. Nanostructures can be applied not only in treatment but also in diagnosis. In this article, types of leukemia, its causes, diagnosis as well as conventional treatment of leukemia shall be reviewed. Then, the use of nanoparticles in diagnosis of leukemia and synthesis of nanocarriers for efficient delivery of anti-leukemia drugs being investigated in in vivo and clinical studies. Therefore, it may contribute to the discovery of novel and emerging nanoparticles for targeted treatment of leukemia with less side effects and toxicities.
Collapse
Affiliation(s)
- Maha M Salama
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Suez Desert Road, Cairo, 11837, Egypt
| | - Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Nihal M El Mahdy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Ahmed Zayed
- Department of Pharmacognosy, College of Pharmacy, Tanta University, Elguish Street (Medical Campus), Tanta, 31527, Egypt
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt.
| |
Collapse
|
3
|
Chung C, Umoru G, Abboud K, Hobaugh E. Sequencing and combination of current small-molecule inhibitors for chronic lymphocytic leukemia: Where is the evidence? Eur J Haematol 2023. [PMID: 37037657 DOI: 10.1111/ejh.13973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/12/2023]
Abstract
Small-molecule inhibitors have revolutionized the treatment of chronic lymphocytic leukemia (CLL), a landscape once dominated by chemoimmunotherapy (i.e., an anti-CD20 monoclonal antibody in combination with systemic chemotherapy) in fit and unfit individuals. Key challenges include the management of refractory disease as well as the optimization of the therapy sequence. Decreased responsiveness has been observed with prolonged treatment, especially with Bruton tyrosine kinase (BTK) and phosphatidylinositol 3-kinase (PI3K) inhibitors which are given continuously, while venetoclax, an agent that targets dysregulations in intrinsic apoptosis signaling, has a fixed duration when combined with anti-CD20 monoclonal antibodies or BTK inhibitors. Combination therapy aims to synergistically target different oncogenic signaling pathways to abrogate the proliferation of resistant clones and thereby allows for fixed-duration treatments. An advantage of fixed-duration therapy is the potential to decrease financial and drug-induced toxicities. Sequencing of therapies is important to individualize treatment decisions based on factors such as age, comorbidities, tolerability, and patient preferences. However, to date, there are limited data to guide the rational sequencing or combination of these therapies, since conventional chemoimmunotherapy or chemotherapy regimens were used as comparators against these small-molecule inhibitors in trials that led to their regulatory approvals. In this article, we examined and evaluated the current evidence for sequencing versus the combination of small-molecule inhibitors for CLL by conducting comprehensive searches of the United States National Library of Medicine PubMed database, key meeting abstracts, and clinical practice guidelines. We also summarized findings from expert opinions to elucidate best practices for clinical scenarios with limited evidence to guide treatment selection.
Collapse
Affiliation(s)
- Clement Chung
- Houston Methodist West Hospital, Houston, Texas, USA
| | | | | | | |
Collapse
|
4
|
Lorenzovici L, Szilberhorn L, Farkas-Ráduly S, Gasparik AI, Precup AM, Nagy AG, Niemann CU, Aittokallio T, Kaló Z, Csanádi M. Systematic Literature Review of Economic Evaluations of Treatment Alternatives in Chronic Lymphocytic Leukemia. BioDrugs 2023; 37:219-233. [PMID: 36795353 PMCID: PMC9971131 DOI: 10.1007/s40259-023-00583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Economic evaluations are widely used to predict the economic impact of new treatment alternatives. Comprehensive economic reviews in the field of chronic lymphocytic leukemia (CLL) are warranted to supplement the existing analyses focused on specific therapeutic areas. METHODS A systematic literature review was conducted based on literature searches in Medline and EMBASE to summarize the published health economics models related to all types of CLL therapies. Narrative synthesis of relevant studies was performed focusing on compared treatments, patient populations, modelling approaches and key findings. RESULTS We included 29 studies, the majority of which were published between 2016 and 2018, when data from large clinical trials in CLL became available. Treatment regimens were compared in 25 cases, while the remaining four studies considered treatment strategies with more complex patient pathways. Based on the review results, Markov modelling with a simple structure of three health states (progression-free, progressed, death) can be considered as the traditional basis to simulate cost effectiveness. However, more recent studies added further complexity, including additional health states for different therapies (e.g. best supportive care or stem cell transplantation), for progression-free state (e.g. by differentiating between with or without treatment), or for response status (i.e. partial response and complete response). CONCLUSIONS As personalized medicine is increasingly gaining recognition, we expect that future economic evaluations will also incorporate new solutions, which are necessary to capture a larger number of genetic and molecular markers and more complex patient pathways with individual patient-level allocation of treatment options and thus economic assessments.
Collapse
Affiliation(s)
- László Lorenzovici
- Syreon Research Romania, Targu Mures, Romania.,George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania
| | | | | | - Andrea Ildiko Gasparik
- George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania
| | | | | | - Carsten Utoft Niemann
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland, Helsinki Institute for Life Sciences, University of Helsinki, Helsinki, Finland.,Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Oslo Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Zoltán Kaló
- Syreon Research Institute, Budapest, Hungary.,Center for Health Technology Assessment, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
5
|
Ma H, Wang S, O'Brien S, Kern M, Gupta P. How we approach the perioperative management of patients with chronic lymphocytic leukaemia receiving continuous cancer-directed therapies. Br J Haematol 2023; 201:215-221. [PMID: 36682358 DOI: 10.1111/bjh.18661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/24/2023]
Abstract
Historically, invasive procedures and surgeries were deferred in patients with haematological malignancies including advanced stage chronic lymphocytic leukaemia (CLL) because of limited life expectancy. However, novel, and often continuous, treatments have markedly improved outcomes in CLL. Some patients may expect years of treatment response and disease control, overcoming the short life expectancy that deters interventionalists. Such patients now often undergo various invasive procedures including major surgery. To inform peri-operative management, we summarize the relevant side effects and drug interactions of continuous CLL therapies, highlight potential surgical risks, and provide recommendations on withholding specific CLL drugs around invasive procedures.
Collapse
Affiliation(s)
- Helen Ma
- VA Long Beach Healthcare System, Long Beach, California, USA.,Division of Hematology/Oncology, Department of Medicine, University of California, Irvine/Orange, California, USA
| | - Stephani Wang
- Division of Cardiology, Department of Medicine, University of California, Irvine/Orange, California, USA
| | - Susan O'Brien
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine/Orange, California, USA
| | - Morton Kern
- VA Long Beach Healthcare System, Long Beach, California, USA.,Division of Cardiology, Department of Medicine, University of California, Irvine/Orange, California, USA
| | - Pankaj Gupta
- VA Long Beach Healthcare System, Long Beach, California, USA.,Division of Hematology/Oncology, Department of Medicine, University of California, Irvine/Orange, California, USA
| |
Collapse
|
6
|
Clonal evolution in chronic lymphocytic leukemia is associated with an unmutated IGHV status and frequently leads to a combination of loss of TP53 and TP53 mutation. Mol Biol Rep 2022; 49:12247-12252. [PMID: 36169893 DOI: 10.1007/s11033-022-07888-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Chromosomal abnormalities and gene mutations determine the prognosis of patients with chronic lymphocytic leukemia (CLL). Genetic lesions can be acquired by clonal evolution (CE) likely correlating with clinical progression. METHODS AND RESULTS Samples of 169 CLL patients were analyzed for cytogenetic clonal evolution (CCE) and CE affecting the genes TP53 and SF3B1. Moreover, the mutational status of IGHV and the clinical outcome was evaluated. CCE was observed in 35% of CLL patients. The most frequently gained cytogenetic aberration was a deletion of TP53. Acquired TP53 deletion was more frequent in patients with SF3B1 mutations compared to those without (19% vs. 7%). CCE showed a tendency to occur more frequently in patients with an aberrant karyotype at first investigation than in patients with a normal karyotype. In 73% of patients with CCE (p = 0.002) and 92% of patients with CE affecting the genes TP53 and SF3B1 (p < 0.001) an unmutated IGHV status was present. CCE and CE affecting the genes TP53 and SF3B1 were significantly associated with each other (p < 0.001). In 7% of patients, CE resulted in the co-occurrence of TP53 deletion and TP53 mutation resulting in a significantly shorter overall survival. CONCLUSIONS The most frequently gained cytogenetic aberration during CCE was a deletion of TP53, which was associated with SF3B1 mutations. Moreover, CCE was associated with an unmutated IGHV status. Our results indicate the importance of re-evaluation of the TP53 status during the course of the disease to ensure correct treatment guidance.
Collapse
|
7
|
Regulation of S100As Expression by Inflammatory Cytokines in Chronic Lymphocytic Leukemia. Int J Mol Sci 2022; 23:ijms23136952. [PMID: 35805957 PMCID: PMC9267105 DOI: 10.3390/ijms23136952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
The calcium-binding proteins S100A4, S100A8, and S100A9 are upregulated in chronic lymphocytic leukemia (CLL), while the S100A9 promotes NF-κB activity during disease progression. The S100-protein family has been involved in several malignancies as mediators of inflammation and proliferation. The hypothesis of our study is that S100A proteins are mediators in signaling pathways associated with inflammation-induced proliferation, such as NF-κB, PI3K/AKT, and JAK/STAT. The mononuclear cells (MNCs) of CLL were treated with proinflammatory IL-6, anti-inflammatory IL-10 cytokines, inhibitors of JAK1/2, NF-κB, and PI3K signaling pathways, to evaluate S100A4, S100A8, S100A9, and S100A12 expression as well as NF-κB activation by qRT-PCR, immunocytochemistry, and immunoblotting. The quantity of S100A4, S100A8, and S100A9 positive cells (p < 0.05) and their protein expression (p < 0.01) were significantly decreased in MNCs of CLL patients compared to healthy controls. The S100A levels were generally increased in CD19+ cells compared to MNCs of CLL. The S100A4 gene expression was significantly stimulated (p < 0.05) by the inhibition of the PI3K/AKT signaling pathway in MNCs. IL-6 stimulated S100A4 and S100A8 protein expression, prevented by the NF-κB and JAK1/2 inhibitors. In contrast, IL-10 reduced S100A8, S100A9, and S100A12 protein expressions in MNCs of CLL. Moreover, IL-10 inhibited activation of NF-κB signaling (4-fold, p < 0.05). In conclusion, inflammation stimulated the S100A protein expression mediated via the proliferation-related signaling and balanced by the cytokines in CLL.
Collapse
|
8
|
Vu M, Degeling K, Thompson ER, Blombery P, Westerman D, IJzerman MJ. Health economic evidence for the use of molecular biomarker tests in hematological malignancies: A systematic review. Eur J Haematol Suppl 2022; 108:469-485. [PMID: 35158410 PMCID: PMC9310724 DOI: 10.1111/ejh.13755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/01/2022]
Abstract
Objectives Molecular biomarker tests can inform the clinical management of genomic heterogeneous hematological malignancies, yet their availability in routine care largely depends on the supporting health economic evidence. This study aims to systematically review the economic evidence for recent molecular biomarker tests in hematological malignancies. Methods We conducted a systematic search in five electronic databases for studies published between January 2010 and October 2020. Publications were independently screened by two reviewers. Clinical study characteristics, economic methodology, and results were extracted, and reporting quality was assessed. Results Fourteen studies were identified, of which half (n = 7; 50%) were full economic evaluations examining both health and economic outcomes. Studies were predominantly conducted in a first‐line treatment setting (n = 7; 50%) and adopted a non‐lifetime time horizon to measure health outcomes and costs (n = 7; 50%). Five studies reported that companion diagnostics for associated therapies were likely cost‐effective for acute myeloid leukemia, chronic myeloid leukemia, diffuse large B‐cell lymphoma, and multiple myeloma. Four studies suggested molecular biomarker tests for treatment monitoring in chronic myeloid leukemia were likely cost‐saving. Conclusions Although there is initial confirmation of the promising health economic results, the present research for molecular biomarker tests in hematological malignancies is sparse with many applications of technological advances yet to be evaluated.
Collapse
Affiliation(s)
- Martin Vu
- Cancer Health Services Research, Centre for Cancer Research, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia.,Cancer Health Services Research, Centre for Health Policy, Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Koen Degeling
- Cancer Health Services Research, Centre for Cancer Research, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia.,Cancer Health Services Research, Centre for Health Policy, Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Ella R Thompson
- Pathology Department, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Piers Blombery
- Pathology Department, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia.,Clinical Haematology, Peter MacCallum Cancer Centre/Royal Melbourne Hospital, Melbourne, Australia
| | - David Westerman
- Pathology Department, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia.,Clinical Haematology, Peter MacCallum Cancer Centre/Royal Melbourne Hospital, Melbourne, Australia
| | - Maarten J IJzerman
- Cancer Health Services Research, Centre for Cancer Research, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia.,Cancer Health Services Research, Centre for Health Policy, Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia.,Department of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia.,Health Technology and Services Research, Faculty of Behavioural, Management and Social Sciences, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| |
Collapse
|
9
|
Panel Sequencing for Clinically Oriented Variant Screening and Copy Number Detection in Chronic Lymphocytic Leukemia Patients. Diagnostics (Basel) 2022; 12:diagnostics12040953. [PMID: 35454001 PMCID: PMC9031851 DOI: 10.3390/diagnostics12040953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
According to current guidelines, in chronic lymphocytic leukemia (CLL), only the TP53 molecular status must be evaluated prior to every treatment’s initiation. However, additional heterogeneous genetic events are known to confer a proliferative advantage to the tumor clone and are associated with progression and treatment failure in CLL patients. Here, we describe the implementation of a comprehensive targeted sequencing solution that is suitable for routine clinical practice and allows for the detection of the most common somatic single-nucleotide and copy number variants in genes relevant to CLL. We demonstrate that this cost-effective strategy achieves variant detection with high accuracy, specificity, and sensitivity. Furthermore, we identify somatic variants and copy number variations in genes with prognostic and/or predictive value, according to the most recent literature, and the tool provides evidence about subclonal events. This next-generation sequencing (NGS) capture-based target assay is an improvement on current approaches in defining molecular prognostic and/or predictive variables in CLL patients.
Collapse
|
10
|
Zanubrutinib in relapsed/refractory mantle cell lymphoma: long-term efficacy and safety results from a phase 2 study. Blood 2022; 139:3148-3158. [PMID: 35303070 PMCID: PMC9136878 DOI: 10.1182/blood.2021014162] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/14/2022] [Indexed: 02/05/2023] Open
Abstract
Zanubrutinib demonstrated deep and durable responses and a favorable safety profile in R/R MCL at median 35.3 months follow-up. Zanubrutinib provided a high response rate (84% [78% CR]) and extended PFS (median 33.0 months) in patients with R/R MCL.
Bruton tyrosine kinase (BTK) inhibitor is an established treatment for relapsed/refractory (R/R) mantle cell lymphoma (MCL). Zanubrutinib, a highly selective BTK inhibitor, is approved for patients with MCL who have received ≥1 prior therapy. We report the long-term safety and efficacy results from the multicenter, open-label, phase 2 registration trial of zanubrutinib. Patients (n = 86) received oral zanubrutinib 160 mg twice daily. The primary endpoint was the overall response rate (ORR), assessed per Lugano 2014. After a median follow-up of 35.3 months, the ORR was 83.7%, with 77.9% achieving complete response (CR); the median duration of response was not reached. Median progression-free survival (PFS) was 33.0 months (95% confidence interval [CI], 19.4-NE). The 36-month PFS and overall survival (OS) rates were 47.6% (95% CI, 36.2-58.1) and 74.8% (95% CI, 63.7-83.0), respectively. The safety profile was largely unchanged with extended follow-up. Most common (≥20%) all-grade adverse events (AEs) were neutrophil count decreased (46.5%), upper respiratory tract infection (38.4%), rash (36.0%), white blood cell count decreased (33.7%), and platelet count decreased (32.6%); most were grade 1/2 events. Most common (≥10%) grade ≥3 AEs were neutrophil count decreased (18.6%) and pneumonia (12.8%). Rates of infection, neutropenia, and bleeding were highest in the first 6 months of therapy and decreased thereafter. No cases of atrial fibrillation/flutter, grade ≥3 cardiac AEs, second primary malignancies, or tumor lysis syndrome were reported. After extended follow-up, zanubrutinib demonstrated durable responses and a favorable safety profile in R/R MCL. The trial is registered at ClinicalTrials.gov as NCT03206970.
Collapse
|
11
|
Zoulikha M, He W. Targeted Drug Delivery for Chronic Lymphocytic Leukemia. Pharm Res 2022; 39:441-461. [DOI: 10.1007/s11095-022-03214-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/21/2022] [Indexed: 02/06/2023]
|
12
|
Druggable Molecular Pathways in Chronic Lymphocytic Leukemia. Life (Basel) 2022; 12:life12020283. [PMID: 35207569 PMCID: PMC8875960 DOI: 10.3390/life12020283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 12/02/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL), the most common type of leukemia in adults, is characterized by a high degree of clinical heterogeneity that is influenced by the disease’s molecular complexity. The genes most frequently affected in CLL cluster into specific biological pathways, including B-cell receptor (BCR) signaling, apoptosis, NF-κB, and NOTCH1 signaling. BCR signaling and the apoptosis pathway have been exploited to design targeted medicines for CLL therapy. Consistently, molecules that selectively inhibit specific BCR components, namely Bruton tyrosine kinase (BTK) and phosphoinositide 3-kinase (PI3K) as well as inhibitors of BCL2, have revolutionized the therapeutic management of CLL patients. Several BTK inhibitors and PI3K inhibitors with different modes of action are currently used or are in development in advanced stage clinical trials. Moreover, the restoration of apoptosis by the BCL2 inhibitor venetoclax offers meaningful clinical activity with a fixed-duration scheme. Inhibitors of the BCR and of BCL2 are able to overcome the chemorefractoriness associated with high-risk genetic features, including TP53 disruption. Other signaling cascades involved in CLL pathogenesis, in particular NOTCH signaling and NF-kB signaling, already provide biomarkers for a precision medicine approach to CLL and may represent potential druggable targets for the future. The aim of the present review is to discuss the druggable pathways of CLL and to provide the biological background of the high efficacy of targeted biological drugs in CLL.
Collapse
|
13
|
Resistance to Targeted Agents Used to Treat Paediatric ALK-Positive ALCL. Cancers (Basel) 2021; 13:cancers13236003. [PMID: 34885113 PMCID: PMC8656581 DOI: 10.3390/cancers13236003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary In general, the non-Hodgkin lymphoma (NHL), anaplastic large cell lymphoma (ALCL) diagnosed in childhood has a good survival outcome when treated with multi-agent chemotherapy. However, side effects of treatment are common, and outcomes are poorer after relapse, which occurs in up to 30% of cases. New drugs are required that are more effective and have fewer side effects. Targeted therapies are potential solutions to these problems, however, the development of resistance may limit their impact. This review summarises the potential resistance mechanisms to these targeted therapies. Abstract Non-Hodgkin lymphoma (NHL) is the third most common malignancy diagnosed in children. The vast majority of paediatric NHL are either Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL), anaplastic large cell lymphoma (ALCL), or lymphoblastic lymphoma (LL). Multi-agent chemotherapy is used to treat all of these types of NHL, and survival is over 90% but the chemotherapy regimens are intensive, and outcomes are generally poor if relapse occurs. Therefore, targeted therapies are of interest as potential solutions to these problems. However, the major problem with all targeted agents is the development of resistance. Mechanisms of resistance are not well understood, but increased knowledge will facilitate optimal management strategies through improving our understanding of when to select each targeted agent, and when a combinatorial approach may be helpful. This review summarises currently available knowledge regarding resistance to targeted therapies used in paediatric anaplastic lymphoma kinase (ALK)-positive ALCL. Specifically, we outline where gaps in knowledge exist, and further investigation is required in order to find a solution to the clinical problem of drug resistance in ALCL.
Collapse
|
14
|
p53: A Double-Edged Sword in Tumor Ferroptosis. Pharmacol Res 2021; 177:106013. [PMID: 34856333 DOI: 10.1016/j.phrs.2021.106013] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022]
Abstract
Ferroptosis is a type of lipid peroxidation-induced cell death that can be regulated in various ways, from changing the activity of antioxidant enzymes to the levels of transcription factors. The p53 tumor suppressor gene is the "guardian of the genome" and is involved in controlling cell survival and division under various pressures. In addition to its effects on apoptosis, autophagy, and cell cycle, p53, through the way of transcription dependent or independent two-way, also regulates the biological processes of tumor cell sensitivity to ferroptosis, including the metabolism of amino acids, nicotinamide adenine dinucleotide phosphate, and lipid peroxidation, as well as the biosynthesis of glutathione, phospholipids, NADPH and coenzyme Q10.As reviewed here, we summarized the metabolic network of p53 and its signaling pathway in regulating ferroptosis and elucidated possible factors and potential clinical application of p53 regulating ferroptosis. This review will provide a basis for further understanding the role of p53 in tumor ferroptosis and new strategies for cancer therapeutic avenues.
Collapse
|
15
|
Bende RJ, Janssen J, van Noesel CJM. Higher-order of chronic lymphocytic leukaemia (CLL) classification: shared antigenic specificities of stereotyped B-cell receptor subsets as defined by the European Research Initiative on CLL consortium. Br J Haematol 2021; 196:e60-e63. [PMID: 34796956 DOI: 10.1111/bjh.17964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 12/01/2022]
Affiliation(s)
- Richard J Bende
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center Amsterdam - LYMMCARE, Amsterdam, The Netherlands
| | - Jerry Janssen
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center Amsterdam - LYMMCARE, Amsterdam, The Netherlands
| | - Carel J M van Noesel
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center Amsterdam - LYMMCARE, Amsterdam, The Netherlands
| |
Collapse
|
16
|
A novel class of oxazepine-based anti-cancer agents induces cell death in primary human CLL cells and efficiently reduces tumor growth in Eμ-TCL1 mice through the JNK/STAT4/p66Shc axis. Pharmacol Res 2021; 174:105965. [PMID: 34732370 DOI: 10.1016/j.phrs.2021.105965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/11/2021] [Accepted: 10/27/2021] [Indexed: 11/23/2022]
Abstract
Survival and expansion of malignant B cells in chronic lymphocytic leukemia (CLL) are highly dependent both on intrinsic defects in the apoptotic machinery and on the interactions with cells and soluble factors in the lymphoid microenvironment. The adaptor protein p66Shc is a negative regulator of antigen receptor signaling, chemotaxis and apoptosis whose loss in CLL B cells contributes to their extended survival and poor prognosis. Hence, the identification of compounds that restore p66Shc expression and function in malignant B cells may pave the way to a new therapeutic approach for CLL. Here we show that a novel oxazepine-based compound (OBC-1) restores p66Shc expression in primary human CLL cells by promoting JNK-dependent STAT4 activation without affecting normal B cells. Moreover, we demonstrate that the potent pro-apoptotic activity of OBC-1 in human leukemic cells directly correlates with p66Shc expression levels and is abrogated when p66Shc is genetically deleted. Preclinical testing of OBC-1 and the novel analogue OBC-2 in Eμ-TCL1 tumor-bearing mice resulted in a significantly longer overall survival and a reduction of the tumor burden in the spleen and peritoneum. Interestingly, OBCs promote leukemic cell mobilization from the spleen to the blood, which correlates with upregulation of sphingosine-1-phosphate receptor expression. In summary, our work identifies OBCs as a promising class of compounds that, by boosting p66Shc expression through the activation of the JNK/STAT4 pathway, display dual therapeutic effects for CLL intervention, namely the ability to mobilize cells from secondary lymphoid organs and a potent pro-apoptotic activity against circulating leukemic cells.
Collapse
|
17
|
The Dual Role of Autophagy in Crizotinib-Treated ALK + ALCL: From the Lymphoma Cells Drug Resistance to Their Demise. Cells 2021; 10:cells10102517. [PMID: 34685497 PMCID: PMC8533885 DOI: 10.3390/cells10102517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 02/06/2023] Open
Abstract
Autophagy has been described as harboring a dual role in cancer development and therapy. Depending on the context, it can exert either pro-survival or pro-death functions. Here, we review what is known about autophagy in crizotinib-treated ALK+ ALCL. We first present our main findings on the role and regulation of autophagy in these cells. Then, we provide literature-driven hypotheses that could explain mechanistically the pro-survival properties of autophagy in crizotinib-treated bulk and stem-like ALK+ ALCL cells. Finally, we discuss how the potentiation of autophagy, which occurs with combined therapies (ALK and BCL2 or ALK and RAF1 co-inhibition), could convert it from a survival mechanism to a pro-death process.
Collapse
|
18
|
Moia R, Favini C, Ferri V, Forestieri G, Terzi Di Bergamo L, Schipani M, Sagiraju S, Andorno A, Rasi S, Adhinaveni R, Talotta D, Al Essa W, De Paoli L, Margiotta Casaluci G, Patriarca A, Boldorini RL, Rossi D, Gaidano G. Multiregional sequencing and circulating tumour DNA analysis provide complementary approaches for comprehensive disease profiling of small lymphocytic lymphoma. Br J Haematol 2021; 195:108-112. [PMID: 34291829 PMCID: PMC8519153 DOI: 10.1111/bjh.17718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022]
Abstract
We aimed at molecularly dissecting the anatomical heterogeneity of small lymphocytic lymphoma (SLL), by analysing a cohort of 12 patients for whom paired DNA from a lymph node biopsy and circulating cells, as well as plasma‐circulating tumour DNA (ctDNA) was available. Notably, the analyses of the lymph node biopsy and of circulating cells complement each other since a fraction of mutations (20·4% and 36·4%, respectively) are unique to each compartment. Plasma ctDNA identified two additional unique mutations. Consistently, the different synchronous sources of tumour DNA complement each other in informing on driver gene mutations in SLL harbouring potential prognostic and/or predictive value.
Collapse
Affiliation(s)
- Riccardo Moia
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Ospedale Maggiore della Carità, Novara, Italy
| | - Chiara Favini
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Ospedale Maggiore della Carità, Novara, Italy
| | - Valentina Ferri
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Ospedale Maggiore della Carità, Novara, Italy
| | - Gabriela Forestieri
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | | | - Mattia Schipani
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Ospedale Maggiore della Carità, Novara, Italy
| | - Sruthi Sagiraju
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Ospedale Maggiore della Carità, Novara, Italy
| | - Annalisa Andorno
- Division of Pathology, Department of Health Sciences, Università del Piemonte Orientale and Ospedale Maggiore della Carità, Novara, Italy
| | - Silvia Rasi
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Ospedale Maggiore della Carità, Novara, Italy
| | - Ramesh Adhinaveni
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Ospedale Maggiore della Carità, Novara, Italy
| | - Donatella Talotta
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Ospedale Maggiore della Carità, Novara, Italy
| | - Wael Al Essa
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Ospedale Maggiore della Carità, Novara, Italy
| | - Lorenzo De Paoli
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Ospedale Maggiore della Carità, Novara, Italy
| | - Gloria Margiotta Casaluci
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Ospedale Maggiore della Carità, Novara, Italy
| | - Andrea Patriarca
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Ospedale Maggiore della Carità, Novara, Italy
| | - Renzo L Boldorini
- Division of Pathology, Department of Health Sciences, Università del Piemonte Orientale and Ospedale Maggiore della Carità, Novara, Italy
| | - Davide Rossi
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland.,Division of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Ospedale Maggiore della Carità, Novara, Italy
| |
Collapse
|
19
|
López-Oreja I, Playa-Albinyana H, Arenas F, López-Guerra M, Colomer D. Challenges with Approved Targeted Therapies against Recurrent Mutations in CLL: A Place for New Actionable Targets. Cancers (Basel) 2021; 13:3150. [PMID: 34202439 PMCID: PMC8269088 DOI: 10.3390/cancers13133150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by a high degree of genetic variability and interpatient heterogeneity. In the last decade, novel alterations have been described. Some of them impact on the prognosis and evolution of patients. The approval of BTK inhibitors, PI3K inhibitors and Bcl-2 inhibitors has drastically changed the treatment of patients with CLL. The effect of these new targeted therapies has been widely analyzed in TP53-mutated cases, but few data exist about the response of patients carrying other recurrent mutations. In this review, we describe the biological pathways recurrently altered in CLL that might have an impact on the response to these new therapies together with the possibility to use new actionable targets to optimize treatment responses.
Collapse
Affiliation(s)
- Irene López-Oreja
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Universitat Pompeu Fabra, 08005 Barcelona, Spain
| | - Heribert Playa-Albinyana
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
| | - Fabián Arenas
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
| | - Mónica López-Guerra
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
- Hematopathology Section, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
| | - Dolors Colomer
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
- Hematopathology Section, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
20
|
Skórka K, Chojnacki M, Masternak M, Karczmarczyk A, Subocz E, Wawrzyniak E, Giannopoulos K. The Predominant Prognostic Significance of NOTCH1 Mutation Defined by Emulsion PCR in Chronic Lymphocytic Leukemia. Cancer Manag Res 2021; 13:3663-3674. [PMID: 33986614 PMCID: PMC8110254 DOI: 10.2147/cmar.s302245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/22/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose NOTCH1mut represents a new prognostic marker in chronic lymphocytic leukaemia (CLL). The low sensitivity of the current methods may increase the risk of false-negative results, particularly in patients with low NOTCH1mut allelic burden. This study compared two methods of the NOTCH1mut assessment including droplet digital PCR (ddPCR) and amplification-refractory mutation system PCR (ARMS-PCR) untreated CLL patients. Patients and Methods This study included 319 untreated CLL patients. Two PCR-based methods; ddPCR and ARMS-PCR were performed to assess the mutational status of NOTCH1. The Mann–Whitney, Fisher’s exact test, Kruskal–Wallis, Kaplan–Meier, Log rank tests and multivariate Cox proportional hazard regression model were used to analyze collected data. Results We proved that ddPCR increased the detectability of the NOTCH1mut compared to ARMS-PCR in CLL (18.55% vs 6%). We showed a shorter time to first treatment (TTFT) in the NOTCH1mut group of patients compared to the NOTCH1wt defined by ddPCR (1.5 vs 33 months, p=0.01). The TTFT survival curves analysis in subgroups divided according to the mutational status of IGHV and NOTCH1 assessed by ddPCR discriminated group with the best prognosis: IGHVmutNOTCH1wt. Multivariate analysis revealed that the mutational status of IGHV represented an independent prognostic factor for TTFT, while NOTCH1mut determined by ddPCR constituted as a dependent prognostic factor for TTFT. Conclusion The selection of the precise method of NOTCH1mut detection as ddPCR might significantly improve prognostic stratification of CLL patient. Assessment of IGHV might be relevant to more accurate discrimination of prognostic groups of CLL patients, especially in harboring NOTCH1mut irrespective of the quantity of allelic burden.
Collapse
Affiliation(s)
- Katarzyna Skórka
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland
| | - Michał Chojnacki
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland
| | - Marta Masternak
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland
| | | | - Edyta Subocz
- Department of Internal Medicine and Hematology, Military Institute of Medicine, Warsaw, Poland
| | - Ewa Wawrzyniak
- Department of Hematology, Medical University of Lodz, Lodz, Poland
| | - Krzysztof Giannopoulos
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland.,Department of Hematology, St. John's Cancer Centre, Lublin, Poland
| |
Collapse
|
21
|
Enhanced Expression of miR-181b in B Cells of CLL Improves the Anti-Tumor Cytotoxic T Cell Response. Cancers (Basel) 2021; 13:cancers13020257. [PMID: 33445508 PMCID: PMC7826592 DOI: 10.3390/cancers13020257] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 11/17/2022] Open
Abstract
The clinical progression of B cell chronic lymphocytic leukemia (CLL) is associated with immune cell dysfunction and a strong decrease of miR-181b-5p (miR-181b), promoting the death of CLL cells. Here we investigated whether the reduction of miR-181b impairs the immune response in CLL. We demonstrate that activated CD4+ T cells increase miR-181b expression in CLL through CD40-CD40L signaling, which enhances the maturation and activity of cytotoxic T cells and, consequently, the apoptotic response of CLL cells. The cytotoxic response is facilitated by a depletion of the anti-inflammatory cytokine interleukin 10, targeted by miR-181b. In vivo experiments in NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice confirmed that miR-181b promotes the apoptotic death of CLL cells only when functional T cells are restored. Overall, our findings suggest that the reinstatement of miR-181b in CLL cells could be an exploitable adjuvant therapeutic option for the treatment of CLL.
Collapse
|
22
|
Patriarca A, Gaidano G. Investigational drugs for the treatment of diffuse large B-cell lymphoma. Expert Opin Investig Drugs 2020; 30:25-38. [PMID: 33295827 DOI: 10.1080/13543784.2021.1855140] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Diffuse large B cell lymphoma (DLBCL) is the most frequent lymphoma in adults. 30-40% DLBCL eventually relapse and 10% are primary refractory, posing an unmet clinical need, especially in patients not eligible for hematopoietic stem cell transplant. Knowledge of DLBCL molecular pathogenesis has identified druggable molecular pathways. Surface antigens can be targeted by novel antibodies and innovative cell therapies. Areas covered: This review illuminates those investigational drugs and cell therapies that are currently in early phase clinical trials for the treatment of DLBCL. New small molecules that modulate the pathways involved in the molecular pathogenesis of DLBCL, monospecific and bispecific monoclonal antibodies, drug-immunoconjugates, and cellular therapies are placed under the spotlight. A futuristic perspective concludes the paper. Expert opinion: A precision medicine strategy based on robust molecular predictors of outcome is desirable in the development of investigational small molecules for DLBCL. Novel monoclonal and bispecific antibodies may be offered to (i) relapsed/refractory patients ineligible for CAR-T cells because of comorbidities, and (ii) younger patients before CAR-T cell infusion to reduce a high tumor burden. A focus on the optimal sequencing of the emerging DLBCL drugs is appropriate and necessary.
Collapse
Affiliation(s)
- Andrea Patriarca
- Division of Hematology, Department of Translational Medicine, Università Del Piemonte Orientale and Ospedale Maggiore Della Carità , Novara, Italy
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Università Del Piemonte Orientale and Ospedale Maggiore Della Carità , Novara, Italy
| |
Collapse
|
23
|
Abstract
Haematological malignancies induce important alterations of the immune system, which account for the high frequency of autoimmune complications observed in patients. Cutaneous immune-mediated diseases associated with haematological malignancies encompass a heterogeneous group of dermatoses, including, among others, neutrophilic and eosinophilic dermatoses, autoantibody-mediated skin diseases, vasculitis and granulomatous dermatoses. Some of these diseases, such as paraneoplastic pemphigus, are associated with an increased risk of death; others, such as eosinophilic dermatoses of haematological malignancies, run a benign clinical course but portend a significant negative impairment on a patient’s quality of life. In rare cases, the skin eruption reflects immunological alterations associated with an unfavourable prognosis of the associated haematological disorder. Therapeutic management of immune-mediated skin diseases in patients with haematological malignancies is often challenging. Systemic corticosteroids and immunosuppressive drugs are considered frontline therapies but may considerably augment the risk of serious infections. Indeed, developing a specific targeted therapeutic approach is of crucial importance for this particularly fragile patient population. This review provides an up-to-date overview on the immune-mediated skin diseases most frequently encountered by patients with onco-haematological disorders, discussing new pathogenic advances and therapeutic options on the horizon.
Collapse
|
24
|
Monti P, Menichini P, Speciale A, Cutrona G, Fais F, Taiana E, Neri A, Bomben R, Gentile M, Gattei V, Ferrarini M, Morabito F, Fronza G. Heterogeneity of TP53 Mutations and P53 Protein Residual Function in Cancer: Does It Matter? Front Oncol 2020; 10:593383. [PMID: 33194757 PMCID: PMC7655923 DOI: 10.3389/fonc.2020.593383] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
The human TP53 locus, located on the short arm of chromosome 17, encodes a tumour suppressor protein which functions as a tetrameric transcription factor capable of regulating the expression of a plethora of target genes involved in cell cycle arrest, apoptosis, DNA repair, autophagy, and metabolism regulation. TP53 is the most commonly mutated gene in human cancer cells and TP53 germ-line mutations are responsible for the cancer-prone Li-Fraumeni syndrome. When mutated, the TP53 gene generally presents missense mutations, which can be distributed throughout the coding sequence, although they are found most frequently in the central DNA binding domain of the protein. TP53 mutations represent an important prognostic and predictive marker in cancer. The presence of a TP53 mutation does not necessarily imply a complete P53 inactivation; in fact, mutant P53 proteins are classified based on the effects on P53 protein function. Different models have been used to explore these never-ending facets of TP53 mutations, generating abundant experimental data on their functional impact. Here, we briefly review the studies analysing the consequences of TP53 mutations on P53 protein function and their possible implications for clinical outcome. The focus shall be on Chronic Lymphocytic Leukemia (CLL), which also has generated considerable discussion on the role of TP53 mutations for therapy decisions.
Collapse
Affiliation(s)
- Paola Monti
- Mutagenesis and Cancer Prevention Unit, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Menichini
- Mutagenesis and Cancer Prevention Unit, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Andrea Speciale
- Mutagenesis and Cancer Prevention Unit, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Giovanna Cutrona
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Franco Fais
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Elisa Taiana
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.,Hematology, Fondazione Cà Granda IRCCS Policlinico, Milan, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.,Hematology, Fondazione Cà Granda IRCCS Policlinico, Milan, Italy
| | - Riccardo Bomben
- Clinical and Experimental Onco-Haematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano, Italy
| | - Massimo Gentile
- Hematology Unit, Azienda Ospedaliera (AO) di Cosenza, Cosenza, Italy
| | - Valter Gattei
- Clinical and Experimental Onco-Haematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano, Italy
| | - Manlio Ferrarini
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Fortunato Morabito
- Unità di Ricerca Biotecnologica, Azienda Sanitaria Provinciale di Cosenza, Aprigliano, Italy.,Department of Hematology and Bone Marrow Transplant Unit, Augusta Victoria Hospital, Jerusalem, Israel
| | - Gilberto Fronza
- Mutagenesis and Cancer Prevention Unit, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
25
|
Moia R, Boggione P, Mahmoud AM, Kodipad AA, Adhinaveni R, Sagiraju S, Patriarca A, Gaidano G. Targeting p53 in chronic lymphocytic leukemia. Expert Opin Ther Targets 2020; 24:1239-1250. [PMID: 33016796 DOI: 10.1080/14728222.2020.1832465] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Genomic studies have allowed to identify molecular predictors for chronic lymphocytic leukemia (CLL) treatment tailoring. TP53 disruption is the strongest predictor of chemo-refractoriness and its assessment is the first decisional node in the disease treatment algorithm. AREAS COVERED The review covers the p53 biological pathway, its genetic alterations and clinical implications in CLL, and its druggable targets. The potential therapeutic options for TP53 disrupted patients are described, including: i) agents circumventing TP53 disruption; ii) targeted therapies restoring the physiological function of mutant p53; and iii) medicines potentiating p53 function. EXPERT OPINION The key approach to improve CLL outcome is treatment tailoring in individual patients. BCR and BCL2 inhibitors have significantly improved CLL survival, however TP53 disrupted patients still have a less favorable outcome than wild type cases, possibly because these novel drugs do not directly target p53 and do not restore the function of the disrupted p53 pathway. Emerging innovative molecules in cancer are able to restore the p53 mutant protein and/or potentiate the activity of the p53 wild type protein. If these compounds were confirmed as efficacious also for CLL, they would represent another step forward in the care of high risk CLL patients with TP53 abnormalities.
Collapse
Affiliation(s)
- Riccardo Moia
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale , Novara, Italy
| | - Paola Boggione
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale , Novara, Italy
| | - Abdurraouf Mokhtar Mahmoud
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale , Novara, Italy
| | - Ahad Ahmed Kodipad
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale , Novara, Italy
| | - Ramesh Adhinaveni
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale , Novara, Italy
| | - Sruthi Sagiraju
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale , Novara, Italy
| | - Andrea Patriarca
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale , Novara, Italy
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale , Novara, Italy
| |
Collapse
|
26
|
Patriarca A, Gaidano G. A step ahead toward precision medicine for chronic lymphocytic leukemia. Haematologica 2020; 105:2352-2355. [PMID: 33054074 PMCID: PMC7556656 DOI: 10.3324/haematol.2020.257048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Andrea Patriarca
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Maggiore Charity Hospital, Novara
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Maggiore Charity Hospital, Novara.
| |
Collapse
|
27
|
Moia R, Patriarca A, Mahmoud AM, Ferri V, Favini C, Rasi S, Deambrogi C, Gaidano G. Assessing prognosis of chronic lymphocytic leukemia using biomarkers and genetics. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1804860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Riccardo Moia
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Andrea Patriarca
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Abdurraouf Mokhtar Mahmoud
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Valentina Ferri
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Chiara Favini
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Silvia Rasi
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Clara Deambrogi
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| |
Collapse
|
28
|
Lee J, Wang YL. Prognostic and Predictive Molecular Biomarkers in Chronic Lymphocytic Leukemia. J Mol Diagn 2020; 22:1114-1125. [PMID: 32615167 DOI: 10.1016/j.jmoldx.2020.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 12/30/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a malignancy of B cells with a variable clinical course. Prognostication is important to place patients into different risk categories for guiding decisions on clinical management, to treat or not to treat. Although several clinical, cytogenetic, and molecular parameters have been established, in the past decade, a tremendous understanding of molecular lesions has been obtained with the advent of high-throughput sequencing. Meanwhile, rapid advances in the understanding of the CLL oncogenic pathways have led to the development of small-molecule targeting signal transducers, Bruton tyrosine kinase and phosphatidylinositol 3-kinase, as well as anti-apoptotic protein BCL2 apoptosis regulator. After an initial response to these targeted therapies, some patients develop resistance and experience disease progression. Novel gene mutations have been identified that account for some of the drug resistance mechanisms. This article focuses on the prognostic and predictive molecular biomarkers in CLL relevant to the molecular pathology practice, beginning with a review of well-established prognostic markers that have already been incorporated into major clinical guidelines, which will be followed by a discussion of emerging biomarkers that are expected to impact clinical practice soon in the future. Special emphasis will be put on predictive biomarkers related to newer targeted therapies in hopes that this review will serve as a useful reference for molecular diagnostic professionals, clinicians, as well as laboratory investigators and trainees.
Collapse
Affiliation(s)
- Jimmy Lee
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois
| | - Y Lynn Wang
- Department of Pathology, Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|