1
|
Butt K, Hussain R, Coupland SE, Krishna Y. Conjunctival Melanoma: A Clinical Review and Update. Cancers (Basel) 2024; 16:3121. [PMID: 39335093 PMCID: PMC11429624 DOI: 10.3390/cancers16183121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Conjunctival melanoma (Co-M) is an aggressive, invasive eye and eyelid cancer. Its global incidence of ~1 in a million is increasing at a rate ratio of ~1.4, but this rises sharply in over 65-year-olds. Although rare, Co-M has a devastating impact on the lives of those who develop it. Co-M is often misdiagnosed or overlooked, leading to vision loss either from the destructive effects of the tumour or side effects of therapy, facial disfigurement from radical surgery, and death from metastases. Due to its rarity, there is limited evidence for diagnosis and management; hence, there is no standardised treatment and not all cases are referred to a specialised ocular oncology centre. Recent progress in cancer immunology and genetics have revolutionised the treatment of cutaneous melanomas, which share some similarities to Co-M. Importantly, a better understanding of Co-M and its precursor lesions is urgently needed to lead to the development of novel targeted and immunotherapies both for local tumour control and disseminated disease. This review aims to provide a comprehensive clinical overview of the current knowledge regarding Co-M, its epidemiology, pathogenesis, presentation, diagnosis and recent changes in the classification of its precursor lesions, management, and recent advances in novel biological therapies for personalised treatment of this disease.
Collapse
Affiliation(s)
- Karam Butt
- National Specialist Ophthalmic Pathology Service, Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Liverpool L7 8YE, UK; (K.B.); (S.E.C.)
| | - Rumana Hussain
- St Paul’s Eye Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool L7 8YE, UK;
- Department of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool L7 8TX, UK
| | - Sarah E. Coupland
- National Specialist Ophthalmic Pathology Service, Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Liverpool L7 8YE, UK; (K.B.); (S.E.C.)
- Department of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool L7 8TX, UK
| | - Yamini Krishna
- National Specialist Ophthalmic Pathology Service, Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Liverpool L7 8YE, UK; (K.B.); (S.E.C.)
- Department of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool L7 8TX, UK
| |
Collapse
|
2
|
Lim JZ, Gokul A, Misra SL, Pan X, Charlton A, McGhee CNJ. An optimized 3T MRI scan protocol to assess iris melanoma with subsequent histopathological verification - A prospective study. Asia Pac J Ophthalmol (Phila) 2024; 13:100047. [PMID: 38417788 DOI: 10.1016/j.apjo.2024.100047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 03/01/2024] Open
Abstract
INTRODUCTION Magnetic resonance imaging (MRI) has demonstrated high levels of tissue contrast, accuracy and reproducibility in evaluating posterior uveal melanoma. Owing to smaller size, the role of MRI in detecting and characterising iris melanoma has not yet been explored. AIMS To develop a protocol to image iris melanoma and describe the MRI characteristics of histopathological-confirmed iris melanoma. MATERIALS AND METHODS An optimised MRI protocol, using a 3T MRI scanner and a 32-channel head coil, was developed to image iris tumours. A prospective, single-centre, 12-month study was conducted on all patients with lesions suspicious for iris melanoma. All patients were offered an MRI scan in addition to the standardised clinical procedures. Image quality comparison was made with existing clinical investigations. Iris melanoma characteristics on MRI are described. RESULTS A successful optimised MRI scan protocol was developed that was able to detect and characterise iris melanoma. One normal participant and five patients with subsequent histopathological-confirmed iris melanoma (n = 6) were recruited. Four patients completed the full MRI sequence. All iris melanoma were detected on at least one T1- or T2-weighted images. When compared to the vitreous, all iris melanomas demonstrated hyper-intensity on T1-weighted images and hypo-intensity on T2-weighted images. On T1-mapping, T1-values of iris melanoma demonstrated an inverse relationship with the degree of tumour pigmentation. CONCLUSIONS This study highlights an optimised, easily reproducible MRI scan protocol to image iris melanoma. Numerous MR imaging characteristics of iris melanoma are reported for the first time and a potential non-invasive tumour biomarker is described.
Collapse
Affiliation(s)
- Joevy Z Lim
- Department of Ophthalmology, New Zealand Eye Centre, University of Auckland, New Zealand; Department of Ophthalmology, Te Whatu Ora - Health New Zealand Auckland, New Zealand
| | - Akilesh Gokul
- Department of Ophthalmology, New Zealand Eye Centre, University of Auckland, New Zealand
| | - Stuti L Misra
- Department of Ophthalmology, New Zealand Eye Centre, University of Auckland, New Zealand
| | - Xingzheng Pan
- Department of Physiology, School of Medical Science, New Zealand Eye Centre, University of Auckland, New Zealand
| | - Amanda Charlton
- Department of Histopathology, Te Whatu Ora - Health New Zealand Auckland, New Zealand
| | - Charles N J McGhee
- Department of Ophthalmology, New Zealand Eye Centre, University of Auckland, New Zealand; Department of Ophthalmology, Te Whatu Ora - Health New Zealand Auckland, New Zealand.
| |
Collapse
|
3
|
Jaarsma-Coes MG, Klaassen L, Marinkovic M, Luyten GPM, Vu THK, Ferreira TA, Beenakker JWM. Magnetic Resonance Imaging in the Clinical Care for Uveal Melanoma Patients-A Systematic Review from an Ophthalmic Perspective. Cancers (Basel) 2023; 15:cancers15112995. [PMID: 37296958 DOI: 10.3390/cancers15112995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Conversely to most tumour types, magnetic resonance imaging (MRI) was rarely used for eye tumours. As recent technical advances have increased ocular MRI's diagnostic value, various clinical applications have been proposed. This systematic review provides an overview of the current status of MRI in the clinical care of uveal melanoma (UM) patients, the most common eye tumour in adults. In total, 158 articles were included. Two- and three-dimensional anatomical scans and functional scans, which assess the tumour micro-biology, can be obtained in routine clinical setting. The radiological characteristics of the most common intra-ocular masses have been described extensively, enabling MRI to contribute to diagnoses. Additionally, MRI's ability to non-invasively probe the tissue's biological properties enables early detection of therapy response and potentially differentiates between high- and low-risk UM. MRI-based tumour dimensions are generally in agreement with conventional ultrasound (median absolute difference 0.5 mm), but MRI is considered more accurate in a subgroup of anteriorly located tumours. Although multiple studies propose that MRI's 3D tumour visualisation can improve therapy planning, an evaluation of its clinical benefit is lacking. In conclusion, MRI is a complementary imaging modality for UM of which the clinical benefit has been shown by multiple studies.
Collapse
Affiliation(s)
- Myriam G Jaarsma-Coes
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Lisa Klaassen
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Radiation Oncology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Marina Marinkovic
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Gregorius P M Luyten
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - T H Khanh Vu
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Teresa A Ferreira
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jan-Willem M Beenakker
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Radiation Oncology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
4
|
Li P, Li K, Li S, Wang Y. Anatomic and Magnetic Resonance Imaging-Based Correction of Upper-Eyelid Depression and Blepharoptosis in Senile Patients. J Craniofac Surg 2023; 34:e321-e325. [PMID: 36918383 DOI: 10.1097/scs.0000000000009255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 03/16/2023] Open
Abstract
In senile patients with sunken superior sulcus, involutional ptosis, and higher eyelid crease, a single operation to correct depression or ptosis cannot achieve good results. We demonstrated the anatomy of periorbital septum fibers, which may contribute to the levator muscle's volume depletion and dynamic power transmission disorder, and described a procedure for correcting upper-eyelid depression and blepharoptosis in senile patients. The fibrous webs in these patients connected the posterior aspect of the orbicularis and the orbital septum and extended to the orbital fat and levator aponeurosis. These fibers were dissected to release the periorbital septal fibers, and the orbital septal fat flap was transferred to the depressed region. Advancement or plication of the levator aponeurosis was performed in patients with uncorrected blepharoptosis after the procedures described above. The technique was applied to 13 Chinese patients (25 eyes) between May 2021 and April 2022. Postoperative magnetic resonance imaging revealed that the preaponeurotic fat was displaced forward and down to the upper margin of the tarsus, and the curvature of the upper-eyelid depression was significantly improved. Moreover, the superior sulcus deformity improved, the ptosis was corrected, and the uppermost crease decreased in all patients. No recurrence of ptosis or abnormal adhesion was observed. We believe this is the first study using magnetic resonance imaging to evaluate eyelid anatomy and the effects of surgery in this patient group. Releasing periorbital septum fibers is crucial for correcting a portion of the sunken eyelid and ptosis in Asians.
Collapse
Affiliation(s)
- Pengcheng Li
- Department of Burn and Plastic Surgery, the Fourth Medical Center of PLA General Hospital
| | - Kongying Li
- Center for Cleft Lip and Palate Treatment, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Silei Li
- Center for Cleft Lip and Palate Treatment, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongqian Wang
- Center for Cleft Lip and Palate Treatment, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Eye-specific quantitative dynamic contrast-enhanced MRI analysis for patients with intraocular masses. MAGMA (NEW YORK, N.Y.) 2022; 35:311-323. [PMID: 34643852 PMCID: PMC8995252 DOI: 10.1007/s10334-021-00961-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/30/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Dynamic contrast enhanced (DCE)-MRI is currently not generally used for intraocular masses as lesions are small, have an inhomogeneous T1 and the eye is prone to motion. The aim of this paper is to address these eye-specific challenges, enabling accurate ocular DCE-MRI. MATERIALS & METHODS DCE-MRI of 19 uveal melanoma (UM) patients was acquired using a fat-suppressed 3D spoiled gradient echo sequence with TWIST (time-resolved angiography with stochastic trajectories sequence). The analysis consisted of a two-step registration method to correct for both head and eye motion. A T1 map was calculated to convert signal intensities to concentrations. Subsequently, the Tofts model was fitted voxel wise to obtain Ktrans and ve. RESULTS Registration significantly improved the concentration curve quality (p < 0.001). The T1 of melanotic lesions was significantly lower than amelanotic lesions (888 ms vs 1350 ms, p = 0.03). The average achieved B1+ in the lesions was 91%. The average Ktrans was 0.46 min-1 (range 0.13-1.0) and the average ve was 0.22 (range 0.10-0.51). CONCLUSION Using this eye-specific analysis, DCE of intraocular masses is possible which might aid in the diagnosis, prognosis and follow-up of UM.
Collapse
|
6
|
Niendorf T, Beenakker JWM, Langner S, Erb-Eigner K, Bach Cuadra M, Beller E, Millward JM, Niendorf TM, Stachs O. Ophthalmic Magnetic Resonance Imaging: Where Are We (Heading To)? Curr Eye Res 2021; 46:1251-1270. [PMID: 33535828 DOI: 10.1080/02713683.2021.1874021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Magnetic resonance imaging of the eye and orbit (MReye) is a cross-domain research field, combining (bio)physics, (bio)engineering, physiology, data sciences and ophthalmology. A growing number of reports document technical innovations of MReye and promote their application in preclinical research and clinical science. Realizing the progress and promises, this review outlines current trends in MReye. Examples of MReye strategies and their clinical relevance are demonstrated. Frontier applications in ocular oncology, refractive surgery, ocular muscle disorders and orbital inflammation are presented and their implications for explorations into ophthalmic diseases are provided. Substantial progress in anatomically detailed, high-spatial resolution MReye of the eye, orbit and optic nerve is demonstrated. Recent developments in MReye of ocular tumors are explored, and its value for personalized eye models derived from machine learning in the treatment planning of uveal melanoma and evaluation of retinoblastoma is highlighted. The potential of MReye for monitoring drug distribution and for improving treatment management and the assessment of individual responses is discussed. To open a window into the eye and into (patho)physiological processes that in the past have been largely inaccessible, advances in MReye at ultrahigh magnetic field strengths are discussed. A concluding section ventures a glance beyond the horizon and explores future directions of MReye across multiple scales, including in vivo electrolyte mapping of sodium and other nuclei. This review underscores the need for the (bio)medical imaging and ophthalmic communities to expand efforts to find solutions to the remaining unsolved problems and technical obstacles of MReye, with the objective to transfer methodological advancements driven by MR physics into genuine clinical value.
Collapse
Affiliation(s)
- Thoralf Niendorf
- MRI.TOOLS GmbH, Berlin, Germany.,Berlin Ultrahigh Field Facility, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jan-Willem M Beenakker
- Department of Ophthalmology and Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Sönke Langner
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
| | - Katharina Erb-Eigner
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Meritxell Bach Cuadra
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland.,Department of Radiology, Lausanne University and University Hospital, Lausanne, Switzerland
| | - Ebba Beller
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
| | - Jason M Millward
- Berlin Ultrahigh Field Facility, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - Oliver Stachs
- Department Life, Light & Matter, University Rostock, Rostock, Germany.,Department of Ophthalmology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|