1
|
Schott M, Vehlow A, Benka M, Lagies S, Kammerer B, Rieckmann T, Cordes N. Aqueous extracts from Dioscorea sansibarensis Pax show cytotoxic and radiosensitizing potential in 3D growing HPV-negative and HPV-positive human head and neck squamous cell carcinoma models. Biomed Pharmacother 2024; 179:117305. [PMID: 39167841 DOI: 10.1016/j.biopha.2024.117305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
Numerous natural substances have anti-cancer properties. Especially indigenous people use aqueous plant extracts for tea or ointments including Dioscorea sansibarensis Pax to treat various diseases. The aim of this study was to evaluate the cytotoxic and radiosensitizing potential of aqueous extracts from Dioscorea sansibarensis Pax collected from Kenya in a panel of HPV-negative and -positive head and neck squamous cell carcinoma (HNSCC) cells grown in three-dimensional laminin-rich extracellular matrix (3D lrECM). The results show cytotoxicity, radiosensitization and increased levels of residual double strand breaks (DBS) by Dioscorea sansibarensis Pax extracts in HPV-negative and -positive HNSCC models in a concentration- and cell model-dependent manner. Application of ROS scavengers indicated an association between ROS-induced DSB and radiosensitization through Dioscorea sansibarensis Pax pretreatment. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) based characterization of Dioscorea sansibarensis Pax identified the main components of the extract including camptothecin. Overall, Dioscorea sansibarensis Pax aqueous extracts alone and in combination with X-ray irradiation showed effective anticancer properties, which are worthy of further mechanistic investigation.
Collapse
Affiliation(s)
- Mandy Schott
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Anne Vehlow
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Moritz Benka
- Core Competence Metabolomics, Hilde-Mangold-Haus, University of Freiburg, Freiburg 79104, Germany; Institute of Organic Chemistry, University of Freiburg, Freiburg 79104, Germany; Hermann Staudinger Graduate School, University of Freiburg, Freiburg 79104, Germany
| | - Simon Lagies
- Core Competence Metabolomics, Hilde-Mangold-Haus, University of Freiburg, Freiburg 79104, Germany; Department of Pneumology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Bernd Kammerer
- Core Competence Metabolomics, Hilde-Mangold-Haus, University of Freiburg, Freiburg 79104, Germany; Institute of Organic Chemistry, University of Freiburg, Freiburg 79104, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Thorsten Rieckmann
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Otorhinolaryngology, University Medical Center Hamburg Eppendorf, Germany
| | - Nils Cordes
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiooncology - OncoRay, Dresden 01328, Germany; German Cancer Consortium, Partner Site Dresden: German Cancer Research Center, Heidelberg 69120, Germany; Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany.
| |
Collapse
|
2
|
Faktor J, Henek T, Hernychova L, Singh A, Vojtesek B, Polom J, Bhatia R, Polom K, Cuschieri K, Cruickshank M, Gurumurthy M, Goodlett DR, Al Shboul S, Samal SK, Hupp T, Kalampokas E, Kote S. Metaproteomic analysis from cervical biopsies and cytologies identifies proteinaceous biomarkers representing both human and microbial species. Talanta 2024; 278:126460. [PMID: 38968660 DOI: 10.1016/j.talanta.2024.126460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/07/2024]
Abstract
The detection of HPV infection and microbial colonization in cervical lesions is currently done through PCR-based viral or bacterial DNA amplification. Our objective was to develop a methodology to expand the metaproteomic landscape of cervical disease and determine if protein biomarkers from both human and microbes could be detected in distinct cervical samples. This would lead to the development of multi-species proteomics, which includes protein-based lateral flow diagnostics that can define patterns of microbes and/or human proteins relevant to disease status. In this study, we collected both non-frozen tissue biopsy and exfoliative non-fixed cytology samples to assess the consistency of detecting human proteomic signatures between the cytology and biopsy samples. Our results show that proteomics using biopsies or cytologies can detect both human and microbial organisms. Across patients, Lumican and Galectin-1 were most highly expressed human proteins in the tissue biopsy, whilst IL-36 and IL-1RA were most highly expressed human proteins in the cytology. We also used mass spectrometry to assess microbial proteomes known to reside based on prior 16S rRNA gene signatures. Lactobacillus spp. was the most highly expressed proteome in patient samples and specific abundant Lactobacillus proteins were identified. These methodological approaches can be used in future metaproteomic clinical studies to interrogate the vaginal human and microbiome structure and metabolic diversity in cytologies or biopsies from the same patients who have pre-invasive cervical intraepithelial neoplasia, invasive cervical cancer, as well as in healthy controls to assess how human and pathogenic proteins may correlate with disease presence and severity.
Collapse
Affiliation(s)
- Jakub Faktor
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Tomas Henek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53, Brno, Czech Republic
| | - Lenka Hernychova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53, Brno, Czech Republic
| | - Ashita Singh
- University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh, Scotland, UK
| | - Borek Vojtesek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53, Brno, Czech Republic
| | - Joanna Polom
- The Academy of Applied Medical and Social Sciences, Lotnicza 2, Elblag, Poland; Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210, Gdańsk, Poland
| | - Ramya Bhatia
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53, Brno, Czech Republic
| | - Karol Polom
- The Academy of Applied Medical and Social Sciences, Lotnicza 2, Elblag, Poland; Gastrointestinal Surgical Oncology Department, Greater Poland Cancer Centre, Garbary 15, Poznan, Poland
| | - Kate Cuschieri
- Scottish HPV Reference Laboratory, Royal Infirmary of Edinburgh NHS Lothian UK, UK
| | - Margaret Cruickshank
- Aberdeen Centre for Women's Health Research, University of Aberdeen, Scotland, UK
| | | | | | - Sofian Al Shboul
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | | | - Ted Hupp
- University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh, Scotland, UK
| | - Emmanouil Kalampokas
- Unit of Gynaecologic Oncology, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Greece.
| | - Sachin Kote
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland.
| |
Collapse
|
3
|
Li X, González-Maroto C, Tavassoli M. Crosstalk between CAFs and tumour cells in head and neck cancer. Cell Death Discov 2024; 10:303. [PMID: 38926351 PMCID: PMC11208506 DOI: 10.1038/s41420-024-02053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are amongst the most aggressive, complex, and heterogeneous malignancies. The standard of care treatments for HNC patients include surgery, radiotherapy, chemotherapy, or their combination. However, around 50% do not benefit while suffering severe toxic side effects, costing the individuals and society. Decades have been spent to improve HNSCC treatment outcomes with only limited success. Much of the research in HNSCC treatment has focused on understanding the genetics of the HNSCC malignant cells, but it has become clear that tumour microenvironment (TME) plays an important role in the progression as well as treatment response in HNSCC. Understanding the crosstalk between cancer cells and TME is crucial for inhibiting progression and treatment resistance. Cancer-associated fibroblasts (CAFs), the predominant component of stroma in HNSCC, serve as the primary source of extra-cellular matrix (ECM) and various pro-tumoral composites in TME. The activation of CAFs in HNSCC is primarily driven by cancer cell-secreted molecules, which in turn induce phenotypic changes, elevated secretive status, and altered ECM production profile. Concurrently, CAFs play a pivotal role in modulating the cell cycle, stemness, epithelial-mesenchymal transition (EMT), and resistance to targeted and chemoradiotherapy in HNSCC cells. This modulation occurs through interactions with secreted molecules or direct contact with the ECM or CAF. Co-culture and 3D models of tumour cells and other TME cell types allows to mimic the HNSCC tumour milieu and enable modulating tumour hypoxia and reprograming cancer stem cells (CSC). This review aims to provide an update on the development of HNSCC tumour models comprising CAFs to obtain better understanding of the interaction between CAFs and tumour cells, and for providing preclinical testing platforms of current and combination with emerging therapeutics.
Collapse
Affiliation(s)
- Xinyang Li
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK
| | - Celia González-Maroto
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mahvash Tavassoli
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK.
| |
Collapse
|
4
|
Zhan Y, Yin A, Su X, Tang N, Zhang Z, Chen Y, Wang W, Wang J. Interpreting the molecular mechanisms of RBBP4/7 and their roles in human diseases (Review). Int J Mol Med 2024; 53:48. [PMID: 38577935 PMCID: PMC10999228 DOI: 10.3892/ijmm.2024.5372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
Histone chaperones serve a pivotal role in maintaining human physiological processes. They interact with histones in a stable manner, ensuring the accurate and efficient execution of DNA replication, repair and transcription. Retinoblastoma binding protein (RBBP)4 and RBBP7 represent a crucial pair of histone chaperones, which not only govern the molecular behavior of histones H3 and H4, but also participate in the functions of several protein complexes, such as polycomb repressive complex 2 and nucleosome remodeling and deacetylase, thereby regulating the cell cycle, histone modifications, DNA damage and cell fate. A strong association has been indicated between RBBP4/7 and some major human diseases, such as cancer, age‑related memory loss and infectious diseases. The present review assesses the molecular mechanisms of RBBP4/7 in regulating cellular biological processes, and focuses on the variations in RBBP4/7 expression and their potential mechanisms in various human diseases, thus providing new insights for their diagnosis and treatment.
Collapse
Affiliation(s)
- Yajing Zhan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, P.R. China
| | - Ankang Yin
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, P.R. China
| | - Xiyang Su
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Nan Tang
- Department of Clinical Laboratory, Wangcheng District People's Hospital, Changsha, Hunan 410000, P.R. China
| | - Zebin Zhang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, P.R. China
| | - Yi Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, P.R. China
| | - Wei Wang
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
- Department of Clinical Laboratory, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Juan Wang
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
- Department of Clinical Laboratory, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| |
Collapse
|
5
|
Arora D, Hackenberg Y, Li J, Winter D. Updates on the study of lysosomal protein dynamics: possibilities for the clinic. Expert Rev Proteomics 2023; 20:47-55. [PMID: 36919490 DOI: 10.1080/14789450.2023.2190515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
INTRODUCTION The lysosome is the main degradative organelle of almost all mammalian cells, fulfilling important functions in macromolecule recycling, metabolism, and signaling. Lysosomal dysfunction is connected to a continuously growing number of pathologic conditions, and lysosomal proteins present potential biomarkers for a variety of diseases. Therefore, there is an increasing interest in their analysis in patient samples. AREAS COVERED We provide an overview of OMICs studies which identified lysosomal proteins as potential biomarkers for pathological conditions, covering proteomics, genomics, and transcriptomics approaches, identified through PubMed searches. With respect to discovery proteomics analyses, mainly lysosomal luminal and associated proteins were detected, while membrane proteins were found less frequently. Comprehensive coverage of the lysosomal proteome was only achieved by ultra-deep-coverage studies, but targeted approaches allowed for the reproducible quantification of lysosomal proteins in diverse sample types. EXPERT OPINION The low abundance of lysosomal proteins complicates their reproducible analysis in patient samples. Whole proteome shotgun analyses fail in many instances to cover the lysosomal proteome, which is due to under-sampling and/or a lack of sensitivity. With the current state of the art, targeted proteomics assays provide the best performance for the characterization of lysosomal proteins in patient samples.
Collapse
Affiliation(s)
- Dhriti Arora
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Yannic Hackenberg
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jiaran Li
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Hasche D, Akgül B. Prevention and Treatment of HPV-Induced Skin Tumors. Cancers (Basel) 2023; 15:cancers15061709. [PMID: 36980594 PMCID: PMC10046090 DOI: 10.3390/cancers15061709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Non-melanoma skin cancer (NMSC) is the most common cancer in humans with increasing incidence. Meanwhile, a growing body of evidence has provided a link between skin infections with HPV of the genus beta (betaHPV) and the development of cutaneous squamous cell carcinomas (cSCCs). Based on this association, the development of vaccines against betaHPV has become an important research topic. This review summarizes the current advances in prophylactic and therapeutic betaHPV vaccines, including progresses made in preclinical testing and clinical trials.
Collapse
Affiliation(s)
- Daniel Hasche
- Division of Viral Transformation Mechanisms, Research Program “Infection, Inflammation and Cancer”, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Baki Akgül
- Institute of Virology, Medical Faculty and University Hospital Cologne, University of Cologne, Fürst-Pückler-Str. 56, 50935 Cologne, Germany
- Correspondence:
| |
Collapse
|
7
|
Yin H, Liu Y, Yue H, Tian Y, Dong P, Xue C, Zhao YT, Zhao Z, Wang J. DHA- and EPA-Enriched Phosphatidylcholine Suppress Human Lung Carcinoma 95D Cells Metastasis via Activating the Peroxisome Proliferator-Activated Receptor γ. Nutrients 2022; 14:nu14214675. [PMID: 36364935 PMCID: PMC9654432 DOI: 10.3390/nu14214675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
The antineoplastic effects of docosahexaenoic acid-containing phosphatidylcholine (DHA-PC) and eicosapentaenoic acid-containing phosphatidylcholine (EPA-PC) were explored, and their underlying mechanisms in the human lung carcinoma 95D cells (95D cells) were investigated. After treatment of 95D cells with DHA-PC or EPA-PC, cell biological behaviors such as growth, adhesion, migration, and invasion were studied. Immunofluorescence and western blotting were carried out to assess underlying molecular mechanisms. Results showed that 95D cells proliferation and adherence in the DHA-PC or EPA-PC group were drastically inhibited than the control group. DHA-PC and EPA-PC suppressed the migration and invasion of 95D cells by disrupting intracellular F-actin, which drives cell movement. The protein expression of PPARγ was induced versus the control group. Furthermore, critical factors related to invasion, including matrix metallopeptidase 9 (MMP9), heparanase (Hpa), and vascular endothelial growth factor (VEGF), were drastically downregulated through the PPARγ/NF-κB signaling pathway. C-X-C chemokine receptor type 4 (CXCR4) and cofilin were significantly suppressed via DHA-PC and EPA-PC through the PPARγ/phosphatase and tensin homolog (PTEN)/serine-threonine protein kinase (AKT) signaling pathway. DHA-PC and EPA-PC reversed the PPARγ antagonist GW9662-induced reduction of 95D cells in migration and invasion capacity, suggesting that PPARγ was directly involved in the anti-metastasis efficacy of DHA-PC and EPA-PC. In conclusion, DHA-PC and EPA-PC have great potential for cancer therapy, and the antineoplastic effects involve the activation of PPARγ. EPA-PC showed more pronounced antineoplastic effects than DHA-PC, possibly due to the more robust activation of PPARγ by EPA-PC.
Collapse
Affiliation(s)
- Haowen Yin
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yuanyuan Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hao Yue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yingying Tian
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Ping Dong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yun-Tao Zhao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zifang Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Hainan Huayan Collagen Technology Co., Ltd., Haikou 571000, China
- Correspondence: (Z.Z.); (J.W.); Tel.: +86-898-6655-3777 (Z.Z.); +86-532-8203-1967 (J.W.)
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Correspondence: (Z.Z.); (J.W.); Tel.: +86-898-6655-3777 (Z.Z.); +86-532-8203-1967 (J.W.)
| |
Collapse
|
8
|
Garibay-Cerdenares OL, Sánchez-Meza LV, Encarnación-Guevara S, Hernández-Ortíz M, Martínez-Batallar G, Torres-Rojas FI, Mendoza-Catalán MÁ, Moral-Hernández OD, Leyva-Vázquez MA, Illades-Aguiar B. Effect of HPV 16 E6 Oncoprotein Variants on the Alterations of the Proteome of C33A Cells. Cancer Genomics Proteomics 2021; 18:273-283. [PMID: 33893080 PMCID: PMC8126335 DOI: 10.21873/cgp.20258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND/AIM The E6 genotypic variants of HPV 16 identified in lesions of women with cervical cancer (CC) in Southern of Mexico include the E-G350, AAa, AAc, E-C188/G350, and E-A176/G350, transcriptomic analysis cells transfected with those variants showed to induce differential expression of the host genes involved in the development of CC, the aim of this work was to understand how the over-expression of the E6 oncoprotein and its variants can induce molecular mechanisms that lead to more aggressive HPV 16 phenotypes in cervical cancer and which proteins could be associated with the process. MATERIALS AND METHODS Total extracts from C33A, C33A mock, C33A AAa, C33A E-C188/G350, C33A E-A176/G350, and C33A E-prototype cells were analyzed using 2D electrophoresis, PDQuest software and mass spectrometry, validation of results was performed through qPCR. RESULTS Statistically significant differential expression of 122 spots was detected, 12 of the identified proteins were associated with metabolism and metabolic programming. Out of these CCT8, ENO and ALDH1A were further validated. CONCLUSION CCT8 and ALDH1A were found to be over-expressed in C33A AAa and C33A E-A176/G350, compared to the E prototype. Both proteins could be associated with a most aggressive phenotype due to their relationship with metabolism, protein folding and stemness, mechanisms associated to E6 that could be useful in the design of new therapies.
Collapse
Affiliation(s)
- Olga Lilia Garibay-Cerdenares
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, México
- CONACyT- Universidad Autónoma de Guerrero, Chilpancingo, México
| | - Luz Victoria Sánchez-Meza
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, México
| | | | | | | | - Francisco Israel Torres-Rojas
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, México
| | - Miguel Ángel Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, México
| | - Oscar Del Moral-Hernández
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, México
| | - Marco Antonio Leyva-Vázquez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, México
| | - Berenice Illades-Aguiar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, México;
| |
Collapse
|
9
|
Liu X, Liu C, Liu J, Song Y, Wang S, Wu M, Yu S, Cai L. Identification of Tumor Microenvironment-Related Alternative Splicing Events to Predict the Prognosis of Endometrial Cancer. Front Oncol 2021; 11:645912. [PMID: 33996564 PMCID: PMC8116885 DOI: 10.3389/fonc.2021.645912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
Background Endometrial cancer (EC) is one of the most common female malignant tumors. The immunity is believed to be associated with EC patients’ survival, and growing studies have shown that aberrant alternative splicing (AS) might contribute to the progression of cancers. Methods We downloaded the clinical information and mRNA expression profiles of 542 tumor tissues and 23 normal tissues from The Cancer Genome Atlas (TCGA) database. ESTIMATE algorithm was carried out on each EC sample, and the OS-related different expressed AS (DEAS) events were identified by comparing the high and low stromal/immune scores groups. Next, we constructed a risk score model to predict the prognosis of EC patients. Finally, we used unsupervised cluster analysis to compare the relationship between prognosis and tumor immune microenvironment. Results The prognostic risk score model was constructed based on 16 OS-related DEAS events finally identified, and then we found that compared with high-risk group the OS in the low-risk group was notably better. Furthermore, according to the results of unsupervised cluster analysis, we found that the better the prognosis, the higher the patient’s ESTIMATE score and the higher the infiltration of immune cells. Conclusions We used bioinformatics to construct a gene signature to predict the prognosis of patients with EC. The gene signature was combined with tumor microenvironment (TME) and AS events, which allowed a deeper understanding of the immune status of EC patients, and also provided new insights for clinical patients with EC.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Obstetrics and Gynecology, Jinhua People's Hospital, Jinhua, China
| | - Chuan Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Jie Liu
- Department of Gynecology, Jinhua People's Hospital, Jinhua, China
| | - Ying Song
- Department of Gynecology, Jinhua People's Hospital, Jinhua, China
| | - Shanshan Wang
- Department of Gynecology, Jinhua People's Hospital, Jinhua, China
| | - Miaoqing Wu
- Department of Gynecology, Jinhua People's Hospital, Jinhua, China
| | - Shanshan Yu
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luya Cai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Patel U, Mittal N, Rane SU, Patil A, Gera P, Kannan S, Joshi A, Noronha V, Patil VM, Prabhash K, Mahimkar MB. Correlation of transcriptionally active human papillomavirus status with the clinical and molecular profiles of head and neck squamous cell carcinomas. Head Neck 2021; 43:2032-2044. [PMID: 33751711 DOI: 10.1002/hed.26676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/20/2021] [Accepted: 02/26/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND To examine the molecular profiles of human papillomavirus (HPV)-positive and HPV-negative head and neck squamous cell carcinomas (HNSCCs), expression of epidermal growth factor receptor (EGFR), phospho-EGFR dimers, hypoxia markers, and cancer stem cell markers were evaluated. METHODS HPV-status was confirmed using RNA-ISH. Immunohistochemical data of biomarker expression levels were analyzed using the Mann-Whitney U test. The clinical outcomes and biomarker expression in the HPV-positive (n = 25), matched HPV-negative (n = 49), and p16-positive/HPV-negative (n = 20) subgroups were comparatively analyzed. RESULTS HPV was detected in 25 (5.8%) cases and was significantly associated with favorable outcomes. HPV-positive tumors exhibited lower membrane expression of EGFR, pEGFRY1068, pEGFRY1173, CD44, CD44v6, and CD98hc than HPV-negative and p16-positive tumors. The expression of HIF1α, CA9, ALDH1A1, and SOX2 was not significantly associated with HPV-status. The clinical outcomes and biomarker expression levels were similar between the HPV-negative and p16-positive HNSCC. CONCLUSION HPV-positive HNSCC exhibited distinct molecular profile compared to HPV-negative and p16-positive HNSCC. The clinical and molecular profiles were similar between p16-positive and HPV-negative subgroups.
Collapse
Affiliation(s)
- Usha Patel
- Mahimkar Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Neha Mittal
- Homi Bhabha National Institute, Mumbai, India.,Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Swapnil U Rane
- Homi Bhabha National Institute, Mumbai, India.,Department of Pathology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Asawari Patil
- Homi Bhabha National Institute, Mumbai, India.,Department of Pathology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Poonam Gera
- Homi Bhabha National Institute, Mumbai, India.,Biorepository, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Sadhana Kannan
- Homi Bhabha National Institute, Mumbai, India.,Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Amit Joshi
- Homi Bhabha National Institute, Mumbai, India.,Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Vanita Noronha
- Homi Bhabha National Institute, Mumbai, India.,Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Vijay M Patil
- Homi Bhabha National Institute, Mumbai, India.,Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Kumar Prabhash
- Homi Bhabha National Institute, Mumbai, India.,Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Manoj B Mahimkar
- Mahimkar Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
11
|
Bold IT, Specht AK, Droste CF, Zielinski A, Meyer F, Clauditz TS, Münscher A, Werner S, Rothkamm K, Petersen C, Borgmann K. DNA Damage Response during Replication Correlates with CIN70 Score and Determines Survival in HNSCC Patients. Cancers (Basel) 2021; 13:cancers13061194. [PMID: 33801877 PMCID: PMC7998578 DOI: 10.3390/cancers13061194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Aneuploidy is a consequence of chromosomal instability (CIN) that affects prognosis. Gene expression levels associated with aneuploidy provide insight into the molecular mechanisms underlying CIN. Based on the gene signature whose expression was consistent with functional aneuploidy, the CIN70 score was established. We observed an association of CIN70 score and survival in 519 HNSCC patients in the TCGA dataset; the 15% patients with the lowest CIN70 score showed better survival (p = 0.11), but association was statistically non-significant. This correlated with the expression of 39 proteins of the major repair complexes. A positive association with survival was observed for MSH2, XRCC1, MRE11A, BRCA1, BRCA2, LIG1, DNA2, POLD1, MCM2, RAD54B, claspin, a negative for ERCC1, all related with replication. We hypothesized that expression of these factors leads to protection of replication through efficient repair and determines survival and resistance to therapy. Protein expression differences in HNSCC cell lines did not correlate with cellular sensitivity after treatment. Rather, it was observed that the stability of the DNA replication fork determined resistance, which was dependent on the ATR/CHK1-mediated S-phase signaling cascade. This suggests that it is not the expression of individual DNA repair proteins that causes therapy resistance, but rather a balanced expression and coordinated activation of corresponding signaling cascades.
Collapse
Affiliation(s)
- Ioan T. Bold
- Laboratory of Radiobiology & Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.T.B.); (A.-K.S.); (A.Z.); (F.M.); (K.R.)
| | - Ann-Kathrin Specht
- Laboratory of Radiobiology & Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.T.B.); (A.-K.S.); (A.Z.); (F.M.); (K.R.)
| | - Conrad F. Droste
- University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Alexandra Zielinski
- Laboratory of Radiobiology & Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.T.B.); (A.-K.S.); (A.Z.); (F.M.); (K.R.)
| | - Felix Meyer
- Laboratory of Radiobiology & Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.T.B.); (A.-K.S.); (A.Z.); (F.M.); (K.R.)
| | - Till S. Clauditz
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Adrian Münscher
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Stefan Werner
- Department of Tumorbiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Kai Rothkamm
- Laboratory of Radiobiology & Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.T.B.); (A.-K.S.); (A.Z.); (F.M.); (K.R.)
| | - Cordula Petersen
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Kerstin Borgmann
- Laboratory of Radiobiology & Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.T.B.); (A.-K.S.); (A.Z.); (F.M.); (K.R.)
- Correspondence:
| |
Collapse
|