1
|
Nguyen QTT, Kim J, Yoo HC, Lee EJ. Strategies to overcome chemoresistance in epithelial ovarian cancer: Navigating beyond challenges. Crit Rev Oncol Hematol 2025; 210:104706. [PMID: 40127787 DOI: 10.1016/j.critrevonc.2025.104706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/04/2025] [Accepted: 03/14/2025] [Indexed: 03/26/2025] Open
Abstract
Epithelial ovarian cancer (EOC) is the most fetal gynecological malignancy. The main causes of treatment failure are primary and acquired chemoresistance that remains a major therapeutic challenge. The mechanisms underlying chemoresistance in EOC are complex and not fully understood. This review explores novel therapeutic strategies targeting chemoresistant EOC, including advanced drug delivery systems, targeting non-coding RNAs, peptide-based therapies, immunotherapy, and the use of poly-ADP ribose polymerase inhibitors. By summarizing the latest research and potential treatments, this review aims to contribute to the development of more effective therapies for patients with chemoresistant EOC.
Collapse
Affiliation(s)
- Que Thanh Thanh Nguyen
- Department of Obstetrics and Gynecology, School of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea; Organoid Medical Research Center, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jihye Kim
- Department of Obstetrics and Gynecology, School of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hee Chan Yoo
- Organoid Medical Research Center, Chung-Ang University, Seoul 06974, Republic of Korea; College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Eun-Ju Lee
- Department of Obstetrics and Gynecology, School of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea; Organoid Medical Research Center, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
2
|
Bizzarri N, Nero C, Di Berardino S, Scambia G, Fagotti A. Future of sentinel node biopsy in ovarian cancer. Curr Opin Oncol 2024; 36:412-417. [PMID: 39016276 PMCID: PMC11309330 DOI: 10.1097/cco.0000000000001058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
PURPOSE OF REVIEW The rationale on the use of sentinel lymph node (SLN) biopsy in the surgical staging of apparent early-stage ovarian cancer (OC) is supported by the fact that diagnostic and prognostic role of systematic staging lymphadenectomy has been determined but its therapeutic significance is still matter of controversy. Moreover, SLN biopsy represents an option to decrease intra- and postoperative morbidity. The present review aims to provide an overview on the current and future role of SLN in OC. RECENT FINDINGS Most recent evidence shows that the overall mean per patient SLN detection rate in case of indocyanine green (ICG) alone was 58.6% compared with 95% in case of ICG + technetium, and with 52.9% in case of technetium alone or in combination with blue dye ( P < 0.001). Site of injection has been reported to be in both ovarian ligaments in majority of studies (utero-ovarian ligament and infundibulo-pelvic ligament), before or after ovarian mass removal, at time of primary or re-staging surgery and by minimally invasive or open approach. Cervical injection has been recently proposed to replace utero-ovarian injection. SLN detection rate in patients with confirmed ovarian malignancy varied across different studies ranging between 9.1% and 91.3% for the injection in the utero-ovarian ligament and migration to pelvic lymph nodes and between 27.3% and 100% for the injection in the infundibulo-pelvic ligament and migration to para-aortic lymph nodes. No intra- or postoperative complication could be attributed directly to SLN biopsy. The sensitivity and the accuracy of SLN in detecting lymphatic metastasis ranged between 73.3-100% and 96-100%, respectively. In up to 40% of positive SLNs, largest metastatic deposit was classified as micro-metastasis or isolated tumor cells, which would have been missed without ultrastaging protocol. SUMMARY SLN biopsy represents a promising tool to assess lymph node status in apparent early-stage OC. The type and volume of injected tracer need to be considered as appear to affect SLN detection rate. Ultrastaging protocol is essential to detect low volume metastasis. Sensitivity and accuracy of SLN biopsy are encouraging, providing tracer injection in both uterine and ovarian ligaments.
Collapse
Affiliation(s)
- Nicolò Bizzarri
- UOC Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS
| | - Camilla Nero
- UOC Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefano Di Berardino
- UOC Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS
| | - Giovanni Scambia
- UOC Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Fagotti
- UOC Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS
- Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
3
|
Ruytenberg T, Ciggaar IA, Peters ITA, Noortman WA, Dibbets-Schneider P, de Muynck LDAN, Kuil J, de Kroon CD, Molenaar TJM, Helmerhorst HJF, Pereira Arias-Bouda LM, Vahrmeijer AL, Windhorst AD, van Velden FHP, Gaarenstroom KN, de Geus-Oei LF. Challenges in Pharmacokinetic Modelling of [ 18F]fluoro-PEG-folate PET/CT Imaging in Epithelial Ovarian Cancer Patients. Mol Imaging Biol 2024; 26:577-584. [PMID: 38775919 PMCID: PMC11282117 DOI: 10.1007/s11307-024-01922-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 07/28/2024]
Abstract
PURPOSE To describe the pharmacokinetic properties of the [18F]fluoro-polyethylene glycol(PEG)-folate radiotracer in PET/CT imaging of patients with advanced stage epithelial ovarian cancer (EOC). PROCEDURES In five patients with advanced EOC (FIGO stage IIIB/IIIC, Fédération Internationale de Gynécologie et d'Obstétrique), a 90-min dynamic PET acquisition of the pelvis was performed directly after i.v. administration of 185 MBq [18F]fluoro-PEG6-folate. Arterial blood samples collected at nineteen timepoints were used to determine the plasma input function. A static volume of interest (VOI) for included tumor lesions was drawn manually on the PET images. Modelling was performed using PMOD software. Three different models (a 1-tissue compartment model (1T2k) and two 2-tissue compartment models, irreversible (2T3k) and reversible (2T4k)) were compared in goodness of fit with the time activity curves by means of the Akaike information criterion. RESULTS The pharmacokinetic analysis in the pelvic area has proven to be much more challenging than expected. Only four out of 22 tumor lesions in five patients were considered suitable to perform modelling on. The remaining tumor lesions were inapt due to either low tracer uptake, small size, proximity to other [18F]fluoro-PEG6-folate -avid structures and/or displacement by abdominal organ motion in the dynamic scan. Data from the four analyzed tumor lesions suggest that the irreversible 2T3k may best describe the pharmacokinetics. All 22 lesions were immunohistochemically stained positive for the folate receptor alpha (FRα) after resection. CONCLUSION Performing pharmacokinetic analysis in the abdominal pelvic region is very challenging. This brief article describes the challenges and pitfalls in pharmacokinetic analysis of a tracer with high physiological accumulation in the intestines, in case of lesions of limited size in the abdominal pelvic area.
Collapse
Affiliation(s)
- Thomas Ruytenberg
- Dept. of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Isabeau A Ciggaar
- Dept. of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Inge T A Peters
- Dept. Of Gynecology, Leiden University Medical Center, Leiden, The Netherlands
| | - Wyanne A Noortman
- Dept. of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Petra Dibbets-Schneider
- Dept. of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Joeri Kuil
- Dept. of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis D de Kroon
- Dept. Of Gynecology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom J M Molenaar
- Dept. of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Hendrik J F Helmerhorst
- Dept. of Anesthesiology and Intensive Care, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Albert D Windhorst
- Dept. of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Floris H P van Velden
- Dept. of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Lioe-Fee de Geus-Oei
- Dept. of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
4
|
Peters I, Marchetti C, Scambia G, Fagotti A. New windows of surgical opportunity for gynecological cancers in the era of targeted therapies. Int J Gynecol Cancer 2024; 34:352-362. [PMID: 38438181 DOI: 10.1136/ijgc-2023-004580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Precision medicine through molecular profiling has taken a prominent role in the treatment of solid tumors and it is widely expected that this will continue to expand. With respect to gynecological cancers, a major change has particularly been observed in the treatment landscape of epithelial ovarian, endometrial, and cervical cancers. Regarding the former, maintenance therapy with either poly(ADP-ribose) polymerase inhibitors (PARPi) and/or bevacizumab has become an indispensable treatment option following the traditional combination of cytoreductive surgery and platinum-based chemotherapy. Considering endometrial cancer, the molecular classification system has now been incorporated into virtually every guideline available and molecular-directed treatment strategies are currently being researched, presumably leading to a further transformation of its treatment paradigm. After all, treatment with immune-checkpoint inhibitors that target the programmed cell death 1 (PD-1) receptor has already been shown to significantly improve disease outcomes in these patients, especially in those with mismatch repair deficient, microsatellite stability-high (MMRd-MSI-H) disease. Similarly, in recurrent/metastatic cervical cancer patients, these agents elicited improved survival rates when being added to platinum-based chemotherapy with or without bevacizumab. Interestingly, implications of these targeted therapies for surgical management have been touched on to a minor extent, but are at least as intriguing. This review therefore aims to address the wide-ranging opportunities the molecular tumor characteristics and their corresponding targeted therapies have to offer for the surgical management of epithelial ovarian, endometrial, and cervical cancers, both in the primary and recurrent setting.
Collapse
Affiliation(s)
- Inge Peters
- Department of Woman's and Child Health and Public Health Sciences, Gynecologic Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Claudia Marchetti
- Department of Woman's and Child Health and Public Health Sciences, Gynecologic Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Giovanni Scambia
- Department of Woman's and Child Health and Public Health Sciences, Gynecologic Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Anna Fagotti
- Department of Woman's and Child Health and Public Health Sciences, Gynecologic Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
5
|
Tummers FHMP, Bazelmans MK, Jansen FW, Blikkendaal MD, Vahrmeijer AL, Kuppen PJK. Biomarker identification for endometriosis as a target for real-time intraoperative fluorescent imaging: A new approach using transcriptomic analysis to broaden the search for potential biomarkers. Eur J Obstet Gynecol Reprod Biol 2023; 288:114-123. [PMID: 37506597 DOI: 10.1016/j.ejogrb.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Intra-operative fluorescent imaging of endometriosis could help to optimize surgical treatment. Potential biomarkers to use as target for endometriosis-binding fluorescent probes were identified using a new five-phase transcriptomics-based approach to broaden the search for biomarkers. Using publicly available datasets, a differentially expressed gene (DEG) analysis was performed for endometriosis versus surgically relevant surrounding tissue (peritoneum, bladder, sigmoid, rectum, transverse colon, small intestine, vagina, and fallopian tubes) for which data was available. The remaining relevant surrounding tissues were analyzed for low expression levels. DEGs with a predicted membranous or extracellular location and with low expression levels in surrounding tissue were identified as candidate targets. Modified Target Selection Criteria were used to rank candidate targets based on the highest potential for use in fluorescent imaging. 29 potential biomarkers were ranked, resulting in Folate receptor 1 as the most potential biomarker. This is a first step towards finding a fluorescent tracer for intra-operative visualization of endometriosis. Additionally, this approach, using transcriptomics analysis to identifying candidate targets for a specific type of tissue for use in fluorescence-guided surgery could be translated to other surgical fields. TWEETABLE ABSTRACT: A new approach using transcriptomics analysis is shown to identify candidate targets for intra-operative fluorescent imaging for endometriosis, resulting in 29 potential candidates.
Collapse
Affiliation(s)
- Fokkedien H M P Tummers
- Department of Gynecology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| | - Maria K Bazelmans
- Department of Gynecology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Frank Willem Jansen
- Department of Gynecology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Department of Biomechanical Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Mathijs D Blikkendaal
- Nederlandse Endometriose Kliniek, Reinier de Graaf Hospital, 2625 AD Delft, The Netherlands
| | - Alexander L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
6
|
Pu T, Liu Y, Pei Y, Peng J, Wang Z, Du M, Liu Q, Zhong F, Zhang M, Li F, Xu C, Zhang X. NIR-II Fluorescence Imaging for the Detection and Resection of Cancerous Foci and Lymph Nodes in Early-Stage Orthotopic and Advanced-Stage Metastatic Ovarian Cancer Models. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37385963 DOI: 10.1021/acsami.3c04949] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The high mortality rate of ovarian cancer can be primarily attributed to late diagnosis and early lymph node (LN) metastasis. The anatomically deep-located ovaries own intricate anatomical structures and lymphatic drainages that compromise the resolution and sensitivity of near-infrared first-window (NIR-I) fluorescence imaging. Reported NIR-II imaging studies of ovarian cancer focused on late-stage metastasis detection via the intraperitoneal xenograft model. However, given the significant improvement in patient survival associated with early-stage cancer detection, locating tumors that are restricted within the ovary is equally crucial. We obtained the polymer nanoparticles with bright near-infrared-II fluorescence (NIR-II NPs) by nanoprecipitation of DSPE-PEG, one of the ingredients of FDA-approved nanoparticle products, and benzobisthiadiazole, an organic NIR-II dye. The one-step synthesis and safe component lay the groundwork for its clinical translation. Benefiting from the NIR-II emission (∼1060 nm), NIR-II NPs enabled a high signal-to-noise (S/N) ratio (13.4) visualization of early-stage orthotopic ovarian tumors with NIR-II fluorescence imaging for the first time. Imaging with orthotopic xenograft allows a more accurate mimic of human ovarian cancer origin, thereby addressing the dilemma of translating existing nanoprobe preclinical research by providing the nano-bio interactions with early local tumor environments. After PEGylation, the desirable-sized probe (∼80 nm) exhibited high lymphophilicity and relatively extended circulation. NIR-II NPs maintained their accurate detection of orthotopic tumors, tumor-regional LNs, and minuscule (<1 mm) disseminated peritoneal metastases simultaneously (with S/N ratios all above 5) in mice with advanced-stage cancer in real time ∼36 h after systematic delivery. With NIR-II fluorescence guidance, we achieved accurate surgical staging in tumor-bearing mice and complete tumor removal comparable to clinical practice, which provides preclinical data for translating NIR-II fluorescence image-guided surgery.
Collapse
Affiliation(s)
- Tao Pu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Yawei Liu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Yuetian Pei
- Academy for Engineering and Technology, Fudan University, Shanghai 200438, China
| | - Jing Peng
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Zehua Wang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Ming Du
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Qiyu Liu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Fangfang Zhong
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Mingxing Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Fuyou Li
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Congjian Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032, China
| | - Xiaoyan Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| |
Collapse
|
7
|
Cheng Z, Ma J, Yin L, Yu L, Yuan Z, Zhang B, Tian J, Du Y. Non-invasive molecular imaging for precision diagnosis of metastatic lymph nodes: opportunities from preclinical to clinical applications. Eur J Nucl Med Mol Imaging 2023; 50:1111-1133. [PMID: 36443568 DOI: 10.1007/s00259-022-06056-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022]
Abstract
Lymph node metastasis is an indicator of the invasiveness and aggressiveness of cancer. It is a vital prognostic factor in clinical staging of the disease and therapeutic decision-making. Patients with positive metastatic lymph nodes are likely to develop recurrent disease, distant metastasis, and succumb to death in the coming few years. Lymph node dissection and histological analysis are needed to detect whether regional lymph nodes have been infiltrated by cancer cells and determine the likely outcome of treatment and the patient's chances of survival. However, these procedures are invasive, and tissue biopsies are prone to sampling error. In recent years, advanced molecular imaging with novel imaging probes has provided new technologies that are contributing to comprehensive management of cancer, including non-invasive investigation of lymphatic drainage from tumors, identifying metastatic lymph nodes, and guiding surgeons to operate efficiently in patients with complex lesions. In this review, first, we outline the current status of different molecular imaging modalities applied for lymph node metastasis management. Second, we summarize the multi-functional imaging probes applied with the different imaging modalities as well as applications of cancer lymph node metastasis from preclinical studies to clinical translations. Third, we describe the limitations that must be considered in the field of molecular imaging for improved detection of lymph node metastasis. Finally, we propose future directions for molecular imaging technology that will allow more personalized treatment plans for patients with lymph node metastasis.
Collapse
Affiliation(s)
- Zhongquan Cheng
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing, 100050, China.,CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiaojiao Ma
- Department of Medical Ultrasonics, China-Japan Friendship Hospital, Yinghua East Road 2#, ChaoYang Dist., Beijing, 100029, China
| | - Lin Yin
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100080, China
| | - Leyi Yu
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing, 100050, China
| | - Zhu Yuan
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing, 100050, China.
| | - Bo Zhang
- Department of Medical Ultrasonics, China-Japan Friendship Hospital, Yinghua East Road 2#, ChaoYang Dist., Beijing, 100029, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China. .,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine Science and Engineering, Beihang University, Beijing, 100191, China.
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100080, China.
| |
Collapse
|
8
|
Consensus Statement on the Use of Near-Infrared Fluorescence Imaging during Pancreatic Cancer Surgery Based on a Delphi Study: Surgeons' Perspectives on Current Use and Future Recommendations. Cancers (Basel) 2023; 15:cancers15030652. [PMID: 36765609 PMCID: PMC9913161 DOI: 10.3390/cancers15030652] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Indocyanine green (ICG) is one of the only clinically approved near-infrared (NIR) fluorophores used during fluorescence-guided surgery (FGS), but it lacks tumor specificity for pancreatic ductal adenocarcinoma (PDAC). Several tumor-targeted fluorescent probes have been evaluated in PDAC patients, yet no uniformity or consensus exists among the surgical community on the current and future needs of FGS during PDAC surgery. In this first-published consensus report on FGS for PDAC, expert opinions were gathered on current use and future recommendations from surgeons' perspectives. A Delphi survey was conducted among international FGS experts via Google Forms. Experts were asked to anonymously vote on 76 statements, with ≥70% agreement considered consensus and ≥80% participation/statement considered vote robustness. Consensus was reached for 61/76 statements. All statements were considered robust. All experts agreed that FGS is safe with few drawbacks during PDAC surgery, but that it should not yet be implemented routinely for tumor identification due to a lack of PDAC-specific NIR tracers and insufficient evidence proving FGS's benefit over standard methods. However, aside from tumor imaging, surgeons suggest they would benefit from visualizing vasculature and surrounding anatomy with ICG during PDAC surgery. Future research could also benefit from identifying neuroendocrine tumors. More research focusing on standardization and combining tumor identification and vital-structure imaging would greatly improve FGS's use during PDAC surgery.
Collapse
|
9
|
Wang YJ, Tang L, Lu XH, Liu JT, Wang YY, Geng HX, Li XT, An Q. Efficacy of epi-1 modified epirubicin and curcumin encapsulated liposomes targeting-EpCAM in the inhibition of epithelial ovarian cancer cells. J Liposome Res 2022:1-17. [PMID: 36440599 DOI: 10.1080/08982104.2022.2153138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Treatment of epithelial ovarian cancer (EOC) is a challenge because it still leads to unsatisfactory clinical prognosis. This is due to the toxicity and poor targeting of chemotherapeutic agents, as well as metastasis of the tumor. In this study, we designed a targeted liposome with nanostructures to overcome these problems. In the liposomes, epirubicin and curcumin were encapsulated to achieve their synergistic antitumor efficacy, while Epi-1 was modified on the liposomal surface to target epithelial cell adhesion molecule (EpCAM). Epi-1, a macrocyclic peptide, exhibits active targeting for enhanced cellular uptake and potent cytotoxicity against tumor cells. The encapsulation of epirubicin and curcumin synergistically inhibited the formation of neovascularization and vasculogenic mimicry (VM) channels, thereby suppressing tumor metastasis on SKOV3 cells. The dual drug loaded Epi-1-liposomes also induced apoptosis and downregulated metastasis-related proteins for effective antitumor in vitro. In vivo studies showed that dual drug loaded Epi-1-liposomes prolonged circulation time in the blood and increased the selective accumulation of drug at the tumor site. H&E staining and immunohistochemistry with Ki-67 also showed that targeted liposomes elevated antitumor activity. Also, targeted liposomes downregulated angiogenesis-related proteins to inhibit angiogenesis and thus tumor metastasis. In conclusion, the production of dual drug loaded Epi-1-liposomes is an effective strategy for the treatment of EOC.
Collapse
Affiliation(s)
- Yu-Jia Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Ling Tang
- Department of Obstetrics and Gynecology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xu-Hong Lu
- Department of Obstetrics and Gynecology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Ji-Tao Liu
- Technology Research and Development Centre, Yunnan Baiyao Group Health Products Co., Ltd, Kunming, China
| | - Yuan-Yuan Wang
- Department of Obstetrics and Gynecology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Hong-Xia Geng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Quan An
- Technology Research and Development Centre, Yunnan Baiyao Group Health Products Co., Ltd, Kunming, China
| |
Collapse
|
10
|
Huisman BW, Cankat M, Bosse T, Vahrmeijer AL, Rissmann R, Burggraaf J, Sier CFM, van Poelgeest MIE. Integrin αvβ6 as a Target for Tumor-Specific Imaging of Vulvar Squamous Cell Carcinoma and Adjacent Premalignant Lesions. Cancers (Basel) 2021; 13:6006. [PMID: 34885116 PMCID: PMC8656970 DOI: 10.3390/cancers13236006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
Surgical removal of vulvar squamous cell carcinoma (VSCC) is associated with significant morbidity and high recurrence rates. This is at least partially related to the limited visual ability to distinguish (pre)malignant from normal vulvar tissue. Illumination of neoplastic tissue based on fluorescent tracers, known as fluorescence-guided surgery (FGS), could help resect involved tissue and decrease ancillary mutilation. To evaluate potential targets for FGS in VSCC, immunohistochemistry was performed on paraffin-embedded premalignant (high grade squamous intraepithelial lesion and differentiated vulvar intraepithelial neoplasia) and VSCC (human papillomavirus (HPV)-dependent and -independent) tissue sections with healthy vulvar skin as controls. Sections were stained for integrin αvβ6, CAIX, CD44v6, EGFR, EpCAM, FRα, MRP1, MUC1 and uPAR. The expression of each marker was quantified using digital image analysis. H-scores were calculated and percentages positive cells, expression pattern, and biomarker localization were assessed. In addition, tumor-to-background ratios were established, which were highest for (pre)malignant vulvar tissues stained for integrin αvβ6. In conclusion, integrin αvβ6 allowed for the most robust discrimination of VSCCs and adjacent premalignant lesions compared to surrounding healthy tissue in immunohistochemically stained tissue sections. The use of an αvβ6 targeted near-infrared fluorescent probe for FGS of vulvar (pre)malignancies should be evaluated in future studies.
Collapse
Affiliation(s)
- Bertine W. Huisman
- Center for Human Drug Research, 2333 CL Leiden, The Netherlands; (B.W.H.); (M.C.); (R.R.); (J.B.); (M.I.E.v.P.)
- Department of Gynecology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Merve Cankat
- Center for Human Drug Research, 2333 CL Leiden, The Netherlands; (B.W.H.); (M.C.); (R.R.); (J.B.); (M.I.E.v.P.)
- Department of Gynecology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Tjalling Bosse
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | | | - Robert Rissmann
- Center for Human Drug Research, 2333 CL Leiden, The Netherlands; (B.W.H.); (M.C.); (R.R.); (J.B.); (M.I.E.v.P.)
- Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Jacobus Burggraaf
- Center for Human Drug Research, 2333 CL Leiden, The Netherlands; (B.W.H.); (M.C.); (R.R.); (J.B.); (M.I.E.v.P.)
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
- Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Cornelis F. M. Sier
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
- Percuros BV, 2333 CL Leiden, The Netherlands
| | - Mariette I. E. van Poelgeest
- Center for Human Drug Research, 2333 CL Leiden, The Netherlands; (B.W.H.); (M.C.); (R.R.); (J.B.); (M.I.E.v.P.)
- Department of Gynecology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
11
|
Comprehensive Review of Fluorescence Applications in Gynecology. J Clin Med 2021; 10:jcm10194387. [PMID: 34640405 PMCID: PMC8509149 DOI: 10.3390/jcm10194387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022] Open
Abstract
Since the introduction of indocyanine green (ICG) as a fluorophore in near-infrared imaging, fluorescence visualization has become an essential tool in many fields of surgery. In the field of gynecology, recent new applications have been proposed and found their place in clinical practice. Different applications in gynecology were investigated, subcategorized, and overviewed concerning surgical applications and available dyes. Specific applications in which fluorescence-guided surgery was implemented in gynecology are described in this manuscript—namely, sentinel node biopsy, mesometrium visualization, angiography of different organs, safety issues in pregnant women, ureters visualization, detection of peritoneal metastases, targeted fluorophores for cancer detection, fluorescent contamination hysterectomy, lymphography for lower limb lymphedema prevention, tumor margin detection, endometriosis, and metastases mapping. With evolving technology, further innovative research on the new applications of fluorescence visualization in cancer surgery may help to establish these techniques as standards of high-quality surgery in gynecology. However, more investigations are necessary in order to assess if these innovative tools can also be effective to improve patient outcomes and quality of life in different gynecologic malignancies.
Collapse
|
12
|
Phanthaphol N, Somboonpatarakun C, Suwanchiwasiri K, Chieochansin T, Sujjitjoon J, Wongkham S, Maher J, Junking M, Yenchitsomanus PT. Chimeric Antigen Receptor T Cells Targeting Integrin αvβ6 Expressed on Cholangiocarcinoma Cells. Front Oncol 2021; 11:657868. [PMID: 33763382 PMCID: PMC7982884 DOI: 10.3389/fonc.2021.657868] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a lethal bile duct cancer that responds poorly to current standard treatments. A new therapeutic approach is, therefore, urgently needed. Adoptive T cell transfer using chimeric antigen receptor (CAR) T cells is a new therapeutic modality with demonstrated efficacy in hematologic malignancies. However, its efficacy against solid tumors is modest, and further intensive investigation continues. An important factor that influences the success of CAR T cell therapy is the selection of a target antigen that is highly expressed on cancer cells, but markedly less so in normal cells. Integrin αvβ6 is upregulated in several solid tumors, but is minimally expressed in normal epithelial cells, which suggests integrin αvβ6 as an attractive target antigen for CAR T cell immunotherapy in CCA. We investigated integrin αvβ6 expression in pathological tissue samples from patients with liver fluke-associated CCA. We then created CAR T cells targeting integrin αvβ6 and evaluated their anti-tumor activities against CCA cells. We found overexpression of the integrin αvβ6 protein in 23 of 30 (73.3%) CCA patient tissue samples. Significant association between high integrin αvβ6 expression and short survival time (p = 0.043) was also observed. Lentiviral constructs were engineered to encode CARs containing an integrin αvβ6-binding peptide (A20) derived from foot-and-mouth disease virus fused with a second-generation CD28/CD3ζ signaling domain (A20-2G CAR) or with a fourth-generation CD28/4-1BB/CD27/CD3ζ signaling domain (A20-4G CAR). The A20-2G and A20-4G CARs were highly expressed in primary human T cells transduced with the engineered lentiviruses, and they exhibited high levels of cytotoxicity against integrin αvβ6-positive CCA cells (p < 0.05). Interestingly, the A20-2G and A20-4G CAR T cells displayed anti-tumor function against integrin αvβ6-positive CCA tumor spheroids (p < 0.05). Upon specific antigen recognition, A20-4G CAR T cells produced a slightly lower level of IFN-γ, but exhibited higher proliferation than A20-2G CAR T cells. Thus, the A20-4G CAR T cells with lower level of cytokine production, but with higher proliferation represents a promising potential adoptive T cell therapy for integrin αvβ6-positive CCA.
Collapse
Affiliation(s)
- Nattaporn Phanthaphol
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chalermchai Somboonpatarakun
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kwanpirom Suwanchiwasiri
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Molecular Medicine Program, Multidisciplinary Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Thaweesak Chieochansin
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jatuporn Sujjitjoon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - John Maher
- King's College London, King's Health Partners Integrated Cancer Centre and Division of Cancer Studies, Guy's Hospital, London, United Kingdom
| | - Mutita Junking
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|