1
|
Sakharkar A, Yang J. Designing a Novel Monitoring Approach for the Effects of Space Travel on Astronauts' Health. Life (Basel) 2023; 13:life13020576. [PMID: 36836933 PMCID: PMC9964234 DOI: 10.3390/life13020576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Space exploration and extraterrestrial civilization have fascinated humankind since the earliest days of human history. It was only in the last century that humankind finally began taking significant steps towards these goals by sending astronauts into space, landing on the moon, and building the International Space Station. However, space voyage is very challenging and dangerous, and astronauts are under constant space radiation and microgravity. It has been shown that astronauts are at a high risk of developing a broad range of diseases/disorders. Thus, it is critical to develop a rapid and effective assay to monitor astronauts' health in space. In this study, gene expression and correlation patterns were analyzed for 10 astronauts (8 male and 2 female) using the publicly available microarray dataset E-GEOD-74708. We identified 218 differentially expressed genes between In-flight and Pre-flight and noticed that space travel decreased genome regulation and gene correlations across the entire genome, as well as individual signaling pathways. Furthermore, we systematically developed a shortlist of 32 genes that could be used to monitor astronauts' health during space travel. Further studies, including microgravity experiments, are warranted to optimize and validate the proposed assay.
Collapse
Affiliation(s)
- Anurag Sakharkar
- College of Arts and Science, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK S7N 5A5, Canada
| | - Jian Yang
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
- Correspondence:
| |
Collapse
|
2
|
Yang BY, Sakharkar MK. Alterations in Gene Pair Correlations as Potential Diagnostic Markers for Colon Cancer. Int J Mol Sci 2022; 23:ijms232012463. [PMID: 36293321 PMCID: PMC9604343 DOI: 10.3390/ijms232012463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of death from cancer in Canada. Early detection of CRC remains crucial in managing disease prognosis and improving patient survival. It can also facilitate prevention, screening, and treatment before the disease progresses to a chronic stage. In this study, we developed a strategy for identifying colon cancer biomarkers from both gene expression and gene pair correlation. Using the RNA-Seq dataset TCGA-COAD, a panel of 71 genes, including the 20 most upregulated genes, 20 most downregulated genes and 31 genes involved in the most significantly altered gene pairs, were selected as potential biomarkers for colon cancer. This signature set of genes could be used for early diagnosis. Furthermore, this strategy could be applied to other types of cancer.
Collapse
Affiliation(s)
- Bonnie Yang Yang
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Meena Kishore Sakharkar
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Correspondence:
| |
Collapse
|
3
|
Pal P, Atilla-Gokcumen GE, Frasor J. Emerging Roles of Ceramides in Breast Cancer Biology and Therapy. Int J Mol Sci 2022; 23:ijms231911178. [PMID: 36232480 PMCID: PMC9569866 DOI: 10.3390/ijms231911178] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
One of the classic hallmarks of cancer is the imbalance between elevated cell proliferation and reduced cell death. Ceramide, a bioactive sphingolipid that can regulate this balance, has long been implicated in cancer. While the effects of ceramide on cell death and therapeutic efficacy are well established, emerging evidence indicates that ceramide turnover to downstream sphingolipids, such as sphingomyelin, hexosylceramides, sphingosine-1-phosphate, and ceramide-1-phosphate, is equally important in driving pro-tumorigenic phenotypes, such as proliferation, survival, migration, stemness, and therapy resistance. The complex and dynamic sphingolipid network has been extensively studied in several cancers, including breast cancer, to find key sphingolipidomic alterations that can be exploited to develop new therapeutic strategies to improve patient outcomes. Here, we review how the current literature shapes our understanding of how ceramide synthesis and turnover are altered in breast cancer and how these changes offer potential strategies to improve breast cancer therapy.
Collapse
Affiliation(s)
- Purab Pal
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - G. Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA
- Correspondence: (G.E.A.-G.); (J.F.)
| | - Jonna Frasor
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Correspondence: (G.E.A.-G.); (J.F.)
| |
Collapse
|
4
|
Cai J, Liu Y, Li Q, Wen Z, Li Y, Chen X. Ceramide synthase 3 affects invasion and metastasis of hepatocellular carcinoma via the SMAD6 gene. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:588-599. [PMID: 35753729 PMCID: PMC10929919 DOI: 10.11817/j.issn.1672-7347.2022.210477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Patients with hepatocellular carcinoma (HCC) have poor prognosis due to lack of early diagnosis and effective treatment. Therefore, there is an urgent need to better understand the molecular mechanisms associated with HCC and to identify effective targets for early diagnosis and treatment. This study is to explore the expression and biological role of ceramide synthase 3 (CerS3) in HCC. METHODS A total of 159 pairs of HCC tissues and adjacent non-tumor tissues were obtained from the patients underwent radical resection in Shenzhen People's Hospital, and the total RNA and proteins from HCC tissues and adjacent non-tumor tissues were obtained. The expression of CerS3 protein and mRNA in HCC was detected by immunohistochemistry, Western blotting and real-time PCR. In vitro experiments, Hep3B cells were divided into a control vector group and a CerS3 vector group, and the cells were transfected with retroviral vector containing control cDNA or CerS3 cDNA, respectively. HCCLM3 cells were divided into a normal control shRNA group and a CerS3 shRNA group, and the cells were transfected with lentiviral vectors containing normal control shRNA or CerS3 shRNA, respectively. MTT, EdU, Transwell and scratch method were used to detect cell proliferation, migration and invasion. RNA sequencing was performed to determine the downstream signal of CerS3. RESULTS Compared with the corresponding adjacent tissues,the mRNA and protein levels of CerS3 were elevated in the HCC tissues, with significant difference (both P<0.05). The Univariate and multivariate analysis showed that the overall survival rate was significantly correlated with the presence of venous invasion (95% CI 1.8-9.2, P<0.01), TNM stage (95% CI 2.3-5.2, P<0.05), poor histological grade (95% CI 1.4-6.8, P<0.05), and CerS3 (95% CI 1.5-3.9, P<0.05). Furthermore, the high CerS3 expression levels in tumor tissues were significantly associated with shorter overall survival rates compared with the low CerS3 expression (P<0.05). Compared with the vector control group, the Hep3B cell viability, EdU positive cells, and migration and invasion cell numbers in the CerS3 vector group were significantly increased (all P<0.05). Compared with the shRNA normal control group, the HCCLM3 cell viability, EdU positive cells, and numbers of migrating and invasive cells in the CerS3 shRNA group were significantly lower (all P<0.05). The RNA sequencing confirmed that the small mothers against decapentaplegic family member 6 (SMAD6) gene as an oncogenic gene could promote the HCC metastasis. CONCLUSIONS Clinically, the overexpression of CerS3 is closely related to poor clinical features and poor prognosis. Functionally, CerS3 participates in the proliferation, invasion and metastasis of liver cancer cells via activating SMAD6 gene.
Collapse
Affiliation(s)
- Jinzhong Cai
- Department of Intervention, Shenzhen People's Hospital, Shenzhen 518020, China.
| | - Yuqi Liu
- Department of Intervention, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Qiyang Li
- Department of Intervention, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Zhenchao Wen
- Department of Intervention, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Yong Li
- Department of Intervention, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Xianxian Chen
- Department of Intervention, Shenzhen People's Hospital, Shenzhen 518020, China
| |
Collapse
|
5
|
Perez MF, Sarkies P. Malignancy and NF-κB signalling strengthen coordination between expression of mitochondrial and nuclear-encoded oxidative phosphorylation genes. Genome Biol 2021; 22:328. [PMID: 34857014 PMCID: PMC8638269 DOI: 10.1186/s13059-021-02541-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Mitochondria are ancient endosymbiotic organelles crucial to eukaryotic growth and metabolism. The mammalian mitochondrial genome encodes for 13 mitochondrial proteins, and the remaining mitochondrial proteins are encoded by the nuclear genome. Little is known about how coordination between the expression of the two sets of genes is achieved. RESULTS Correlation analysis of RNA-seq expression data from large publicly available datasets is a common method to leverage genetic diversity to infer gene co-expression modules. Here we use this method to investigate nuclear-mitochondrial gene expression coordination. We identify a pitfall in correlation analysis that results from the large variation in the proportion of transcripts from the mitochondrial genome in RNA-seq data. Commonly used normalisation techniques based on total read counts, such as FPKM or TPM, produce artefactual negative correlations between mitochondrial- and nuclear-encoded transcripts. This also results in artefactual correlations between pairs of nuclear-encoded genes, with important consequences for inferring co-expression modules beyond mitochondria. We show that these effects can be overcome by normalizing using the median-ratio normalisation (MRN) or trimmed mean of M values (TMM) methods. Using these normalisations, we find only weak and inconsistent correlations between mitochondrial and nuclear-encoded mitochondrial genes in the majority of healthy human tissues from the GTEx database. CONCLUSIONS We show that a subset of healthy tissues with high expression of NF-κB show significant coordination, suggesting a role for NF-κB in ensuring balanced expression between mitochondrial and nuclear genes. Contrastingly, most cancer types show robust coordination of nuclear and mitochondrial OXPHOS gene expression, identifying this as a feature of gene regulation in cancer.
Collapse
Affiliation(s)
- Marcos Francisco Perez
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| | - Peter Sarkies
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
6
|
Shen J, Liu J, Li H, Bai L, Du Z, Geng R, Cao J, Sun P, Tang Z. Explore association of genes in PDL1/PD1 pathway to radiotherapy survival benefit based on interaction model strategy. Radiat Oncol 2021; 16:223. [PMID: 34794456 PMCID: PMC8600865 DOI: 10.1186/s13014-021-01951-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/08/2021] [Indexed: 02/25/2023] Open
Abstract
Purpose To explore the association of genes in “PD-L1 expression and PD-1 check point pathway in cancer” to radiotherapy survival benefit. Methods and materials Gene expression data and clinical information of cancers were downloaded from TCGA. Radiotherapy survival benefit was defined based on interaction model. Fast backward multivariate Cox regression was performed using stacking multiple interpolation data to identify radio-sensitive (RS) genes. Results Among the 73 genes in PD-L1/PD-1 pathway, we identified 24 RS genes in BRCA data set, 25 RS genes in STAD data set and 20 RS genes in HNSC data set, with some crossover genes. Theoretically, there are two types of RS genes. The expression level of Type I RS genes did not affect patients' overall survival (OS), but when receiving radiotherapy, patients with different expression level of Type I RS genes had varied survival benefit. Oppositely, Type II RS genes affected patients' OS. And when receiving radiotherapy, those with lower OS could benefit a lot. Type II RS genes in BRCA had strong positive correlation and closely biological interactions. When performing cluster analysis using these related Type II RS genes, patients could be divided into RS group and non-RS group in BRCA and METABRIC data sets. Conclusions Our study explored potential radio-sensitive biomarkers of several main cancer types in an important tumor immune checkpoint pathway and revealed a strong association between this pathway and radiotherapy survival benefit. New types of RS genes could be identified based on expanded definition to RS genes. Supplementary Information The online version contains supplementary material available at 10.1186/s13014-021-01951-x.
Collapse
Affiliation(s)
- Junjie Shen
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, 215123, China
| | - Jingfang Liu
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, 215123, China
| | - Huijun Li
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, 215123, China
| | - Lu Bai
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, 215123, China
| | - Zixuan Du
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, 215123, China
| | - Ruirui Geng
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, 215123, China
| | - Jianping Cao
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215006, China
| | - Peng Sun
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, 215123, China.
| | - Zaixiang Tang
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, China. .,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
7
|
Sakharkar MK, Rajamanickam K, Ji S, Dhillon SK, Yang J. Pairwise correlation of genes involved in glucose metabolism: a potential diagnostic marker of cancer? Genes Cancer 2021; 12:69-76. [PMID: 34163562 PMCID: PMC8211569 DOI: 10.18632/genesandcancer.216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer is a highly malignant disease, killing approximately 10 million people worldwide in 2020. Cancer patient survival substantially relies on early diagnosis. In this study, we evaluated whether genes involved in glucose metabolism could be used as potential diagnostic markers for cancer. In total, 127 genes were examined for their gene expression levels and pairwise gene correlations. Genes ADH1B and PDHA2 were differentially expressed in most of the 12 types of cancer and five pairs of genes exhibited consistent correlation changes (from strong correlations in normal controls to weak correlations in cancer patients) across all types of cancer. Thus, the two differentially expressed genes and five gene pairs could be potential diagnostic markers for cancer. Further preclinical and clinical studies are warranted to prove whether these genes and/or gene pairs would indeed aid in early diagnosis of cancer.
Collapse
Affiliation(s)
- Meena Kishore Sakharkar
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Karthic Rajamanickam
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Shaoping Ji
- Henan Provincial Engineering Centre for Tumor Molecular Medicine, Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, Henan Province 474004, P.R. of China
| | - Sarinder Kaur Dhillon
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Jian Yang
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
8
|
Patel DS, Ahmad F, Abu Sneineh M, Patel RS, Rohit Reddy S, Llukmani A, Hashim A, Gordon DK. The Importance of Sphingosine Kinase in Breast Cancer: A Potential for Breast Cancer Management. Cureus 2021; 13:e13413. [PMID: 33758708 PMCID: PMC7978154 DOI: 10.7759/cureus.13413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Breast cancer management includes a combination of surgery, radiation therapy, and chemotherapy. While this management has proven effective, it is not perfect. To expand the umbrella of management to resistant breast cancer tumors, researchers have explored the idea of sphingosine kinase (SphK) and sphingosine-1-phosphate (S1P) as a potential target for treatment. In this article, we review the mechanism of the sphingosine kinase/sphingosine-1-phosphate (SphK/S1P) axis along with its effect on the tumor microenvironment (TME) and compounds that have been studied inhibiting the SphK/S1P axis. We searched for relevant articles in the last five years in Medline and PubMed Central. Inclusion criteria, exclusion criteria, and quality checklists were applied to identify the most relevant articles. We compiled the information that has been summarized in the respective tables and figures provided in this review. The metabolism of sphingolipids was summarized, followed by the SphK/S1P upregulation in breast cancer cells. The variety of effects by upregulation of SphK led to an increase in inflammation, growth, and metastasis in breast cancer tumors. The increase in S1P also impacted the TME, including the cells and surrounding tissue, allowing the breast tumors to thrive. The final point made was a summary of the compounds and drugs that inhibited the SphK/S1P axis. They have proven their effectiveness and show even greater efficacy in combination with docetaxel and doxorubicin in preclinical studies. In conclusion, what is known about the SphK/S1P axis within breast cancer cells is immense but incomplete as we summarize what is known so far. Having a complete picture will allow a faster transition to application in the clinical field but clinical trials have not commenced as of yet.
Collapse
Affiliation(s)
- Dutt S Patel
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Farrukh Ahmad
- Emergency Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,Emergency Department, Beaumont Hospital, Dublin, IRL
| | - Majdi Abu Sneineh
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ravi S Patel
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sai Rohit Reddy
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Adiona Llukmani
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ayat Hashim
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Domonick K Gordon
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,Internal Medicine, Scarborough General Hospital, Scarborough, CAN
| |
Collapse
|
9
|
Sakharkar MK, Dhillon SK, Rajamanickam K, Heng B, Braidy N, Guillemin GJ, Yang J. Alteration in Gene Pair Correlations in Tryptophan Metabolism as a Hallmark in Cancer Diagnosis. Int J Tryptophan Res 2020; 13:1178646920977013. [PMID: 33354111 PMCID: PMC7734567 DOI: 10.1177/1178646920977013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/02/2020] [Indexed: 02/01/2023] Open
Abstract
Tryptophan metabolism plays essential roles in both immunomodulation and cancer development. Indoleamine 2,3-dioxygenase, a rate-limiting enzyme in the metabolic pathway, is overexpressed in different types of cancer. To get a better understanding of the involvement of tryptophan metabolism in cancer development, we evaluated the expression and pairwise correlation of 62 genes in the metabolic pathway across 12 types of cancer. Only gene AOX1, encoding aldehyde oxidase 1, was ubiquitously downregulated, Furthermore, we observed that the 62 genes were widely and strongly correlated in normal controls, however, the gene pair correlations were significantly lost in tumor patients for all 12 types of cancer. This implicated that gene pair correlation coefficients of the tryptophan metabolic pathway could be applied as a prognostic and/or diagnostic biomarker for cancer.
Collapse
Affiliation(s)
- Meena Kishore Sakharkar
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sarinder Kaur Dhillon
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Karthic Rajamanickam
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Benjamin Heng
- Neuroinflammation Research Group, MND Research Centre, Department of Biological Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Nady Braidy
- Neuroinflammation Research Group, MND Research Centre, Department of Biological Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Faculty of Medicine, Sydney, NSW, Australia
| | - Gilles J Guillemin
- Neuroinflammation Research Group, MND Research Centre, Department of Biological Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Jian Yang
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|