1
|
Pirini F, Calzari L, Tedaldi G, Tebaldi M, Zampiga V, Cangini I, Danesi R, Ravegnani M, Arcangeli V, Passardi A, Petracci E, Bravaccini S, Marisi G, Viel A, Barana D, Pedroni M, Roncucci L, Calistri D, Gentilini D. Comprehensive genetic and epigenetic characterization of Lynch-like syndrome patients. Int J Cancer 2025; 157:788-799. [PMID: 40259440 PMCID: PMC12178102 DOI: 10.1002/ijc.35451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/18/2025] [Accepted: 04/04/2025] [Indexed: 04/23/2025]
Abstract
Lynch-like syndrome (LLS) presents very similar clinicopathological characteristics to Lynch syndrome (LS) but the mechanism for cancer predisposition remains unknown. The present study aims to investigate the causal mechanism of LLS by a comprehensive genetic and epigenetic approach. Thirty-two LLS and 34 LS patients with colorectal cancer (CRC) fitting the Amsterdam and Bethesda criteria were included, along with 29 CRC sporadic patients, and analyzed for the presence of pathogenic variants in 94 genes associated with hereditary tumors. The cohorts were also characterized for the methylation profile and examined through a sample group analysis and a Stochastic Epigenetic Mutations (SEMs) analysis in comparison with 29 age-matched healthy controls. The multigene panel analysis revealed the presence of pathogenic variants in non-mismatch repair (MMR) genes and three variants classified as pathogenic/likely pathogenic possibly predisposing to LLS. The epigenetic analysis showed epivariations targeting genes associated with LS or DNA repair, most of them associated with the Fanconi Anemia pathway, which could explain the susceptibility to cancer. Our results highlight the need for using extended genetic and epigenetic analyses to understand the causal mechanism of LLS.
Collapse
Affiliation(s)
- Francesca Pirini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”MeldolaItaly
| | - Luciano Calzari
- Bioinformatics and Statistical Genomic UnitIRCCS Istituto Auxologico ItalianoMilanItaly
| | - Gianluca Tedaldi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”MeldolaItaly
| | - Michela Tebaldi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”MeldolaItaly
| | - Valentina Zampiga
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”MeldolaItaly
| | - Ilaria Cangini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”MeldolaItaly
| | - Rita Danesi
- Romagna Cancer RegistryIRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”MeldolaItaly
| | - Mila Ravegnani
- Romagna Cancer RegistryIRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”MeldolaItaly
| | - Valentina Arcangeli
- Romagna Cancer RegistryIRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”MeldolaItaly
| | - Alessandro Passardi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”MeldolaItaly
| | - Elisabetta Petracci
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”MeldolaItaly
| | - Sara Bravaccini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”MeldolaItaly
- Faculty of Medicine and SurgeryUniversity of Enna “Kore”EnnaItaly
| | - Giorgia Marisi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”MeldolaItaly
| | - Alessandra Viel
- Unit of Oncogenetics and Functional OncogenomicsCentro di Riferimento Oncologico di Aviano (CRO), IRCCSAvianoItaly
| | - Daniela Barana
- Oncology Unit, Local Health and Social Care UnitULSS8 BericaVicenzaItaly
| | - Monica Pedroni
- Department of Medical and Surgical SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Luca Roncucci
- Department of Medical and Surgical SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Daniele Calistri
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”MeldolaItaly
| | - Davide Gentilini
- Bioinformatics and Statistical Genomic UnitIRCCS Istituto Auxologico ItalianoMilanItaly
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
| |
Collapse
|
2
|
Farrell C, Tandon K, Ferrari R, Lapborisuth K, Modi R, Snir S, Pellegrini M. The Multi-State Epigenetic Pacemaker enables the identification of combinations of factors that influence DNA methylation. GeroScience 2025; 47:2439-2454. [PMID: 39549198 PMCID: PMC11979089 DOI: 10.1007/s11357-024-01414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/23/2024] [Indexed: 11/18/2024] Open
Abstract
Epigenetic clocks, DNA methylation-based predictive models of chronological age, are often utilized to study aging associated biology. Despite their widespread use, these methods do not account for other factors that also contribute to the variability of DNA methylation data. For example, many CpG sites show strong sex-specific or cell-type-specific patterns that likely impact the predictions of epigenetic age. To overcome these limitations, we developed a multidimensional extension of the Epigenetic Pacemaker, the Multi-state Epigenetic Pacemaker (MSEPM). We show that the MSEPM is capable of accurately modeling multiple methylation-associated factors simultaneously, while also providing site-specific models that describe the per site relationship between methylation and these factors. We utilized the MSEPM with a large aggregate cohort of blood methylation data to construct models of the effects of age-, sex-, and cell-type heterogeneity on DNA methylation. We found that these models capture a large faction of the variability at thousands of DNA methylation sites. Moreover, this approach allows us to identify sites that are primarily affected by aging and no other factors. An analysis of these sites reveals that those that lose methylation over time are enriched for CTCF transcription factor chip peaks, while those that gain methylation over time are associated with bivalent promoters of genes that are not expressed in blood. These observations suggest mechanisms that underlie age-associated methylation changes and suggest that age-associated increases in methylation may not have strong functional consequences on cell states. In conclusion, the MSEPM is capable of accurately modeling multiple methylation-associated factors, and the models produced can illuminate site-specific combinations of factors that affect methylation dynamics.
Collapse
Affiliation(s)
- Colin Farrell
- Dept. of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 90095, CA, USA.
| | - Keshiv Tandon
- Dept. of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 90095, CA, USA
| | - Roberto Ferrari
- Dept. of Chemistry, Life Sciences and Environmental Sustainability, Laboratory of Molecular Cell Biology of the Epigenome (MCBE), University of Parma, Parma, Italy
| | - Kalsuda Lapborisuth
- Dept. of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 90095, CA, USA
| | - Rahil Modi
- Dept. of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 90095, CA, USA
| | - Sagi Snir
- Dept. of Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Matteo Pellegrini
- Dept. of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 90095, CA, USA.
| |
Collapse
|
3
|
Rofes P, Dueñas N, del Valle J, Navarro M, Balmaña J, Ramón y Cajal T, Tuset N, Castillo C, González S, Brunet J, Capellá G, Lázaro C, Pineda M. Tumor analysis of MMR genes in Lynch-like syndrome: Challenges associated with results interpretation. Cancer Med 2024; 13:e7041. [PMID: 38558366 PMCID: PMC10983805 DOI: 10.1002/cam4.7041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/24/2024] [Accepted: 02/09/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Up to 70% of suspected Lynch syndrome patients harboring MMR deficient tumors lack identifiable germline pathogenic variants in MMR genes, being referred to as Lynch-like syndrome (LLS). Previous studies have reported biallelic somatic MMR inactivation in a variable range of LLS-associated tumors. Moreover, translating tumor testing results into patient management remains controversial. Our aim is to assess the challenges associated with the implementation of tumoral MMR gene testing in routine workflows. METHODS Here, we present the clinical characterization of 229 LLS patients. MMR gene testing was performed in 39 available tumors, and results were analyzed using two variant allele frequency (VAF) thresholds (≥5% and ≥10%). RESULTS AND DISCUSSION More biallelic somatic events were identified at VAF ≥ 5% than ≥10% (35.9% vs. 25.6%), although the rate of nonconcordant results regarding immunohistochemical pattern increased (30.8% vs. 20.5%). Interpretation difficulties question the current utility of the identification of MMR somatic hits in the diagnostic algorithm of suspected LS cases.
Collapse
Affiliation(s)
- Paula Rofes
- Hereditary Cancer ProgramCatalan Institute of Oncology, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d'Investigació Biomèdica de Bellvitge – IDIBELLL'Hospitalet de LlobregatSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Núria Dueñas
- Hereditary Cancer ProgramCatalan Institute of Oncology, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d'Investigació Biomèdica de Bellvitge – IDIBELLL'Hospitalet de LlobregatSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Jesús del Valle
- Hereditary Cancer ProgramCatalan Institute of Oncology, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d'Investigació Biomèdica de Bellvitge – IDIBELLL'Hospitalet de LlobregatSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Matilde Navarro
- Hereditary Cancer ProgramCatalan Institute of Oncology, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d'Investigació Biomèdica de Bellvitge – IDIBELLL'Hospitalet de LlobregatSpain
| | - Judith Balmaña
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO)Vall d'Hebron HospitalBarcelonaSpain
| | | | - Noemí Tuset
- Medical Oncology DepartmentArnau de Vilanova University HospitalLleidaSpain
| | - Carmen Castillo
- Hereditary Cancer ProgramCatalan Institute of Oncology, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d'Investigació Biomèdica de Bellvitge – IDIBELLL'Hospitalet de LlobregatSpain
| | - Sara González
- Hereditary Cancer ProgramCatalan Institute of Oncology, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d'Investigació Biomèdica de Bellvitge – IDIBELLL'Hospitalet de LlobregatSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Joan Brunet
- Hereditary Cancer ProgramCatalan Institute of Oncology, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d'Investigació Biomèdica de Bellvitge – IDIBELLL'Hospitalet de LlobregatSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
- Hereditary Cancer ProgramCatalan Institute of Oncology – IDIBGiGironaSpain
| | - Gabriel Capellá
- Hereditary Cancer ProgramCatalan Institute of Oncology, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d'Investigació Biomèdica de Bellvitge – IDIBELLL'Hospitalet de LlobregatSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Conxi Lázaro
- Hereditary Cancer ProgramCatalan Institute of Oncology, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d'Investigació Biomèdica de Bellvitge – IDIBELLL'Hospitalet de LlobregatSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Marta Pineda
- Hereditary Cancer ProgramCatalan Institute of Oncology, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d'Investigació Biomèdica de Bellvitge – IDIBELLL'Hospitalet de LlobregatSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| |
Collapse
|
4
|
Farrell C, Hu C, Lapborisuth K, Pu K, Snir S, Pellegrini M. Identifying epigenetic aging moderators using the epigenetic pacemaker. FRONTIERS IN BIOINFORMATICS 2024; 3:1308680. [PMID: 38235295 PMCID: PMC10791860 DOI: 10.3389/fbinf.2023.1308680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024] Open
Abstract
Epigenetic clocks are DNA methylation-based chronological age prediction models that are commonly employed to study age-related biology. The difference between the predicted and observed age is often interpreted as a form of biological age acceleration, and many studies have measured the impact of environmental and disease-associated factors on epigenetic age. Most epigenetic clocks are fit using approaches that minimize the error between the predicted and observed chronological age, and as a result, they may not accurately model the impact of factors that moderate the relationship between the actual and epigenetic age. Here, we compare epigenetic clocks that are constructed using penalized regression methods to an evolutionary framework of epigenetic aging with the epigenetic pacemaker (EPM), which directly models DNA methylation as a function of a time-dependent epigenetic state. In simulations, we show that the value of the epigenetic state is impacted by factors such as age, sex, and cell-type composition. Next, in a dataset aggregated from previous studies, we show that the epigenetic state is also moderated by sex and the cell type. Finally, we demonstrate that the epigenetic state is also moderated by toxins in a study on polybrominated biphenyl exposure. Thus, we find that the pacemaker provides a robust framework for the study of factors that impact epigenetic age acceleration and that the effect of these factors may be obscured in traditional clocks based on linear regression models.
Collapse
Affiliation(s)
- Colin Farrell
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Chanyue Hu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kalsuda Lapborisuth
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kyle Pu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sagi Snir
- Department of Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
5
|
Bilyalov A, Danishevich A, Nikolaev S, Vorobyov N, Abramov I, Pismennaya E, Terehova S, Kosilova Y, Primak A, Stanoevich U, Lisica T, Shipulin G, Gamayunov S, Kolesnikova E, Khatkov I, Gusev O, Bodunova N. Novel Pathogenic Variants in Hereditary Cancer Syndromes in a Highly Heterogeneous Cohort of Patients: Insights from Multigene Analysis. Cancers (Basel) 2023; 16:85. [PMID: 38201513 PMCID: PMC10778304 DOI: 10.3390/cancers16010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Cancer is a major global public health challenge, affecting both quality of life and mortality. Recent advances in genetic research have uncovered hereditary cancer syndromes (HCS) that predispose individuals to malignant neoplasms. While traditional single-gene testing has focused on high-penetrance genes, the past decade has seen a shift toward multigene panels, which facilitate the analysis of multiple genes associated with specific HCS. This approach reveals variants in less-studied gene regions and improves our understanding of cancer predisposition. In a study composed of Russian patients with clinical signs of HCS, we used a multigene hereditary cancer panel and revealed 21.6% individuals with pathogenic or likely pathogenic genetic variants. BRCA1/BRCA2 mutations predominated, followed by the CHEK2 and ATM variants. Of note, 16 previously undescribed variants were identified in the MUTYH, GALNT12, MSH2, MLH1, MLH3, EPCAM, and POLE genes. The implications of the study extend to personalized cancer prevention and treatment strategies, especially in populations lacking extensive epidemiological data, such as Russia. Overall, our research provides valuable genetic insights that give the way for further investigation and advances in the understanding and management of hereditary cancer syndromes.
Collapse
Affiliation(s)
- Airat Bilyalov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia (I.K.)
| | - Anastasiia Danishevich
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia (I.K.)
| | - Sergey Nikolaev
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia (I.K.)
| | - Nikita Vorobyov
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia (I.K.)
| | - Ivan Abramov
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia (I.K.)
- The Federal State Budgetary Scientific Institution “Izmerov Research Institute of Occupational Health”, 105275 Moscow, Russia
| | | | - Svetlana Terehova
- Kursk Regional Scientific and Clinical Center Named after G. Y. Ostroverkhov, 305524 Kursk, Russia; (S.T.); (Y.K.); (A.P.)
| | - Yuliya Kosilova
- Kursk Regional Scientific and Clinical Center Named after G. Y. Ostroverkhov, 305524 Kursk, Russia; (S.T.); (Y.K.); (A.P.)
| | - Anastasiia Primak
- Kursk Regional Scientific and Clinical Center Named after G. Y. Ostroverkhov, 305524 Kursk, Russia; (S.T.); (Y.K.); (A.P.)
| | - Uglesha Stanoevich
- Kursk Regional Scientific and Clinical Center Named after G. Y. Ostroverkhov, 305524 Kursk, Russia; (S.T.); (Y.K.); (A.P.)
| | - Tatyana Lisica
- Centre for Strategic Planning and Management of Biomedical Health Risks, Federal Medical and Biological Agency, 119435 Moscow, Russia
| | - German Shipulin
- Centre for Strategic Planning and Management of Biomedical Health Risks, Federal Medical and Biological Agency, 119435 Moscow, Russia
| | - Sergey Gamayunov
- Nizhny Novgorod Regional Oncologic Hospital, 603163 Nizhny Novgorod, Russia
| | - Elena Kolesnikova
- Nizhny Novgorod Regional Oncologic Hospital, 603163 Nizhny Novgorod, Russia
| | - Igor Khatkov
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia (I.K.)
| | - Oleg Gusev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Life Improvement by Future Technologies (LIFT) Center, 121205 Moscow, Russia
| | - Natalia Bodunova
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia (I.K.)
| |
Collapse
|
6
|
Weber CAM, Krönke N, Volk V, Auber B, Förster A, Trost D, Geffers R, Esmaeilzadeh M, Lalk M, Nabavi A, Samii A, Krauss JK, Feuerhake F, Hartmann C, Wiese B, Brand F, Weber RG. Rare germline variants in POLE and POLD1 encoding the catalytic subunits of DNA polymerases ε and δ in glioma families. Acta Neuropathol Commun 2023; 11:184. [PMID: 37990341 PMCID: PMC10664377 DOI: 10.1186/s40478-023-01689-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/11/2023] [Indexed: 11/23/2023] Open
Abstract
Pathogenic germline variants in the DNA polymerase genes POLE and POLD1 cause polymerase proofreading-associated polyposis, a dominantly inherited disorder with increased risk of colorectal carcinomas and other tumors. POLE/POLD1 variants may result in high somatic mutation and neoantigen loads that confer susceptibility to immune checkpoint inhibitors (ICIs). To explore the role of POLE/POLD1 germline variants in glioma predisposition, whole-exome sequencing was applied to leukocyte DNA of glioma patients from 61 tumor families with at least one glioma case each. Rare heterozygous POLE/POLD1 missense variants predicted to be deleterious were identified in glioma patients from 10 (16%) families, co-segregating with the tumor phenotype in families with available DNA from several tumor patients. Glioblastoma patients carrying rare POLE variants had a mean overall survival of 21 months. Additionally, germline variants in POLD1, located at 19q13.33, were detected in 2/34 (6%) patients with 1p/19q-codeleted oligodendrogliomas, while POLE variants were identified in 2/4 (50%) glioblastoma patients with a spinal metastasis. In 13/15 (87%) gliomas from patients carrying POLE/POLD1 variants, features of defective polymerase proofreading, e.g. hypermutation, POLE/POLD1-associated mutational signatures, multinucleated cells, and increased intratumoral T cell response, were observed. In a CRISPR/Cas9-derived POLE-deficient LN-229 glioblastoma cell clone, a mutator phenotype and delayed S phase progression were detected compared to wildtype POLE cells. Our data provide evidence that rare POLE/POLD1 germline variants predispose to gliomas that may be susceptible to ICIs. Data compiled here suggest that glioma patients carrying POLE/POLD1 variants may be recognized by cutaneous manifestations, e.g. café-au-lait macules, and benefit from surveillance colonoscopy.
Collapse
Affiliation(s)
- Christine A M Weber
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Nicole Krönke
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Valery Volk
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Bernd Auber
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Alisa Förster
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | | | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Michael Lalk
- Department of Neurosurgery, KRH Klinikum Nordstadt, Hannover, Germany
| | - Arya Nabavi
- Department of Neurosurgery, KRH Klinikum Nordstadt, Hannover, Germany
| | - Amir Samii
- Department of Neurosurgery, International Neuroscience Institute, Hannover, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Friedrich Feuerhake
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
- Institute for Neuropathology, University Clinic Freiburg, Freiburg, Germany
| | - Christian Hartmann
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Bettina Wiese
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
- Department of Neurology, Henriettenstift, Diakovere Krankenhaus gGmbH, Hannover, Germany
| | - Frank Brand
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Ruthild G Weber
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
7
|
Tous C, Muñoz-Redondo C, Bravo-Gil N, Gavilan A, Fernández RM, Antiñolo J, Navarro-González E, Antiñolo G, Borrego S. Identification of Novel Candidate Genes for Familial Thyroid Cancer by Whole Exome Sequencing. Int J Mol Sci 2023; 24:ijms24097843. [PMID: 37175550 PMCID: PMC10178269 DOI: 10.3390/ijms24097843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Thyroid carcinoma (TC) can be classified as medullary (MTC) and non-medullary (NMTC). While most TCs are sporadic, familial forms of MTC and NMTC also exist (less than 1% and 3-9% of all TC cases, respectively). Germline mutations in RET are found in more than 95% of familial MTC, whereas familial NMTC shows a high degree of genetic heterogeneity. Herein, we aimed to identify susceptibility genes for familial NMTC and non-RET MTC by whole exome sequencing in 58 individuals belonging to 18 Spanish families with these carcinomas. After data analysis, 53 rare candidate segregating variants were identified in 12 of the families, 7 of them located in previously TC-associated genes. Although no common mutated genes were detected, biological processes regulating functions such as cell proliferation, differentiation, survival and adhesion were enriched. The reported functions of the identified genes together with pathogenicity and structural predictions, reinforced the candidacy of 36 of them, suggesting new loci related to TC and novel genotype-phenotype correlations. Therefore, our strategy provides clues to possible molecular mechanisms underlying familial forms of MTC and NMTC. These new molecular findings and clinical data of patients may be helpful for the early detection, development of tailored therapies and optimizing patient management.
Collapse
Affiliation(s)
- Cristina Tous
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Carmen Muñoz-Redondo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Nereida Bravo-Gil
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Angela Gavilan
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
| | - Raquel María Fernández
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Juan Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
| | - Elena Navarro-González
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
- Department of Endocrinology and Nutrition, University Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| |
Collapse
|
8
|
Huang H, Cao W, Long Z, Kuang L, Li X, Feng Y, Wu Y, Zhao Y, Chen Y, Sun P, Peng P, Zhang J, Yuan L, Li T, Hu H, Li G, Yang L, Zhang X, Hu F, Sun X, Hu D. DNA methylation-based patterns for early diagnostic prediction and prognostic evaluation in colorectal cancer patients with high tumor mutation burden. Front Oncol 2023; 12:1030335. [PMID: 36713578 PMCID: PMC9880489 DOI: 10.3389/fonc.2022.1030335] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Background Immune checkpoint inhibitor (ICI) therapy has proven to be a promising treatment for colorectal cancer (CRC). We aim to investigate the relationship between DNA methylation and tumor mutation burden (TMB) by integrating genomic and epigenetic profiles to precisely identify clinical benefit populations and to evaluate the effect of ICI therapy. Methods A total of 536 CRC tissues from the Cancer Genome Atlas (TCGA) with mutation data were collected and subjected to calculate TMB. 80 CRC patients with high TMB and paired normal tissues were selected as training sets and developed the diagnostic and prognostic methylation models, respectively. In the validation set, the diagnostic model was validated in our in-house 47 CRC tissues and 122 CRC tissues from the Gene Expression Omnibus (GEO) datasets, respectively. And a total of 38 CRC tissues with high TMB from the COLONOMICS dataset verified the prognostic model. Results A positive correlation between differential methylation positions and TMB level was observed in TCGA CRC cohort (r=0.45). The diagnostic score that consisted of methylation levels of four genes (ADHFE1, DOK6, GPR75, and MAP3K14-AS1) showed high diagnostic performance in the discovery (AUC=1.000) and two independent validation (AUC=0.946, AUC=0.857) datasets. Additionally, these four genes showed significant positive correlations with NK cells. The prognostic score containing three genes (POU3F3, SYN2, and TMEM178A) had significantly poorer survival in the high-risk TMB samples than those in the low-risk TMB samples (P=0.016). CRC patients with low-risk scores combined with TMB levels represent a favorable survival. Conclusions By integrating analyses of methylation and mutation data, it is suggested that DNA methylation patterns combined with TMB serve as a novel potential biomarker for early screening in more high-TMB populations and for evaluating the prognostic effect of CRC patients with ICI therapy.
Collapse
Affiliation(s)
- Hao Huang
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Weifan Cao
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Zhiping Long
- Department of Epidemiology, Public Health School of Harbin Medical University, Harbin, China
| | - Lei Kuang
- Department of Epidemiology and Health Statistics, School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Xi Li
- Department of Epidemiology and Health Statistics, School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Yifei Feng
- Department of Epidemiology and Health Statistics, School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Yuying Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Yang Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Yinggang Chen
- Department of Gastrointestinal Surgery, Shenzhen Hospital, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Peng Sun
- Department of Gastrointestinal Surgery, Shenzhen Hospital, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Panxin Peng
- Department of Gastrointestinal Surgery, Shenzhen Hospital, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Jinli Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Lijun Yuan
- Department of Epidemiology and Health Statistics, School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Tianze Li
- Department of Epidemiology and Health Statistics, School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Huifang Hu
- Department of Epidemiology and Health Statistics, School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Gairui Li
- Department of Chronic Disease Control and Prevention, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Longkun Yang
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xing Zhang
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Fulan Hu
- Department of Epidemiology and Health Statistics, School of Public Health, Shenzhen University Health Science Center, Shenzhen, China,*Correspondence: Dongsheng Hu, ; Xizhuo Sun, ; Fulan Hu,
| | - Xizhuo Sun
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China,*Correspondence: Dongsheng Hu, ; Xizhuo Sun, ; Fulan Hu,
| | - Dongsheng Hu
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China,Department of Epidemiology and Health Statistics, School of Public Health, Shenzhen University Health Science Center, Shenzhen, China,*Correspondence: Dongsheng Hu, ; Xizhuo Sun, ; Fulan Hu,
| |
Collapse
|
9
|
Nugroho PP, Ghozali SAS, Buchanan DD, Pisano MI, Reece JC. Risk of cancer in individuals with Lynch-like syndrome and their families: a systematic review. J Cancer Res Clin Oncol 2023; 149:25-46. [PMID: 36251064 PMCID: PMC9889410 DOI: 10.1007/s00432-022-04397-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/05/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Lynch-like syndrome (LLS) tumors have similar clinicopathological features to Lynch syndrome (LS) tumors but have no identifiable pathogenic germline mismatch repair gene variant. However, cancer risks in LLS patients and first-degree relatives (FDRs) are not well defined. METHODS To clarify LLS-associated cancer risks, a systematic review of all studies examining all cancer risks in LLS was performed. Searching of Medline, Embase, Pubmed, Cochrane and CINAHL databases and reference/citation checking identified relevant studies published between January 1, 1980 and February 11, 2021. Joanna Briggs Institute Appraisal Tools assessed the risk of bias. RESULTS Six studies (five cohort/one cross-sectional) were eligible for study inclusion. One study found no difference in colorectal cancer (CRC) incidence between LLS and LS patients or CRC risks at aged 70 years. Three studies found CRC incidence in LLS FDRs was higher than the general population but lower than LS FDRs. Two studies showed no difference in CRC diagnosis age between LLS patients and LS patients. Endometrial cancer risks in LLS patients were higher than the general population but lower than LS patients. CONCLUSION Evidence of elevated CRC risks in LLS patients and FDRs supports increased colonoscopy surveillance strategies for LLS patients and FDRs in line with current recommendations for LS. Due to heterogeneity amongst LLS populations, extended intervals between screening may be advised for low-risk families. Studies to resolve the molecular characterization and definition of LLS are needed to clarify cancer risks associated with LLS which in turn may individualize surveillance strategies for LLS patients and families.
Collapse
Affiliation(s)
- Pandu P Nugroho
- Faculty of Medicine, Universitas Indonesia, Depok, West Java, Indonesia
- Melbourne Medical School, The University of Melbourne, Parkville, VIC, Australia
| | - Siti Alyaa S Ghozali
- Faculty of Medicine, Universitas Indonesia, Depok, West Java, Indonesia
- Melbourne Medical School, The University of Melbourne, Parkville, VIC, Australia
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, VIC, Australia
- University of Melbourne Centre for Cancer Research, Parkville, VIC, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Mia I Pisano
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Jeanette C Reece
- Neuroepidemiology Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Level 3 207 Bouverie Street, Parkville, VIC, 3010, Australia.
| |
Collapse
|
10
|
Matias-Guiu X, Selinger CI, Anderson L, Buza N, Ellenson LH, Fadare O, Ganesan R, Ip PPC, Palacios J, Parra-Herran C, Raspollini MR, Soslow RA, Werner HMJ, Lax SF, McCluggage WG. Data Set for the Reporting of Endometrial Cancer: Recommendations From the International Collaboration on Cancer Reporting (ICCR). Int J Gynecol Pathol 2022; 41:S90-S118. [PMID: 36305536 DOI: 10.1097/pgp.0000000000000901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Endometrial cancer is one of the most common cancers among women. The International Collaboration on Cancer Reporting (ICCR) developed a standardized endometrial cancer data set in 2011, which provided detailed recommendations for the reporting of resection specimens of these neoplasms. A new data set has been developed, which incorporates the updated 2020 World Health Organization Classification of Female Genital Tumors, the Cancer Genome Atlas (TCGA) molecular classification of endometrial cancers, and other major advances in endometrial cancer reporting, all of which necessitated a major revision of the data set. This updated data set has been produced by a panel of expert pathologists and an expert clinician and has been subject to international open consultation. The data set includes core elements which are unanimously agreed upon as essential for cancer diagnosis, clinical management, staging, or prognosis and noncore elements which are clinically important, but not essential. Explanatory notes are provided for each element. Adoption of this updated data set will result in improvements in endometrial cancer patient care.
Collapse
|
11
|
A Previously Unrecognized Molecular Landscape of Lynch Syndrome in the Mexican Population. Int J Mol Sci 2022; 23:ijms231911549. [PMID: 36232851 PMCID: PMC9569652 DOI: 10.3390/ijms231911549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/26/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022] Open
Abstract
Lynch syndrome (LS) is the main hereditary colorectal cancer syndrome. There have been few reports regarding the clinical and molecular characteristics of LS patients in Latin America; this is particularly true in the Mexican population, where no information is available. The present study aims to describe the clinical and molecular spectrum of variants in a cohort of patients diagnosed with LS in Mexico. We present a retrospective analysis of 412 patients with suspected LS, whose main site of cancer diagnosis was the colon (58.25%), followed by the endometrium (18.93%). Next-generation sequencing analysis, with an extensive multigene panel, showed that 27.1% (112/414) had a variant in one of the genes of the mismatch repair pathway (MMR); 30.4% (126/414) had a variant in non-MMR genes such as CHEK2, APC, MUTYH, BRCA1, and BRCA2; and 42.5% (176/414) had no genetic variants. Most of the variants were found in MLH1. Pathogenic variants (PVs) in MMR genes were identified in 65.7% (96/146) of the total PVs, and 34.24% (45/146) were in non-MMR genes. Molecular and clinical characterization of patients with LS in specific populations allowed personalized follow-up, with the option for targeted treatment with immune checkpoint inhibitors and the development of public health policies. Moreover, such characterization allows for family cascade testing and consequent prevention strategies.
Collapse
|
12
|
Pseudotime Analysis Reveals Exponential Trends in DNA Methylation Aging with Mortality Associated Timescales. Cells 2022; 11:cells11050767. [PMID: 35269389 PMCID: PMC8909670 DOI: 10.3390/cells11050767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
The epigenetic trajectory of DNA methylation profiles has a nonlinear relationship with time, reflecting rapid changes in DNA methylation early in life that progressively slow with age. In this study, we use pseudotime analysis to determine the functional form of these trajectories. Unlike epigenetic clocks that constrain the functional form of methylation changes with time, pseudotime analysis orders samples along a path, based on similarities in a latent dimension, to provide an unbiased trajectory. We show that pseudotime analysis can be applied to DNA methylation in human blood and brain tissue and find that it is highly correlated with the epigenetic states described by the Epigenetic Pacemaker. Moreover, we show that the pseudotime trajectory can be modeled with respect to time, using a sum of two exponentials, with coefficients that are close to the timescales of human age-associated mortality. Thus, for the first time, we can identify age-associated molecular changes that appear to track the exponential dynamics of mortality risk.
Collapse
|
13
|
Diagnosis of Lynch Syndrome and Strategies to Distinguish Lynch-Related Tumors from Sporadic MSI/dMMR Tumors. Cancers (Basel) 2021; 13:cancers13030467. [PMID: 33530449 PMCID: PMC7865821 DOI: 10.3390/cancers13030467] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Microsatellite instability (MSI) is a hallmark of Lynch syndrome (LS)-related tumors but is not specific, as most of MSI/mismatch repair-deficient (dMMR) tumors are sporadic. Therefore, the identification of MSI/dMMR requires additional diagnostic tools to identify LS. In this review, we address the hallmarks of LS and present recent advances in diagnostic and screening strategies to identify LS patients. We also discuss the pitfalls associated with current strategies, which should be taken into account in order to improve the diagnosis of LS. Abstract Microsatellite instability (MSI) is a hallmark of Lynch syndrome (LS)-related tumors but is not specific to it, as approximately 80% of MSI/mismatch repair-deficient (dMMR) tumors are sporadic. Methods leading to the diagnosis of LS have considerably evolved in recent years and so have tumoral tests for LS screening and for the discrimination of LS-related to MSI-sporadic tumors. In this review, we address the hallmarks of LS, including the clinical, histopathological, and molecular features. We present recent advances in diagnostic and screening strategies to identify LS patients. We also discuss the pitfalls associated with the current strategies, which should be taken into account to improve the diagnosis of LS and avoid inappropriate clinical management.
Collapse
|
14
|
Gallon R, Gawthorpe P, Phelps RL, Hayes C, Borthwick GM, Santibanez-Koref M, Jackson MS, Burn J. How Should We Test for Lynch Syndrome? A Review of Current Guidelines and Future Strategies. Cancers (Basel) 2021; 13:406. [PMID: 33499123 PMCID: PMC7865939 DOI: 10.3390/cancers13030406] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
International guidelines for the diagnosis of Lynch syndrome (LS) recommend molecular screening of colorectal cancers (CRCs) to identify patients for germline mismatch repair (MMR) gene testing. As our understanding of the LS phenotype and diagnostic technologies have advanced, there is a need to review these guidelines and new screening opportunities. We discuss the barriers to implementation of current guidelines, as well as guideline limitations, and highlight new technologies and knowledge that may address these. We also discuss alternative screening strategies to increase the rate of LS diagnoses. In particular, the focus of current guidance on CRCs means that approximately half of Lynch-spectrum tumours occurring in unknown male LS carriers, and only one-third in female LS carriers, will trigger testing for LS. There is increasing pressure to expand guidelines to include molecular screening of endometrial cancers, the most frequent cancer in female LS carriers. Furthermore, we collate the evidence to support MMR deficiency testing of other Lynch-spectrum tumours to screen for LS. However, a reliance on tumour tissue limits preoperative testing and, therefore, diagnosis prior to malignancy. The recent successes of functional assays to detect microsatellite instability or MMR deficiency in non-neoplastic tissues suggest that future diagnostic pipelines could become independent of tumour tissue.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - John Burn
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; (P.G.); (R.L.P.); (C.H.); (G.M.B.); (M.S.-K.); (M.S.J.)
| |
Collapse
|