1
|
Guffanti F, Mengoli I, Alvisi MF, Dellavedova G, Giavazzi R, Fruscio R, Rulli E, Damia G. BRCA1 foci test as a predictive biomarker of olaparib response in ovarian cancer patient-derived xenograft models. Front Pharmacol 2024; 15:1390116. [PMID: 38989145 PMCID: PMC11234799 DOI: 10.3389/fphar.2024.1390116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/05/2024] [Indexed: 07/12/2024] Open
Abstract
Standard therapy for high-grade ovarian carcinoma includes surgery followed by platinum-based chemotherapy and poly-ADP ribose polymerase inhibitors (PARPis). Deficiency in homologous recombination repair (HRD) characterizes almost half of high-grade ovarian carcinomas and is due to genetic and epigenetic alterations in genes involved in HR repair, mainly BRCA1/BRCA2, and predicts response to PARPi. The academic and commercial tests set up to define the HRD status of the tumor rely on DNA sequencing analysis, while functional tests such as the RAD51 foci assay are currently under study, but have not been validated yet and are available for patients. In a well-characterized ovarian carcinoma patient-derived xenograft platform whose response to cisplatin and olaparib, a PARPi, is known, we assessed the association between the BRCA1 foci score, determined in formalin-fixed paraffin-embedded tumor slices with an immunofluorescence technique, and other HRD biomarkers and explored the potential of the BRCA1 foci test to predict tumors' response to cisplatin and olaparib. The BRCA1 foci score was associated with both tumors' HRD status and RAD51 foci score. A low BRCA1 foci score predicted response to olaparib and cisplatin, while a high score was associated with resistance to therapy. As we recently published that a low RAD51 foci score predicted olaparib sensitivity in our xenobank, we combined the two scores and showed that the predictive value was better than with the single tests. This study reports for the first time the capacity of the BRCA1 foci test to identify HRD ovarian carcinomas and possibly predict response to olaparib.
Collapse
Affiliation(s)
- Federica Guffanti
- Laboratory of Preclinical Gynaecological Oncology, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Mengoli
- Laboratory of Preclinical Gynaecological Oncology, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Maria Francesca Alvisi
- Laboratory of Methodology for Clinical Research, Clinical Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giulia Dellavedova
- Laboratory of Cancer Metastasis Therapeutics, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Raffaella Giavazzi
- Laboratory of Cancer Metastasis Therapeutics, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Robert Fruscio
- Clinic of Obstetrics and Gynecology, Department of Medicine and Surgery, San Gerardo Hospital, University of Milan Bicocca, Monza, Italy
| | - Eliana Rulli
- Laboratory of Methodology for Clinical Research, Clinical Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giovanna Damia
- Laboratory of Preclinical Gynaecological Oncology, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
2
|
Predicting Prognosis and Platinum Resistance in Ovarian Cancer: Role of Immunohistochemistry Biomarkers. Int J Mol Sci 2023; 24:ijms24031973. [PMID: 36768291 PMCID: PMC9916805 DOI: 10.3390/ijms24031973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023] Open
Abstract
Ovarian cancer is a lethal reproductive tumour affecting women worldwide. The advancement in presentation and occurrence of chemoresistance are the key factors for poor survival among ovarian cancer women. Surgical debulking was the mainstay of systemic treatment for ovarian cancer, which was followed by a successful start to platinum-based chemotherapy. However, most women develop platinum resistance and relapse within six months of receiving first-line treatment. Thus, there is a great need to identify biomarkers to predict platinum resistance before enrolment into chemotherapy, which would facilitate individualized targeted therapy for these subgroups of patients to ensure better survival and an improved quality of life and overall outcome. Harnessing the immune response through immunotherapy approaches has changed the treatment way for patients with cancer. The immune outline has emerged as a beneficial tool for recognizing predictive and prognostic biomarkers clinically. Studying the tumour microenvironment (TME) of ovarian cancer tissue may provide awareness of actionable targets for enhancing chemotherapy outcomes and quality of life. This review analyses the relevance of immunohistochemistry biomarkers as prognostic biomarkers in predicting chemotherapy resistance and improving the quality of life in ovarian cancer.
Collapse
|
3
|
Li H, Yang D, Xu Z, Yang L, Lin J, Cai J, Yang L. Metformin Sensitizes Cisplatin-induced Apoptosis Through Regulating
Nucleotide Excision Repair Pathway In Cisplatin-resistant Human Lung
Cancer Cells. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220330121135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Lung cancer is a leading cause of cancer death globally. Platinum-based chemotherapeutic
medications are essential for treating advanced NSCLC, despite that drug resistance severely
limits its effectiveness.
Objective:
In this study, we investigated the cytotoxic effect of metformin on cisplatin-resistant NSCLC
cells (A549/DDP) and its potential mechanisms.
Methods:
Anti-lung cancer efficacy of metformin, cisplatin, and metformin combined with cisplatin was
examined in A549 and A549/DDP cells. The cell counting kit-8 (CCK-8) assay was applied for measuring
cell proliferation. CalcuSyn software was used to calculate the combination index and estimate the
synergistic effect of metformin and cisplatin on cell proliferation. The cell apoptosis was analyzed by
flow cytometry and the expression of apoptosis-related proteins, Bcl-2, Bax and caspase-3 were analyzed
using Western blot. Futhermore, the expression of key nucleotide excision repair (NER) proteins,
ERCC1, XPF, and XPA, was also analyzed using Western blot.
Results:
We found that metformin had dose-dependent antiproliferative effects on A549/DDP and A549
cells. The combination of metformin and cisplatin had higher effectiveness in inhibiting A549/DDP and
A549 cell growth than either of the two drugs alone. Flow cytometry analysis indicated that the combined
treatment could cause more cell apoptosis than the single-drug treatment. Consistently, the combined
treatment decreased the expression of Bcl-2 protein and elevated the expression of Bax, and cleaved
caspase-3 proteins. The expression level of ERCC1, XPF, and XPA proteins were lower in the combined
treatment than in either of metformin and cisplatin treatment alone.
Conclusions:
Our study suggested that metformin and cisplatin had synergistic antitumorigenic effects in
A549/DDP cells. The combination of cisplatin and metformin could be promising drug candidates to
sensitize cisplatin-induced apoptosis through regulating nucleotide excision repair pathways in lung cancer.
Collapse
Affiliation(s)
- Haiwen Li
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Donghong Yang
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Zumin Xu
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Liu Yang
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Jiong Lin
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Jingyi Cai
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Li Yang
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| |
Collapse
|
4
|
Chilà R, Chiappa M, Guffanti F, Panini N, Conconi D, Rinaldi A, Cascione L, Bertoni F, Fratelli M, Damia G. Stable CDK12 Knock-Out Ovarian Cancer Cells Do Not Show Increased Sensitivity to Cisplatin and PARP Inhibitor Treatment. Front Oncol 2022; 12:903536. [PMID: 35912188 PMCID: PMC9328802 DOI: 10.3389/fonc.2022.903536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
Cyclin-dependent kinase 12 (CDK12) is a serine/threonine kinase involved in the regulation of RNA polymerase II and in the transcription of a subset of genes involved in the DNA damage response. CDK12 is one of the most mutated genes in ovarian carcinoma. These mutations result in loss-of-function and can predict the responses to PARP1/2 inhibitor and platinum. To investigate the role of CDK12 in ovarian cancer, CRISPR/Cas9 technology was used to generate a stable CDK12 knockout (KO) clone in A2780 ovarian carcinoma cells. This is the first report on a CDK12 null cell line. The clone had slower cell growth and was less clonogenic than parental cells. These data were confirmed in vivo, where CDK12 KO transplanted cells had a much longer time lag and slightly slower growth rate than CDK12-expressing cells. The slower growth was associated with a higher basal level of apoptosis, but there were no differences in the basal level of autophagy and senescence. While cell cycle distribution was similar in parental and knockout cells, there was a doubling in DNA content, with an almost double modal number of chromosomes in the CDK12 KO clone which, however did not display any increase in γH2AX, a marker of DNA damage. We found partial down-regulation of the expression of DNA repair genes at the mRNA level and, among the down-regulated genes, an enrichment in the G2/M checkpoint genes. Although the biological features of CDK12 KO cells are compatible with the function of CDK12, contrary to some reports, we could not find any difference in the sensitivity to cisplatin and olaparib between wild-type and CDK12 KO cells.
Collapse
Affiliation(s)
- Rosaria Chilà
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri Istituito di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Michela Chiappa
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri Istituito di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Federica Guffanti
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri Istituito di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Nicolò Panini
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Donatella Conconi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Andrea Rinaldi
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Luciano Cascione
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland
| | - Maddalena Fratelli
- Department of Biochemistry, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giovanna Damia
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri Istituito di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- *Correspondence: Giovanna Damia,
| |
Collapse
|
5
|
Affatato R, Chiappa M, Guffanti F, Ricci F, Formenti L, Fruscio R, Jaconi M, Ridinger M, Erlander M, Damia G. Onvansertib and paclitaxel combined in platinum-resistant ovarian carcinomas. Ther Adv Med Oncol 2022; 14:17588359221095064. [PMID: 35665077 PMCID: PMC9160919 DOI: 10.1177/17588359221095064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/31/2022] [Indexed: 11/17/2022] Open
Abstract
Background Ovarian carcinoma is extremely sensitive to (platinum-based) chemotherapy; however, most patients will relapse with platinum-resistant disease, badly affecting their prognosis. Effective therapies for relapsing resistant tumors are urgently needed. Methods We used patient-derived xenografts (PDXs) of ovarian carcinoma resistant to cisplatin (DDP) to test in vivo the combination of paclitaxel (15 mg/kg i.v. once a week for 3 weeks) and onvansertib, a plk1 inhibitor, (50 mg/kg orally 4 days a week for 3 weeks). The PDX models were subcutaneously (s.c.) or orthotopically transplanted in nude mice and antitumor efficacy was evaluated as tumor growth inhibition and survival advantages of the combination over untreated and single agent treatment. Results The combination of onvansertib and paclitaxel was very well tolerated with weight loss no greater than 15% in the combination group compared with the control group. In the orthotopically transplanted PDXs, single onvansertib and paclitaxel treatments prolonged survival; however, the combined treatment was much more active, with median survival from three- to six-fold times that of untreated mice. Findings were similar with the s.c. transplanted PDX, though there was greater heterogeneity in tumor response. Ex vivo tumors treated with the combination showed greater induction of γH2AX, marker of apoptosis and DNA damage, and pSer10H3, a marker of mitotic block. Conclusion The efficacy of onvansertib and paclitaxel combination in these preclinical ovarian cancer models supports the clinical translatability of this combination as an effective therapeutic approach for platinum-resistant high-grade ovarian carcinoma.
Collapse
Affiliation(s)
- Roberta Affatato
- Laboratory of Molecular Pharmacology, Department of Oncology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Michela Chiappa
- Laboratory of Molecular Pharmacology, Department of Oncology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Federica Guffanti
- Laboratory of Molecular Pharmacology, Department of Oncology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Francesca Ricci
- Laboratory of Molecular Pharmacology, Department of Oncology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Laura Formenti
- Laboratory of Cancer Metastasis Therapeutics, Department of Oncology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Robert Fruscio
- Clinic of Obstetrics and Gynecology, Department of Medicine and Surgery, San Gerardo Hospital, University of Milan Bicocca, Monza, Italy
| | - Marta Jaconi
- Department of Pathology, San Gerardo Hospital, Monza, Italy
| | | | | | - Giovanna Damia
- Laboratory of Molecular Pharmacology, Department of Oncology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, Milan 20157, Italy
| |
Collapse
|
6
|
Molecular Mechanisms of Cancer Drug Resistance: Emerging Biomarkers and Promising Targets to Overcome Tumor Progression. Cancers (Basel) 2022; 14:cancers14071614. [PMID: 35406386 PMCID: PMC8997078 DOI: 10.3390/cancers14071614] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer still represents a major global burden, being the second leading cause of death worldwide [...].
Collapse
|
7
|
Guffanti F, Alvisi MF, Anastasia A, Ricci F, Chiappa M, Llop-Guevara A, Serra V, Fruscio R, Degasperi A, Nik-Zainal S, Bani MR, Lupia M, Giavazzi R, Rulli E, Damia G. Basal expression of RAD51 foci predicts olaparib response in patient-derived ovarian cancer xenografts. Br J Cancer 2022; 126:120-128. [PMID: 34732853 PMCID: PMC8727677 DOI: 10.1038/s41416-021-01609-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/07/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The search for biomarkers to evaluate ovarian cancer (OC) homologous recombination (HR) function and predict the response to therapy is an urgent clinical need to improve the selection of patients who could benefit from platinum- and olaparib (poly-ADP ribose polymerase inhibitors, PARPi)-based therapies. METHODS We used a large collection of OC patient-derived xenografts (PDXs) (n = 47) and evaluated their HR status based on BRCA1/2 mutations, BRCA1 promoter methylation and the HRDetect score. RAD51 foci were quantified in formalin-fixed, paraffin-embedded untreated tumour specimens by immunofluorescence and the messenger RNA expression of 21 DNA repair genes by real-time PCR. RESULTS Tumour HR deficiency predicted both platinum and olaparib responses. The basal level of RAD51 foci evaluated in geminin-positive/replicating cells strongly inversely correlated with olaparib response (p = 0.011); in particular, the lower the foci score, the greater the sensitivity to olaparib, while low RAD51 foci score seems to associate with platinum activity. CONCLUSIONS The basal RAD51 foci score is a candidate predictive biomarker of olaparib response in OC patients as it can be easily translatable in a clinical setting. Moreover, the findings corroborate the importance of OC-PDXs as a reliable tool to identify and validate biomarkers of response to therapy.
Collapse
Affiliation(s)
- F. Guffanti
- grid.4527.40000000106678902Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - M F Alvisi
- grid.4527.40000000106678902Laboratory of Methodology for Clinical Research, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - A. Anastasia
- grid.4527.40000000106678902Laboratory of Cancer Metastasis Therapeutics, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - F. Ricci
- grid.4527.40000000106678902Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - M. Chiappa
- grid.4527.40000000106678902Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - A. Llop-Guevara
- grid.411083.f0000 0001 0675 8654Experimental Therapeutics Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - V. Serra
- grid.411083.f0000 0001 0675 8654Experimental Therapeutics Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - R. Fruscio
- grid.7563.70000 0001 2174 1754Clinic of Obstetrics and Gynecology, Department of Medicine and Surgery, San Gerardo Hospital, University of Milan Bicocca, Monza, Italy
| | - A. Degasperi
- grid.5335.00000000121885934MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ UK ,grid.120073.70000 0004 0622 5016Academic Laboratory of Medical Genetics, Lv 6 Addenbrooke’s Treatment Centre, Addenbrooke’s Hospital, Box 238, Cambridge, CB2 0QQ UK
| | - S. Nik-Zainal
- grid.5335.00000000121885934MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ UK ,grid.120073.70000 0004 0622 5016Academic Laboratory of Medical Genetics, Lv 6 Addenbrooke’s Treatment Centre, Addenbrooke’s Hospital, Box 238, Cambridge, CB2 0QQ UK
| | - M R Bani
- grid.4527.40000000106678902Laboratory of Cancer Metastasis Therapeutics, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - M. Lupia
- grid.15667.330000 0004 1757 0843Unit of Gynecological Oncology Research, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - R. Giavazzi
- grid.4527.40000000106678902Laboratory of Cancer Metastasis Therapeutics, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - E. Rulli
- grid.4527.40000000106678902Laboratory of Methodology for Clinical Research, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - G. Damia
- grid.4527.40000000106678902Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
8
|
O GS, R DD, V AT, I AI, P GT. The Plasticity of Circulating Tumor Cells in Ovarian Cancer During Platinum-containing Chemotherapy. Curr Cancer Drug Targets 2021; 21:965-974. [PMID: 34288839 DOI: 10.2174/1568009621666210720141229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Circulating tumor cells (CTCs) are a potential source of metastases and relapses. The data on the ovarian cancer (OC) CTCs molecular characteristics are limited. OBJECTIVE To assess the TGFβ, CXCL2, VEGFA and ERCC1 expression in two OC CTC subpopulations before and during chemotherapy (CT), and its relation to clinical characteristics. METHODS Two CTCs subpopulations (EpCAM+CK18+E-cadherin+; EpCAM+CK18+Vimentin+) were enriched using immunomagnetic separation before treatment and after 3 cycles of platinum-containing CT. Expression of mRNA was assessed using RT-qPCR. RESULTS The study included 31 I-IV stage OC patients. During CT, TGFβ levels increased in both fractions (p=0.054) compared with the initial levels. ERCC1 expression in E-cadherin+ CTCs was higher during neoadjuvant than adjuvant CT (p=0.004). CXCL2 level in E-cadherin+ CTCs increased (p=0.038) during neoadjuvant CT compared with the initial. TGF-β expression in vimentin+ CTCs during CT was negatively correlated to disease stage (p=0.003). Principal component analysis before CT revealed a component combining VEGFA, TGFβ, CXCL2, and a component with ERCC1 and VEGFA; during CT, component 1 contained ERCC1 and VEGFA, component 2 - TGFβ and CXCL2 in both fractions. Increased ERCC1 expression in E-cadherin+ CTCs during CT was associated with decreased progression-free survival (PFS) (HR 1.11 (95% CI 1.03-1.21, p=0.009) in multivariate analysis. CONCLUSION EpCAM+ OC CTCs are phenotypically heterogeneous, which may reflect variability in their metastatic potential. CT changes the molecular characteristics of CTCs. Expression of TGFβ in EpCAM+ CTCs increases during CT. High ERCC1 expression in EpCAM+CK18+E-cadherin+ CTCs during CT is associated with decreased PFS in OC.
Collapse
Affiliation(s)
- Gening Snezhanna O
- Department of Human Physiology and Pathophysiology, Faculty of Medicine, Ulyanovsk State University, Ulyanovsk, Russian Federation
| | - Dolgova Dinara R
- Department of Human Physiology and Pathophysiology, Faculty of Medicine, Ulyanovsk State University, Ulyanovsk, Russian Federation
| | - Abakumova Tatyana V
- Department of Human Physiology and Pathophysiology, Faculty of Medicine, Ulyanovsk State University, Ulyanovsk, Russian Federation
| | - Antoneeva Inna I
- Department of Gynecology, Regional Clinical Oncology Center, Ulyanovsk, Russian Federation
| | - Gening Tatyana P
- Department of Human Physiology and Pathophysiology, Faculty of Medicine, Ulyanovsk State University, Ulyanovsk, Russian Federation
| |
Collapse
|
9
|
Ganzinelli M, Linardou H, Alvisi MF, Caiola E, Lo Russo G, Cecere FL, Bettini AC, Psyrri A, Milella M, Rulli E, Fabbri A, De Maglie M, Romanelli P, Murray S, Broggini M, Marabese M, Garassino MC. Single-arm, open label prospective trial to assess prediction of the role of ERCC1/XPF complex in the response of advanced NSCLC patients to platinum-based chemotherapy. ESMO Open 2021; 6:100034. [PMID: 33422766 PMCID: PMC7809372 DOI: 10.1016/j.esmoop.2020.100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/24/2020] [Accepted: 12/06/2020] [Indexed: 11/05/2022] Open
Abstract
Background Platinum-based therapy, combined or not with immune checkpoint inhibitors, represents a front-line choice for patients with non-small-cell lung cancer (NSCLC). Despite the improved outcomes in the last years for this malignancy, only a sub-group of patients have long-term benefit. Excision repair cross-complementation group 1 (ERCC1) has been considered a potential biomarker to predict the outcome of platinum-based chemotherapy in NSCLC. However, the ERCC1 gene is transcribed in four splice variants where the isoform 202 was described as the only one active and able to complex Xeroderma pigmentosum group F-complementing protein (XPF). Here, we prospectively investigated if the active form of ERCC1, as assessed by the ERCC1/XPF complex (ERCC1/XPF), could predict the sensitivity to platinum compounds. Patients and methods Prospectively enrolled, patients with advanced NSCLC treated with a first-line regimen containing platinum were centrally evaluated for ERCC1/XPF by a proximity ligation assay. Overall survival (OS), progression-free survival (PFS) and objective response rate (ORR) were analyzed. Results The absence of the ERCC1/XPF in the tumor suggested a trend of worst outcomes in terms of both OS [hazard ratio (HR) 1.41, 95% confidence interval (CI) 0.67-2.94, P = 0.373] and PFS (HR 1.61, 95% CI 0.88-3.03, P = 0.123). ORR was marginally influenced in ERCC1/XPF-negative and -positive groups [odds ratio (stable disease + progressive disease versus complete response + partial response) 0.87, 95% CI 0.25-3.07, P = 0.832]. Conclusion The lack of ERCC1/XPF complex in NSCLC tumor cells might delineate a group of patients with poor outcomes when treated with platinum compounds. ERCC1/XPF absence might well identify patients for whom a different therapeutic approach could be necessary. This is the first study investigating the ERCC1/XPF complex as a platinum-based therapy response biomarker in NSCLC. The lack of ERCC1/XPF complex might delineate a group of patients with poor outcomes when treated with platinum compounds. ERCC1/XPF absence might identify tumors for whom a different therapeutic approach than platinum compounds could be necessary.
Collapse
Affiliation(s)
- M Ganzinelli
- Unit of Thoracic Oncology, Medical Oncology Department 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - H Linardou
- 4th Oncology Department, Metropolitan Hospital, Athens, Greece
| | - M F Alvisi
- Laboratory of Methodology for Clinical Research, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - E Caiola
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - G Lo Russo
- Unit of Thoracic Oncology, Medical Oncology Department 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - F L Cecere
- Division of Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - A C Bettini
- UO Oncologia Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - A Psyrri
- Section of Oncology, Department of Internal Medicine, Attikon Hospital, National Kapodistrian University of Athens, Athens, Greece
| | - M Milella
- Department of Medicine, Section of Medical Oncology, University and Hospital Trust of Verona, Verona, Italy
| | - E Rulli
- Laboratory of Methodology for Clinical Research, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - A Fabbri
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - M De Maglie
- Mouse and Animal Pathology Lab, Fondazione Filarete, Milan, Italy; Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - P Romanelli
- Mouse and Animal Pathology Lab, Fondazione Filarete, Milan, Italy; Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - S Murray
- Biomarker Solutions Ltd, London, UK
| | - M Broggini
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| | - M Marabese
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - M C Garassino
- Unit of Thoracic Oncology, Medical Oncology Department 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|