1
|
Berasain C. New Insights and Open Questions on the Molecular and Cellular Crosstalk Governing Hepatocyte Proliferation. Cell Mol Gastroenterol Hepatol 2025:101509. [PMID: 40245923 DOI: 10.1016/j.jcmgh.2025.101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Accepted: 03/20/2025] [Indexed: 04/19/2025]
Affiliation(s)
- Carmen Berasain
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), Madrid, Spain.
| |
Collapse
|
2
|
Liu X, Zhang R, Liu L, Zhi S, Feng X, Shen Y, Wang L, Zhang Q, Chen Y, Hao J. Sohlh2 Promotes the Progression of Hepatocellular Carcinoma via TGM2-Mediated Autophagy. Mol Carcinog 2025; 64:138-151. [PMID: 39436118 DOI: 10.1002/mc.23832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/02/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024]
Abstract
Liver cancer is the third leading cause of cancer-related deaths worldwide, with hepatocellular carcinoma (HCC) accounting for 85% of liver cancer-related deaths. Autophagy controls HCC cell growth, invasion, metastasis, drug resistance, and stemness. Spermatogenesis and oogenesis basic helix-loop-helix transcription factor 2 (Sohlh2) can bind to the E-boxes in the promoter regions of target genes, which are involved in multiple neoplasms. In this study, Sohlh2 was highly expressed in HCC tissues and was related to poor prognosis. Moreover, Sohlh2 overexpression promoted the proliferation, migration, invasion, and metastasis of HCC cells in vivo and in vitro. However, Sohlh2 silencing inhibited proliferation, migration, invasion, and metastasis of HCC cells in vivo and in vitro. Mechanistically, Sohlh2 could bind to the promoter of TGM2 and enhance its transcriptional activity, thereby enhancing the autophagy of HCC cells. Furthermore, Sohlh2 protein levels were positively associated with TGM2 expression in HCC tissues. Taken together, these results demonstrate that Sohlh2 can promote HCC progression via TGM2-mediated autophagy, implying that Sohlh2 is a promising candidate for HCC treatment.
Collapse
Affiliation(s)
- Xuyue Liu
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ruihong Zhang
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lanlan Liu
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Sujuan Zhi
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoning Feng
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ying Shen
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Liyan Wang
- Research Center for Medical and Structural Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qi Zhang
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yanru Chen
- Liver Transplantation Center, Clinical Research Center for Pediatric Liver Transplantation, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing Hao
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
3
|
Baird L, Yamamoto M. Immunoediting of KEAP1-NRF2 mutant tumours is required to circumvent NRF2-mediated immune surveillance. Redox Biol 2023; 67:102904. [PMID: 37839356 PMCID: PMC10590843 DOI: 10.1016/j.redox.2023.102904] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023] Open
Abstract
In human cancer, activating mutations in the KEAP1-NRF2 pathway are frequently observed, and positively selected for, as they confer the cytoprotective functions of the transcription factor NRF2 on the cancer cells. This results in the development of aggressive tumours which are resistant to treatment with chemotherapeutic compounds. Recent clinical developments have also revealed that NRF2-activated cancers are similarly resistant to immune checkpoint inhibitor drugs. As the mechanism of action of these immune modulating therapies is tangential to the classical cytoprotective function of NRF2, it is unclear how aberrant NRF2 activity could impact the anti-cancer functionality of the immune system. In this context, we found that in human cancer, NRF2-activated cells are highly immunoedited, which allows the cancer cells to escape immune surveillance and develop into malignant tumours. This immunoediting takes the form of reduced antigen presentation by the MHC-I complex, coupled with reduced expression of activating ligands for NK cells. Together, these modifications to the immunogenicity of NRF2-activated cancers inhibit immune effector cell infiltration and engagement, and contribute to the formation of the immunologically cold tumour microenvironment which is a characteristic feature of NRF2-activated cancers.
Collapse
Affiliation(s)
- Liam Baird
- Department of Biochemistry and Molecular Biology, Tohoku University, Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai 980-8575, Japan.
| | - Masayuki Yamamoto
- Department of Biochemistry and Molecular Biology, Tohoku University, Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai 980-8575, Japan.
| |
Collapse
|
4
|
SOCS1 Deficiency Promotes Hepatocellular Carcinoma via SOCS3-Dependent CDKN1A Induction and NRF2 Activation. Cancers (Basel) 2023; 15:cancers15030905. [PMID: 36765862 PMCID: PMC9913612 DOI: 10.3390/cancers15030905] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
SOCS1 deficiency, which increases susceptibility to hepatocellular carcinoma (HCC), promotes CDKN1A expression in the liver. High CDKN1A expression correlates with disease severity in many cancers. Here, we demonstrate a crucial pathogenic role of CDKN1A in diethyl nitrosamine (DEN)-induced HCC in SOCS1-deficient mice. Mechanistic studies on DEN-induced genotoxic response revealed that SOCS1-deficient hepatocytes upregulate SOCS3 expression, SOCS3 promotes p53 activation, and Cdkn1a induction that were abolished by deleting either Socs3 or Tp53. Previous reports implicate CDKN1A in promoting oxidative stress response mediated by NRF2, which is required for DEN-induced hepatocarcinogenesis. We show increased induction of NRF2 and its target genes in SOCS1-deficient livers following DEN treatment that was abrogated by the deletion of either Cdkn1a or Socs3. Loss of SOCS3 in SOCS1-deficient mice reduced the growth of DEN-induced HCC without affecting tumor incidence. In the TCGA-LIHC dataset, the SOCS1-low/SOCS3-high subgroup displayed increased CDKN1A expression, enrichment of NRF2 transcriptional signature, faster disease progression, and poor prognosis. Overall, our findings show that SOCS1 deficiency in hepatocytes promotes compensatory SOCS3 expression, p53 activation, CDKN1A induction, and NRF2 activation, which can facilitate cellular adaptation to oxidative stress and promote neoplastic growth. Thus, the NRF2 pathway represents a potential therapeutic target in SOCS1-low/SOCS3-high HCC cases.
Collapse
|
5
|
Sheng Y, Sun Y, Tang Y, Yu Y, Wang J, Zheng F, Li Y, Sun Y. Catechins: Protective mechanism of antioxidant stress in atherosclerosis. Front Pharmacol 2023; 14:1144878. [PMID: 37033663 PMCID: PMC10080012 DOI: 10.3389/fphar.2023.1144878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/15/2023] [Indexed: 04/11/2023] Open
Abstract
Tea has long been valued for its health benefits, especially its potential to prevent and treat atherosclerosis (AS). Abnormal lipid metabolism and oxidative stress are major factors that contribute to the development of AS. Tea, which originated in China, is believed to help prevent AS. Research has shown that tea is rich in catechins, which is considered a potential source of natural antioxidants. Catechins are the most abundant antioxidants in green tea, and are considered to be the main compound responsible for tea's antioxidant activity. The antioxidant properties of catechins are largely dependent on the structure of molecules, and the number and location of hydroxyl groups or their substituents. As an exogenous antioxidant, catechins can effectively eliminate lipid peroxidation products. They can also play an antioxidant role indirectly by activating the endogenous antioxidant system by regulating enzyme activity and signaling pathways. In this review, we summarized the preventive effect of catechin in AS, and emphasized that improving the antioxidant effect and lipid metabolism disorders of catechins is the key to managing AS.
Collapse
Affiliation(s)
| | - Yizhuo Sun
- *Correspondence: Fengjie Zheng, ; Yuhang Li, ; Yan Sun,
| | | | | | | | - Fengjie Zheng
- *Correspondence: Fengjie Zheng, ; Yuhang Li, ; Yan Sun,
| | - Yuhang Li
- *Correspondence: Fengjie Zheng, ; Yuhang Li, ; Yan Sun,
| | - Yan Sun
- *Correspondence: Fengjie Zheng, ; Yuhang Li, ; Yan Sun,
| |
Collapse
|
6
|
Aslaminabad R, Rahimianshahreza N, Hosseini SA, Armagan G, Khan AK, Özbolat G, Ahmed OS, Mardi Azar A, Adili A, Dağcı T, Konyalıoğlu S, Özgönül AM. Regulation of Nrf2 and Nrf2-related proteins by ganoderma lucidum ın hepatocellular carcinoma. Mol Biol Rep 2022; 49:9605-9612. [PMID: 36038810 DOI: 10.1007/s11033-022-07862-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND HCC is among the most common cancer. Ganoderma lucidum (G.lucidum) has been essential in preventing and treating cancer. The Nrf2 signaling cascade is a cell protective mechanism against further damage, such as cancer development. This signaling pathway upregulates the cytoprotective genes and is vital in eliminating xenobiotics and reactive oxygen. This study aimed to show the potential cytotoxic activity of G. lucidum aqueous extract in HCC. METHODS AND RESULTS MTT assay was used to detect cell viability. Nrf2-related proteins were measured by western blotting, and the flow cytometry method assayed cell population in different cycle phases. Cell viability was 49% and 47% following G. lucidum extract at 100 µg/ml at 24 and 48 h treatments, respectively. G. lucidum extract (aqueous, 100 or 50 µg/ml) treatments for 24, 48, or 72 h were able to significantly change the cytoplasmic/nuclear amount of Nrf2 and HO-1, NQO1 protein levels. Moreover, at both concentrations, arrest of the G0/G1 cell cycle was stimulated in HCC. CONCLUSIONS The activation of the Nrf2 signaling pathways seems to be among the mechanisms underlining the protective and therapeutic action of G. lucidum against HCC.
Collapse
Affiliation(s)
- Ramin Aslaminabad
- Department of Biochemistry, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey.
| | - Negin Rahimianshahreza
- Department of Pharmacology and Toxicology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Amirhossein Hosseini
- Department of Genetics, Faculty of Basic Sciences, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Güliz Armagan
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | - Ahmad Kashif Khan
- Department of Biochemistry, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey
| | | | - Omar Saad Ahmed
- Department of Physical Education and Sports Sciences, Al-Turath University College, Baghdad, Iraq
| | - Amir Mardi Azar
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Adili
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, Tampa, FL, USA.,Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taner Dağcı
- Department of Physiology, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey
| | - Sibel Konyalıoğlu
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | - Ali Mert Özgönül
- Department of Biochemistry, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey.
| |
Collapse
|
7
|
p62 Promotes Survival and Hepatocarcinogenesis in Mice with Liver-Specific NEMO Ablation. Cancers (Basel) 2022; 14:cancers14102436. [PMID: 35626041 PMCID: PMC9139637 DOI: 10.3390/cancers14102436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Chronic liver injury is a predisposing factor for hepatocellular carcinoma (HCC) development. p62-mediated Nrf2 overactivation has been shown to drive liver injury and HCC in mice with hepatic impairment of autophagy. Here, we addressed the role of this pathway in a liver disease mouse model that does not exhibit inherent autophagy defect. Genetically-induced Nrf2 overactivation without concomitant strong increase in p62 expression did not aggravate liver injury and hepatocarcinogenesis. In contrast, p62-driven Nrf2 overactivation was prominent in liver tumors of mice that expressed a p62 mutant and showed enhanced hepatocarcinogenesis. Moreover, a negative correlation was observed between p62/Nrf2high liver tumors and the autophagosome marker LC3, suggesting that acquired autophagy defects precede the activation of this pro-tumorigenic pathway. Our results suggest that autophagy activators or Nrf2 inhibitors could be considered therapeutically in cases of p62/Nrf2high liver tumors. Abstract SQSTM1/p62 is a multitasking protein that functions as an autophagy receptor, but also as a signaling hub regulating diverse cellular pathways. p62 accumulation in mice with autophagy-deficient hepatocytes mediates liver damage and hepatocarcinogenesis through Nrf2 overactivation, yet the role of the p62-Keap1-Nrf2 axis in cell death and hepatocarcinogenesis in the absence of underlying autophagy defects is less clear. Here, we addressed the role of p62 and Nrf2 activation in a chronic liver disease model, namely mice with liver parenchymal cell-specific knockout of NEMO (NEMOLPC-KO), in which we demonstrate that they show no inherent autophagy impairment. Unexpectedly, systemic p62 ablation aggravated the phenotype and caused early postnatal lethality in NEMOLPC-KO mice. Expression of a p62 mutant (p62ΔEx2-5), which retains the ability to form aggregates and activate Nrf2 signaling, did not cause early lethality, but exacerbated hepatocarcinogenesis in these mice. Our immunohistological and molecular analyses showed that the increased tumor burden was only consistent with increased expression/stability of p62ΔEx2-5 driving Nrf2 hyperactivation, but not with other protumorigenic functions of p62, such as mTOR activation, cMYC upregulation or increased fibrosis. Surprisingly, forced activation of Nrf2 per se did not increase liver injury or tumor burden in NEMOLPC-KO mice, suggesting that autophagy impairment is a necessary prerequisite to unleash the Nrf2 oncogenic potential in mice with autophagy-competent hepatocytes.
Collapse
|
8
|
Selvaggi F, Catalano T, Cotellese R, Aceto GM. Targeting Wnt/β-Catenin Pathways in Primary Liver Tumours: From Microenvironment Signaling to Therapeutic Agents. Cancers (Basel) 2022; 14:1912. [PMID: 35454818 PMCID: PMC9024538 DOI: 10.3390/cancers14081912] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 12/17/2022] Open
Abstract
Primary liver cancers (PLCs) are steadily increasing in incidence and mortality in the world. They have a poor prognosis due to their silent nature, late discovery and resistance to common chemotherapy. At present, there are limited treatment alternatives, and the understanding of PLC molecular aspects is essential to develop more efficient drugs and therapeutic surgical and loco-regional strategies. A clear causal link with liver damage, inflammation, and regeneration has been found in the occurrence of PLC over the last few decades. Physiologically, Wingless/It (Wnt)-β-catenin signaling plays a key role in liver development, metabolic zonation and regeneration. Loss of functional homeostasis of this pathway appears to be a major driver of carcinogenesis in the liver parenchyma. In the hepatic microenvironment, molecular deregulations that exceed the Wnt signaling biological capacity can induce tumor initiation and progression. Indeed, somatic mutations are identified in key components of canonical and non-canonical Wnt signaling and in PLCs and precancerous lesions. In this review, the altered functions of Wnt/β-catenin signaling are considered in human PLCs, with emphasis on hepatocellular carcinomas (HCC), cholangiocarcinomas (CCA) and hepatoblastomas (HB). Based on recent literature, we also focused on liver cancerogenesis through Wnt deregulation. An overview of preclinical and clinical studies on approved and experimental drugs, targeting the Wnt/β-catenin cascade in PLCs, is proposed. In addition, the clinical implication of molecule inhibitors that have been shown to possess activity against the Wnt pathway in association with conventional surgical and loco-regional therapies are reviewed.
Collapse
Affiliation(s)
- Federico Selvaggi
- Unit of General Surgery, Ospedale Floraspe Renzetti, 66034 Lanciano, Chieti, Italy;
| | - Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Roberto Cotellese
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
- Villa Serena Foundation for Research, 65013 Città Sant’Angelo, Pescara, Italy
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| |
Collapse
|
9
|
Drug Resistance and Endoplasmic Reticulum Stress in Hepatocellular Carcinoma. Cells 2022; 11:cells11040632. [PMID: 35203283 PMCID: PMC8870354 DOI: 10.3390/cells11040632] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and deadly cancers worldwide. It is usually diagnosed in an advanced stage and is characterized by a high intrinsic drug resistance, leading to limited chemotherapeutic efficacy and relapse after treatment. There is therefore a vast need for understanding underlying mechanisms that contribute to drug resistance and for developing therapeutic strategies that would overcome this. The rapid proliferation of tumor cells, in combination with a highly inflammatory microenvironment, causes a chronic increase of protein synthesis in different hepatic cell populations. This leads to an intensified demand of protein folding, which inevitably causes an accumulation of misfolded or unfolded proteins in the lumen of the endoplasmic reticulum (ER). This process is called ER stress and triggers the unfolded protein response (UPR) in order to restore protein synthesis or—in the case of severe or prolonged ER stress—to induce cell death. Interestingly, the three different arms of the ER stress signaling pathways have been shown to drive chemoresistance in several tumors and could therefore form a promising therapeutic target. This review provides an overview of how ER stress and activation of the UPR contributes to drug resistance in HCC.
Collapse
|
10
|
Dietary Regulation of Oxidative Stress in Chronic Metabolic Diseases. Foods 2021; 10:foods10081854. [PMID: 34441631 PMCID: PMC8391153 DOI: 10.3390/foods10081854] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress is a status of imbalance between oxidants and antioxidants, resulting in molecular damage and interruption of redox signaling in an organism. Indeed, oxidative stress has been associated with many metabolic disorders due to unhealthy dietary patterns and may be alleviated by properly increasing the intake of antioxidants. Thus, it is quite important to adopt a healthy dietary mode to regulate oxidative stress and maintain cell and tissue homeostasis, preventing inflammation and chronic metabolic diseases. This review focuses on the links between dietary nutrients and health, summarizing the role of oxidative stress in ‘unhealthy’ metabolic pathway activities in individuals and how oxidative stress is further regulated by balanced diets.
Collapse
|
11
|
Beeraka NM, Bovilla VR, Doreswamy SH, Puttalingaiah S, Srinivasan A, Madhunapantula SV. The Taming of Nuclear Factor Erythroid-2-Related Factor-2 (Nrf2) Deglycation by Fructosamine-3-Kinase (FN3K)-Inhibitors-A Novel Strategy to Combat Cancers. Cancers (Basel) 2021; 13:cancers13020281. [PMID: 33466626 PMCID: PMC7828646 DOI: 10.3390/cancers13020281] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Aim of this review is to provide an overview on (a) Fructosamine-3-Kinase (FN3K) and its role in regulating Nuclear Factor Erythorid-2-Related Factor-2 (Nrf2); (b) the role of glycation and deglycation mechanisms in modulating the functional properties of proteins, in particular, the Nrf2; (c) the dual role of Nrf2 in the prevention and treatment of cancers. Since controlling the glycation of Nrf2 is one of the key mechanisms determining the fate of a cell; whether to get transformed into a cancerous one or to stay as a normal one, it is important to regulate Nrf2 and deglycating FN3K using pharmacological agents. Inhibitors of FN3K are being explored currently to modulate Nrf2 activity thereby control the cancers. Abstract Glycated stress is mediated by the advanced glycation end products (AGE) and the binding of AGEs to the receptors for advanced glycation end products (RAGEs) in cancer cells. RAGEs are involved in mediating tumorigenesis of multiple cancers through the modulation of several downstream signaling cascades. Glycated stress modulates various signaling pathways that include p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor kappa–B (NF-κB), tumor necrosis factor (TNF)-α, etc., which further foster the uncontrolled proliferation, growth, metastasis, angiogenesis, drug resistance, and evasion of apoptosis in several cancers. In this review, a balanced overview on the role of glycation and deglycation in modulating several signaling cascades that are involved in the progression of cancers was discussed. Further, we have highlighted the functional role of deglycating enzyme fructosamine-3-kinase (FN3K) on Nrf2-driven cancers. The activity of FN3K is attributed to its ability to deglycate Nrf2, a master regulator of oxidative stress in cells. FN3K is a unique protein that mediates deglycation by phosphorylating basic amino acids lysine and arginine in various proteins such as Nrf2. Deglycated Nrf2 is stable and binds to small musculoaponeurotic fibrosarcoma (sMAF) proteins, thereby activating cellular antioxidant mechanisms to protect cells from oxidative stress. This cellular protection offered by Nrf2 activation, in one way, prevents the transformation of a normal cell into a cancer cell; however, in the other way, it helps a cancer cell not only to survive under hypoxic conditions but also, to stay protected from various chemo- and radio-therapeutic treatments. Therefore, the activation of Nrf2 is similar to a double-edged sword and, if not controlled properly, can lead to the development of many solid tumors. Hence, there is a need to develop novel small molecule modulators/phytochemicals that can regulate FN3K activity, thereby maintaining Nrf2 in a controlled activation state.
Collapse
Affiliation(s)
- Narasimha M. Beeraka
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
| | - Venugopal R. Bovilla
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
- Public Health Research Institute of India (PHRII), Mysuru, Karnataka 570020, India
| | - Shalini H. Doreswamy
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
| | - Sujatha Puttalingaiah
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
| | - Asha Srinivasan
- Division of Nanoscience and Technology, Faculty of Life Sciences, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India;
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
- Special Interest Group in Cancer Biology and Cancer Stem Cells, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India
- Correspondence: ; Tel.: +91-810-527-8621
| |
Collapse
|
12
|
Burgos RA, Alarcón P, Quiroga J, Manosalva C, Hancke J. Andrographolide, an Anti-Inflammatory Multitarget Drug: All Roads Lead to Cellular Metabolism. Molecules 2020; 26:molecules26010005. [PMID: 33374961 PMCID: PMC7792620 DOI: 10.3390/molecules26010005] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022] Open
Abstract
Andrographolide is a labdane diterpene and the main active ingredient isolated from the herb Andrographis paniculata. Andrographolide possesses diverse biological effects including anti-inflammatory, antioxidant, and antineoplastic properties. Clinical studies have demonstrated that andrographolide could be useful in therapy for a wide range of diseases such as osteoarthritis, upper respiratory diseases, and multiple sclerosis. Several targets are described for andrographolide, including the interference of transcription factors NF-κB, AP-1, and HIF-1 and signaling pathways such as PI3K/Akt, MAPK, and JAK/STAT. In addition, an increase in the Nrf2 (nuclear factor erythroid 2–related factor 2) signaling pathway also supports its antioxidant and anti-inflammatory properties. However, this scenario could be more complex since recent evidence suggests that andrographolide targets can modulate glucose metabolism. The metabolic effect of andrographolide might be the key to explaining the diverse therapeutic effects described in preclinical and clinical studies. This review discusses some of the most recent evidence about the anti-inflammatory and metabolic effects of andrographolide.
Collapse
Affiliation(s)
- Rafael Agustín Burgos
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.A.); (J.Q.); (J.H.)
- Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
- Correspondence: ; Tel.: +56-63-2293-015
| | - Pablo Alarcón
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.A.); (J.Q.); (J.H.)
- Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - John Quiroga
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.A.); (J.Q.); (J.H.)
- Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
- PhD Program in Veterinary Sciences, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Carolina Manosalva
- Faculty of Sciences, Institute of Pharmacy, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Juan Hancke
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.A.); (J.Q.); (J.H.)
| |
Collapse
|