1
|
Del Vecchio V, Sanchez-Pajares IR, Panda SK, Rehman A, De Falco V, Nigam A, Mosca L, Russo D, Arena C, Nicoletti MM, Desiderio V, Papaccio G, Mele L, Laino L. Xanthohumol modulate autophagy and ER stress to counteract stemness and enhance cisplatin efficacy in head and neck squamous cell carcinoma. Sci Rep 2025; 15:13137. [PMID: 40240816 PMCID: PMC12003764 DOI: 10.1038/s41598-025-98003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 04/08/2025] [Indexed: 04/18/2025] Open
Abstract
Natural compounds have been increasingly investigated for their efficient anti-cancer activity. Xanthohumol (XN), a flavonoid derived from hops, has shown promise in preclinical studies for various cancers due to its unique biological properties. This study investigates the effects of XN and a cost-effective hop extract (HOP EX) on head and neck squamous cell carcinoma (HNSCC), focusing on their potential to modulate cancer stemness and enhance the efficacy of Cisplatin chemotherapy. Using a combination of flow cytometry, qPCR, and cellular assays, we assessed the impact of XN and HOP EX on cell viability, stemness, and chemoresistance in HNSCC cell lines. Further, we explored the underlying mechanisms by examining the induction of apoptosis, ER stress, and autophagy activation. Our findings demonstrate that both XN and HOP EX significantly decrease cell viability and stemness in HNSCC cells and enhance the cytotoxic effects of Cisplatin, suggesting a synergistic interaction. Mechanistically, we identified that the induction of ER stress and subsequent activation of the unfolded protein response (UPR) promote autophagy, leading to increased apoptosis. By modulating key cellular pathways such as ER stress and autophagy, these natural compounds could be developed into supportive treatments for HNSCC.
Collapse
Affiliation(s)
- Vitale Del Vecchio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
- Department of Life Sciences, Health and Health Professions, Link Campus University, Via del Casale di San Pio V 4, Roma, 00165, Italia
| | | | - Sameer Kumar Panda
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Ayesha Rehman
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Vincenzo De Falco
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Aditya Nigam
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Laura Mosca
- Department of Life Sciences, Health and Health Professions, Link Campus University, Via del Casale di San Pio V 4, Roma, 00165, Italia
| | - Diana Russo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "L. Vanvitelli", Via L. de Crecchio 6, Naples, 80138, Italy
| | - Claudia Arena
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "L. Vanvitelli", Via L. de Crecchio 6, Naples, 80138, Italy
| | - Maria Maddalena Nicoletti
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "L. Vanvitelli", Via L. de Crecchio 6, Naples, 80138, Italy
- Dermatology Unit, University of Campania "L.Vanvitelli", Naples, Italy
| | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy.
| | - Gianpaolo Papaccio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Luigi Mele
- Department of Health Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, Potenza, 85100, Italy
| | - Luigi Laino
- Dermatology Unit, University of Campania "L.Vanvitelli", Naples, Italy
| |
Collapse
|
2
|
Zhang L, Lv J, Zhang W, Yi H, Zhao M, Wang Z, Li G, Xu B, Ma C, Li J, Li M, Wang Z. Functionalized xanthohumol nanoemulsion: fabrication, characterization and bioavailability enhancement of bioactive compounds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9442-9450. [PMID: 39082082 DOI: 10.1002/jsfa.13767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/08/2024] [Accepted: 07/10/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND Xanthohumol is an isopentadienyl flavonoid in hops, which have several pharmacological effects. However, due to the poor bioavailability of xanthohumol, it cannot be widely used. RESULT In this study, solvent extraction combined with preparative liquid chromatography was used to separate and purify xanthohumol in hop residue. And the purity, yield and recovery of xanthohumol was 983.0 ± 2.1 g kg-1, 921.61 ± 5.65 g kg-1, and 5.41 ± 0.07 g kg-1, respectively. Response surface methodology optimization revealed that 216.75 g kg-1 ethyl oleate, 574.1 g kg-1 polyoxyl-35 castor oil (EL35) and 209.15 g kg-1 polyethylene glycol 200 (PEG200) produced the xanthohumol nanoemulsion with a loading capacity of 85.40 ± 0.33 g kg-1, mean droplet diameter of 42.35 ± 0.06 nm, and zeta potential of -21.78 ± 0.18 mV. CONCLUSION Xanthohumol nanoemulsion has better relative stability. The relative oral bioavailability of xanthohumol nanoemulsion was increased by 1.76 times. These results provide a theoretical basis for the application of nanoemulsion containing xanthohumol in food and pharmaceutical industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lifen Zhang
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, P. R. China
| | - Jiaxin Lv
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, P. R. China
| | - Wenchan Zhang
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, P. R. China
| | - Huixiang Yi
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, P. R. China
| | - Mengjian Zhao
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, P. R. China
| | - Ziying Wang
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, P. R. China
| | - Gang Li
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, P. R. China
| | - Bo Xu
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, P. R. China
| | - Chengjun Ma
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, P. R. China
| | - Jinwei Li
- Gansu Yasheng lvxin Beer Raw Material Group Co., Ltd, Jiuquan, P. R. China
| | - Mei Li
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, P. R. China
| | - Zhenhua Wang
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, P. R. China
| |
Collapse
|
3
|
Gholizadeh Siahmazgi Z, Irani S, Ghiaseddin A, Soutodeh F, Gohari Z, Afifeh J, Pashapouryeganeh A, Samimi H, Naderi M, Fallah P, Haghpanah V. Exploring the inhibitory potential of xanthohumol on MEK1/2: a molecular docking and dynamics simulation investigation. Res Pharm Sci 2024; 19:669-682. [PMID: 39911899 PMCID: PMC11792713 DOI: 10.4103/rps.rps_38_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/29/2024] [Accepted: 12/01/2024] [Indexed: 02/07/2025] Open
Abstract
Background and purpose Xanthohumol (Xn), a small molecule found in Humulus lupulus, has shown promise as an anti-cancer compound. This in silico study was performed to understand the mechanism of action of Xn as a natural compound on MEK1/2 by simulation. Experimental approach After ligand and protein preparation, the best binding energy was determined using Autodock 4.2. Additionally, molecular dynamics simulations of the MEK1/2-Xn and BRaf-MEK1/2-Xn complexes were conducted using GROMACS 2022.1 software and compared to the complexes of MEK1/2-trametinib (Tra) and BRaf-MEK1/2-Tra. Findings/Results The docking results revealed that the best binding energies for MEK1-Xn (-10.70 Kcal/mol), MEK2-Xn (-9.41 Kcal/mol), BRaf-MEK1-Xn (-10.91 Kcal/mol), and BRaf-MEK2-Xn (-8.54 Kcal/mol) were very close to those of the Tra complexes with their targets, MEK1 and MEK2. Furthermore, Xn was found to interact with serine 222 at the active site of these two kinases. The results of the molecular dynamics simulations also indicated that Xn induced changes in the secondary structure of the studied proteins. The root mean square of proteins and the mean radius of gyration showed significant fluctuations. Conclusion and implications The findings of the study suggested that Xn, as a novel bioactive compound, potentially inhibits the MEK1/2 function in cancer cells.
Collapse
Affiliation(s)
- Zohreh Gholizadeh Siahmazgi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, I.R. Iran
| | - Ali Ghiaseddin
- Department of Biomedical Engineering Division, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, I.R. Iran
| | - Fereshteh Soutodeh
- Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran, I.R. Iran
| | - Zahra Gohari
- Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran, I.R. Iran
| | - Jaber Afifeh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Amirreza Pashapouryeganeh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Hilda Samimi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Mahmood Naderi
- Digestive Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Parviz Fallah
- Laboratory Science Department, Allied Medicine Faculty, Alborz University of Medical Sciences, Karaj, I.R. Iran
| | - Vahid Haghpanah
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, I.R. Iran
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, I.R. Iran
| |
Collapse
|
4
|
Kołodziejczak A, Dziedzic M, Algiert-Zielińska B, Mucha P, Rotsztejn H. A Novel Look at Mechanisms and Applications of Xanthohumol (XN) in Dermatology and Cosmetology. Int J Mol Sci 2024; 25:11938. [PMID: 39596008 PMCID: PMC11593948 DOI: 10.3390/ijms252211938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Xanthohumol (XN), representing the group of chalcones, is a hydroxyl and superoxide free radical scavenger. It also has antimicrobial properties, showing antibacterial activity against Staphylococcus aureus, Staphylococcus pyogenes, Staphylococcus epidermidis and Propionibacterium acnes. XN exerts an inhibitory effect on tyrosinase (it hinders the oxidation of l-tyrosine and l-DOPA). However, it also affects the transport of pigment (through a reduction in the number and length of dendrites) and its degradation (through damage to melanosomes). Additionally, it has been shown to inhibit the different activation pathways of the premeditated response in macrophages and reduce the secretion of pro-inflammatory cytokines TNF-α, IL-6 and IL-1β. Xanthohumol also improves skin elasticity by reducing the activity of elastase and MMP 1, 2 and 9, and it increases the expression of type I, III and V collagen, as well as elastin and fibrillins in skin fibroblasts. It acts against the main factors contributing to the pathogenesis of acne by inhibiting pro-inflammatory mediators (e.g., COX-2, PGE2, IL-1β and TNF-α). Moreover, it shows antibacterial activity against P. acnes and S. aureus, as well as seboregulatory and antioxidant properties. It has also been recognized that XN intake could affect diabetic wound healing. XN shows antitumoral activity, e.g., in the case of skin melanoma, which is associated with the antioxidant, pro-apoptotic, anti-angiogenic and immunostimulating effects of this compound.
Collapse
Affiliation(s)
- Anna Kołodziejczak
- Chair of Cosmetology, Department of Cosmetology and Aesthetic Dermatology, Faculty of Pharmacy, Medical University of Lódź, Muszyńskiego 1 Street, 91-151 Łódź, Poland; (A.K.); (B.A.-Z.); (H.R.)
| | - Marta Dziedzic
- Chair of Cosmetology, Department of Cosmetology and Aesthetic Dermatology, Faculty of Pharmacy, Medical University of Lódź, Muszyńskiego 1 Street, 91-151 Łódź, Poland; (A.K.); (B.A.-Z.); (H.R.)
| | - Barbara Algiert-Zielińska
- Chair of Cosmetology, Department of Cosmetology and Aesthetic Dermatology, Faculty of Pharmacy, Medical University of Lódź, Muszyńskiego 1 Street, 91-151 Łódź, Poland; (A.K.); (B.A.-Z.); (H.R.)
| | - Paulina Mucha
- Chair of Cosmetology, Department of Cosmetic Raw Material Chemistry, Faculty of Pharmacy, Medical University of Lódź, Muszyńskiego 1 Street, 91-151 Łódź, Poland
| | - Helena Rotsztejn
- Chair of Cosmetology, Department of Cosmetology and Aesthetic Dermatology, Faculty of Pharmacy, Medical University of Lódź, Muszyńskiego 1 Street, 91-151 Łódź, Poland; (A.K.); (B.A.-Z.); (H.R.)
| |
Collapse
|
5
|
Olender D, Pawełczyk A, Leśków A, Sowa-Kasprzak K, Zaprutko L, Diakowska D. Synthesis of bis-Chalcones Based on Green Chemistry Strategies and Their Cytotoxicity Toward Human MeWo and A375 Melanoma Cell Lines. Molecules 2024; 29:5171. [PMID: 39519811 PMCID: PMC11547983 DOI: 10.3390/molecules29215171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Chalcone is an aromatic ketone that forms the central core of many important biological compounds. Chalcone derivatives show various biological activities, especially anti-inflammatory, antibacterial, antioxidant, and anticancer activities, and also inhibit melanoma cell growth. In this study, we synthesized chalcone compounds with bis-chalcone's chemical structure under microwave (MW) and microwave-ultrasound (MW-US) conditions and compared them to chalcones produced using the classical synthesis method. All bis-chalcones were synthesized with terephthalaldehyde and an appropriate aromatic ketone as substrates in Claisen-Schmidt condensation. All the obtained compounds were tested regarding their roles as potential anticancer agents. The cytotoxic effect of the bis-chalcones against human MeWo and A375 melanoma cell lines was investigated through colorimetric MTT and SRB assays. The data were analyzed statistically. In the case of the synthesis of bis-chalcones, it was determined that the use of green conditions supported by the MW or MW-US factors led to an increase in the yield of the final products and a reduction in the reaction time compared to the classic method. The biological results showed the high cytotoxic effect of bis-chalcones. The present results show the compounds' high antiproliferative and cytotoxic potential, especially for the two selected bis-chalcone derivatives (3b and 3c), in particular, at concentrations of 50 μM-200 μM at 24, 48 h, and 72 h of incubation. The use of MW and US for the synthesis of bis-chalcones significantly improved the process compared to the classical method. The derivatives containing two hydroxy and two methoxy groups were the most effective against the tested cancer cells.
Collapse
Affiliation(s)
- Dorota Olender
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland; (A.P.); (K.S.-K.); (L.Z.)
| | - Anna Pawełczyk
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland; (A.P.); (K.S.-K.); (L.Z.)
| | - Anna Leśków
- Department of Medical Biology, Wroclaw Medical University, Chalubinskiego 3, 50-368 Wrocław, Poland; (A.L.); (D.D.)
| | - Katarzyna Sowa-Kasprzak
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland; (A.P.); (K.S.-K.); (L.Z.)
| | - Lucjusz Zaprutko
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland; (A.P.); (K.S.-K.); (L.Z.)
| | - Dorota Diakowska
- Department of Medical Biology, Wroclaw Medical University, Chalubinskiego 3, 50-368 Wrocław, Poland; (A.L.); (D.D.)
| |
Collapse
|
6
|
Ma C, Xie L. Prognostic model development and clinical correlation of eight key genes in skin cutaneous melanoma. Heliyon 2024; 10:e33930. [PMID: 39071565 PMCID: PMC11283098 DOI: 10.1016/j.heliyon.2024.e33930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 07/30/2024] Open
Abstract
Cutaneous melanoma (SKCM) is a challenging and increasingly prevalent cancer with limited effective treatments. In our extensive study of 342 SKCM samples, we developed a prognostic model identifying eight key genes-CASPASE7CLEAVEDD198, FOXO3A, Melanoma gp100, CD171, 1433ZETA, SRC, P21, and CABL-linked to SKCM prognosis. Statistical analysis indicated significant differences in clinical outcomes between low and high-risk groups, corroborated by principal component analysis (PCA). Survival analysis and receiver operating characteristic (ROC) curve analysis confirmed the model's predictive accuracy for SKCM prognosis. Additionally, we observed notable correlations between the expression levels of genes related to prognosis and clinical characteristics. Our research offers crucial insights into SKCM prognosis, suggesting potential diagnostic markers and personalized treatment targets.
Collapse
Affiliation(s)
- Chaoqun Ma
- Chengdu Badachu Medical Beauty Hospital, 1-5 Floors, No. 688, Middle Section of Tianfu Avenue, Chengdu High Tech Zone, Pilot Free Trade Zone, Sichuan, China
| | - Ling Xie
- Dermatology Department, Chengdu Second People's Hospital, No.10 Qingyun South Street, Jinjiang Zone, Chengdu, Sichuan, 610000, China
| |
Collapse
|
7
|
Mendez-Callejas G, Piñeros-Avila M, Yosa-Reyes J, Pestana-Nobles R, Torrenegra R, Camargo-Ubate MF, Bello-Castro AE, Celis CA. A Novel Tri-Hydroxy-Methylated Chalcone Isolated from Chromolaena tacotana with Anti-Cancer Potential Targeting Pro-Survival Proteins. Int J Mol Sci 2023; 24:15185. [PMID: 37894866 PMCID: PMC10607159 DOI: 10.3390/ijms242015185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Chromolaena tacotana (Klatt) R. M. King and H. Rob (Ch. tacotana) contains bioactive flavonoids that may have antioxidant and/or anti-cancer properties. This study investigated the potential anti-cancer properties of a newly identified chalcone isolated from the inflorescences of the plant Chromolaena tacotana (Klatt) R. M. King and H. Rob (Ch. tacotana). The chalcone structure was determined using HPLC/MS (QTOF), UV, and NMR spectroscopy. The compound cytotoxicity and selectivity were evaluated on prostate, cervical, and breast cancer cell lines using the MTT assay. Apoptosis and autophagy induction were assessed through flow cytometry by detecting annexin V/7-AAD, active Casp3/7, and LC3B proteins. These results were supported by Western blot analysis. Mitochondrial effects on membrane potential, as well as levels of pro- and anti-apoptotic proteins were analyzed using flow cytometry, fluorescent microscopy, and Western blot analysis specifically on a triple-negative breast cancer (TNBC) cell line. Furthermore, molecular docking (MD) and molecular dynamics (MD) simulations were performed to evaluate the interaction between the compounds and pro-survival proteins. The compound identified as 2',3,4-trihydroxy-4',6'-dimethoxy chalcone inhibited the cancer cell line proliferation and induced apoptosis and autophagy. MDA-MB-231, a TNBC cell line, exhibited the highest sensitivity to the compound with good selectivity. This activity was associated with the regulation of mitochondrial membrane potential, activation of the pro-apoptotic proteins, and reduction of anti-apoptotic proteins, thereby triggering the intrinsic apoptotic pathway. The chalcone consistently interacted with anti-apoptotic proteins, particularly the Bcl-2 protein, throughout the simulation period. However, there was a noticeable conformational shift observed with the negative autophagy regulator mTOR protein. Future studies should focus on the molecular mechanisms underlying the anti-cancer potential of the new chalcone and other flavonoids from Ch. tacotana, particularly against predominant cancer cell types.
Collapse
Affiliation(s)
- Gina Mendez-Callejas
- Grupo de Investigaciones Biomédicas y de Genética Humana Aplicada (GIBGA), Laboratorio de Biología Celular y Molecular, Facultad de Ciencias de la Salud, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222 # 55-37, Bogotá 111166, Colombia;
| | - Marco Piñeros-Avila
- Grupo de Investigaciones Biomédicas y de Genética Humana Aplicada (GIBGA), Laboratorio de Biología Celular y Molecular, Facultad de Ciencias de la Salud, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222 # 55-37, Bogotá 111166, Colombia;
| | - Juvenal Yosa-Reyes
- Grupo de Investigación en Ciencias Exactas, Física y Naturales Aplicadas, Facultad de Ciencias Básicas y Biomédicas, Laboratorio de Simulación Molecular y Bioinformática, Universidad Simón Bolívar, Carrera 59 # 59-65, Barranquilla 080002, Colombia; (J.Y.-R.)
| | - Roberto Pestana-Nobles
- Grupo de Investigación en Ciencias Exactas, Física y Naturales Aplicadas, Facultad de Ciencias Básicas y Biomédicas, Laboratorio de Simulación Molecular y Bioinformática, Universidad Simón Bolívar, Carrera 59 # 59-65, Barranquilla 080002, Colombia; (J.Y.-R.)
| | - Ruben Torrenegra
- Grupo de Investigación en Productos Naturales de la U.D.C.A. (PRONAUDCA), Laboratorio de Productos Naturales, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222 # 55-37, Bogotá 111166, Colombia
| | - María F. Camargo-Ubate
- Grupo de Investigación en Productos Naturales de la U.D.C.A. (PRONAUDCA), Laboratorio de Productos Naturales, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222 # 55-37, Bogotá 111166, Colombia
| | - Andrea E. Bello-Castro
- Grupo de Investigación en Productos Naturales de la U.D.C.A. (PRONAUDCA), Laboratorio de Productos Naturales, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222 # 55-37, Bogotá 111166, Colombia
| | - Crispin A. Celis
- Grupo de Investigación en Fitoquímica (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra. 7 # 40-62, Bogotá 1115511, Colombia
| |
Collapse
|
8
|
Michalkova R, Mirossay L, Kello M, Mojzisova G, Baloghova J, Podracka A, Mojzis J. Anticancer Potential of Natural Chalcones: In Vitro and In Vivo Evidence. Int J Mol Sci 2023; 24:10354. [PMID: 37373500 DOI: 10.3390/ijms241210354] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
There is no doubt that significant progress has been made in tumor therapy in the past decades. However, the discovery of new molecules with potential antitumor properties still remains one of the most significant challenges in the field of anticancer therapy. Nature, especially plants, is a rich source of phytochemicals with pleiotropic biological activities. Among a plethora of phytochemicals, chalcones, the bioprecursors of flavonoid and isoflavonoids synthesis in higher plants, have attracted attention due to the broad spectrum of biological activities with potential clinical applications. Regarding the antiproliferative and anticancer effects of chalcones, multiple mechanisms of action including cell cycle arrest, induction of different forms of cell death and modulation of various signaling pathways have been documented. This review summarizes current knowledge related to mechanisms of antiproliferative and anticancer effects of natural chalcones in different types of malignancies including breast cancers, cancers of the gastrointestinal tract, lung cancers, renal and bladder cancers, and melanoma.
Collapse
Affiliation(s)
- Radka Michalkova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Gabriela Mojzisova
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Janette Baloghova
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Anna Podracka
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| |
Collapse
|
9
|
Tirado-Kulieva VA, Hernández-Martínez E, Minchán-Velayarce HH, Pasapera-Campos SE, Luque-Vilca OM. A comprehensive review of the benefits of drinking craft beer: Role of phenolic content in health and possible potential of the alcoholic fraction. Curr Res Food Sci 2023; 6:100477. [PMID: 36935850 PMCID: PMC10020662 DOI: 10.1016/j.crfs.2023.100477] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023] Open
Abstract
Currently, there is greater production and consumption of craft beer due to its appreciated sensory characteristics. Unlike conventional beer, craft beers provide better health benefits due to their varied and high content of phenolic compounds (PCs) and also due to their alcohol content, but the latter is controversial. The purpose of this paper was to report on the alcoholic fraction and PCs present in craft beers and their influence on health. Despite the craft beer boom, there are few studies on the topic; there is a lot of field to explore. The countries with the most research are the United States > Italy > Brazil > United Kingdom > Spain. The type and amount of PCs in craft beers depends on the ingredients and strains used, as well as the brewing process. It was determined that it is healthier to be a moderate consumer of alcohol than to be a teetotaler or heavy drinker. Thus, studies in vitro, with animal models and clinical trials on cardiovascular and neurodegenerative diseases, cancer, diabetes and obesity, osteoporosis and even the immune system suggest the consumption of craft beer. However, more studies with more robust designs are required to obtain more generalizable and conclusive results. Finally, some challenges in the production of craft beer were detailed and some alternative solutions were mentioned.
Collapse
|
10
|
Gazdova M, Michalkova R, Kello M, Vilkova M, Kudlickova Z, Baloghova J, Mirossay L, Mojzis J. Chalcone-Acridine Hybrid Suppresses Melanoma Cell Progression via G2/M Cell Cycle Arrest, DNA Damage, Apoptosis, and Modulation of MAP Kinases Activity. Int J Mol Sci 2022; 23:12266. [PMID: 36293123 PMCID: PMC9603750 DOI: 10.3390/ijms232012266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
This study was focused on investigating the antiproliferative effects of chalcone hybrids in melanoma cancer cells. Among seven chalcone hybrids, the chalcone-acridine hybrid 1C was the most potent and was selected for further antiproliferative mechanism studies. This in vitro study revealed the potent antiproliferative effect of 1C via cell cycle arrest and apoptosis induction. Cell cycle arrest at the G2/M phase was associated with modulation of expression or phosphorylation of specific cell cycle-associated proteins (cyclin B1, p21, and ChK1), tubulins, as well as with the activation of the DNA damage response pathway. Chalcone 1C also induced apoptosis accompanied by mitochondrial dysfunction evidenced by a decrease in mitochondrial membrane potential, increase in Bax/Bcl-xL ratio and cytochrome c release followed by caspase 3/7 activation. In addition, increased phosphorylation of MAP kinases (Erk1/2, p38 and JNK) was observed in chalcone 1C-treated melanoma cells. The strong antiproliferative activities of this chalcone-acridine hybrid suggest that it may be useful as an antimelanoma agent in humans.
Collapse
Affiliation(s)
- Maria Gazdova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Radka Michalkova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Maria Vilkova
- NMR Laboratory, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Zuzana Kudlickova
- NMR Laboratory, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Janette Baloghova
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| |
Collapse
|
11
|
Zhang X, Wang T, Zhou H, Li Y, Guo H, Su H. Differential Inhibite Effect of Xanthohumol on HepG2 Cells and Primary Hepatocytes. Dose Response 2022; 20:15593258221136053. [DOI: 10.1177/15593258221136053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022] Open
Abstract
Xanthohumol (XN) is the major prenylated chalcone of the female inflorescences (cone) of the hop plant ( Humulus lupulus). It is also a constituent of beer, the major dietary source of prenylated flavonoids. It has shown strong antitumorigenic activity towards various types of cancer cells. In the present study, we show the impact on human hepatocarcinoma cell line HepG2 cell and potential adverse effects on rat primary hepatocytes. Cell growth/viability assay (MTT) demonstrated that HepG2 cells are highly sensitive to XN at a concentration range of 25-100 μM. The primary mode of tumor cell destruction was apoptosis as demonstrated by the binding of Annexin Ⅴ-FITC, we show that XN at a concentration of 25 μM induced apoptosis in HepG2. Further evidence that XN kills HepG2 by inducing apoptosis was provided by the impact of XN on the cleavage of PARP-1 and caspases-3. In contrast, XN concentrations up to 100 μM did not affect viability of primary rat hepatocytes in vitro, meanwhile, XN did not induce the apoptosis of primary rat hepatocytes in vitro . In summary, our data provide a rationale for clinical evaluation of XN for the treatment of liver cancer.
Collapse
Affiliation(s)
- Xiuli Zhang
- Gansu Tumor Hospital, Gansu Province Academy of Medical Sciences, Lanzhou, China
| | - Tao Wang
- Gansu Tumor Hospital, Gansu Province Academy of Medical Sciences, Lanzhou, China
| | - Haihong Zhou
- Gansu Tumor Hospital, Gansu Province Academy of Medical Sciences, Lanzhou, China
| | - Yonghui Li
- Gansu Tumor Hospital, Gansu Province Academy of Medical Sciences, Lanzhou, China
| | - Hongyun Guo
- Gansu Tumor Hospital, Gansu Province Academy of Medical Sciences, Lanzhou, China
| | - Haixiang Su
- Gansu Tumor Hospital, Gansu Province Academy of Medical Sciences, Lanzhou, China
| |
Collapse
|
12
|
Constantinescu T, Mihis AG. Two Important Anticancer Mechanisms of Natural and Synthetic Chalcones. Int J Mol Sci 2022; 23:11595. [PMID: 36232899 PMCID: PMC9570335 DOI: 10.3390/ijms231911595] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
ATP-binding cassette subfamily G and tubulin pharmacological mechanisms decrease the effectiveness of anticancer drugs by modulating drug absorption and by creating tubulin assembly through polymerization. A series of natural and synthetic chalcones have been reported to have very good anticancer activity, with a half-maximal inhibitory concentration lower than 1 µM. By modulation, it is observed in case of the first mechanism that methoxy substituents on the aromatic cycle of acetophenone residue and substitution of phenyl nucleus by a heterocycle and by methoxy or hydroxyl groups have a positive impact. To inhibit tubulin, compounds bind to colchicine binding site. Presence of methoxy groups, amino groups or heterocyclic substituents increase activity.
Collapse
Affiliation(s)
- Teodora Constantinescu
- Department of Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University, 400012 Cluj-Napoca, Romania
| | - Alin Grig Mihis
- Advanced Materials and Applied Technologies Laboratory, Institute of Research-Development-Innovation in Applied Natural Sciences, “Babes-Bolyai” University, Fantanele Str. 30, 400294 Cluj-Napoca, Romania
| |
Collapse
|
13
|
Mavra A, Petrou CC, Vlasiou MC. Ligand and Structure-Based Virtual Screening in Combination, to Evaluate Small Organic Molecules as Inhibitors for the XIAP Anti-Apoptotic Protein: The Xanthohumol Hypothesis. Molecules 2022; 27:molecules27154825. [PMID: 35956774 PMCID: PMC9369490 DOI: 10.3390/molecules27154825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
Herein, we propose two chalcone molecules, (E)-1-(4-methoxyphenyl)-3-(p-tolyl) prop-2-en-1-one and (E)-3-(4-hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl) prop-2-en-1-one, based on the anticancer bioactive molecule Xanthohumol, which are suitable for further in vitro and in vivo studies. Their ability to create stable complexes with the antiapoptotic X-linked IAP (XIAP) protein makes them promising anticancer agents. The calculations were based on ligand-based and structure-based virtual screening combined with the pharmacophore build. Additionally, the structures passed Lipinski’s rule for drug use, and their reactivity was confirmed using density functional theory studies. ADMET studies were also performed to reveal the pharmacokinetic potential of the compounds. The candidates were chosen from 10,639,400 compounds, and the docking protocols were evaluated using molecular dynamics simulations.
Collapse
|
14
|
Hsieh MY, Hsieh MJ, Lo YS, Lin CC, Chuang YC, Chen MK, Chou MC. Xanthohumol targets the JNK1/2 signaling pathway in apoptosis of human nasopharyngeal carcinoma cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:1509-1520. [PMID: 35229981 DOI: 10.1002/tox.23502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/23/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most aggressive malignant tumors of the head and neck. Xanthohumol (Xn) is a compound extracted in a high concentration from the hard resin of hops (Humulus lupulus L.), the basic raw material of beer. This study investigated the apoptotic effect and anticancer properties of Xn in human NPC cell lines. Our study demonstrated that at the concentration 40 μM, Xn significantly reduced cell viability and promoted cell cycle arrest in the G2/M phase in two cell lines. The results indicated that Xn induced apoptosis in NPC cell lines through annexin V/propidium iodide staining, chromatin condensation, and apoptosis-related pathways. Xn upregulated the expression of apoptosis-related proteins, namely DR5, cleaved RIP, caspase-3, caspase-8, caspase-9, PARP, Bim, and Bak, and it downregulated the expression of Bcl-2. Xn upregulated the c-Jun N-terminal kinase (JNK) in the mitogen-activated protein kinase (MAPK), and the inhibition of JNK clearly resulted in decreasing expression of Xn-activated cleaved caspase-3 and PARP. Our research provides sufficient evidence to confirm that Xn induces the MAPK JNK pathway to promote apoptosis of NPC and is expected to become a safe and acceptable treatment option for human NPC.
Collapse
Affiliation(s)
- Ming-Yu Hsieh
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yu-Sheng Lo
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Yi-Ching Chuang
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Ming-Chih Chou
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
15
|
Xu Z, Chu M. Advances in Immunosuppressive Agents Based on Signal Pathway. Front Pharmacol 2022; 13:917162. [PMID: 35694243 PMCID: PMC9178660 DOI: 10.3389/fphar.2022.917162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
Immune abnormality involves in various diseases, such as infection, allergic diseases, autoimmune diseases, as well as transplantation. Several signal pathways have been demonstrated to play a central role in the immune response, including JAK/STAT, NF-κB, PI3K/AKT-mTOR, MAPK, and Keap1/Nrf2/ARE pathway, in which multiple targets have been used to develop immunosuppressive agents. In recent years, varieties of immunosuppressive agents have been approved for clinical use, such as the JAK inhibitor tofacitinib and the mTOR inhibitor everolimus, which have shown good therapeutic effects. Additionally, many immunosuppressive agents are still in clinical trials or preclinical studies. In this review, we classified the immunosuppressive agents according to the immunopharmacological mechanisms, and summarized the phase of immunosuppressive agents.
Collapse
Affiliation(s)
- Zhiqing Xu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Pharmacology, Jilin University, Changchun, China
| | - Ming Chu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
16
|
Torrens-Mas M, Alorda-Clara M, Martínez-Vigara M, Roca P, Sastre-Serra J, Oliver J, Pons DG. Xanthohumol reduces inflammation and cell metabolism in HT29 primary colon cancer cells. Int J Food Sci Nutr 2021; 73:471-479. [PMID: 34879764 DOI: 10.1080/09637486.2021.2012561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Xanthohumol (XN) is a prenylated flavonoid known for its antioxidant and anti-inflammatory effects and has been studied as an anti-cancer agent. In this study, we aimed at analysing the effect of XN on a primary colorectal adenocarcinoma cell line, HT29, on cell viability, inflammatory and antioxidant gene expression, and metabolism. For this purpose, cells were treated with 10 nM and 10 µM XN, and cell viability, H2O2 production, lipid peroxidation and gene expression of inflammatory, antioxidant, and mitochondrial-related genes, as well as protein levels of metabolic enzymes, were determined. Results showed no significant effects on cell viability and a general decrease in pro-inflammatory, antioxidant and mitochondrial biogenesis gene expression with the lower concentration of XN. Furthermore, glucose and oxidative metabolism enzymes were also reduced. These results suggest that XN treatment, at low doses, could stop the proliferation and progression of HT29 cells by downregulating inflammatory signals and cell metabolism.
Collapse
Affiliation(s)
- Margalida Torrens-Mas
- Translational Research in Aging and Longevity (TRIAL) Group, Vascular and Metabolic Pathologies Group, Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Palma, Spain.,Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS) Universitat de les Illes Balears, Palma, Spain.,Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Palma de Mallorca, Spain
| | - Marina Alorda-Clara
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS) Universitat de les Illes Balears, Palma, Spain.,Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Palma de Mallorca, Spain
| | - Maria Martínez-Vigara
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS) Universitat de les Illes Balears, Palma, Spain
| | - Pilar Roca
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS) Universitat de les Illes Balears, Palma, Spain.,Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Palma de Mallorca, Spain.,Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, Madrid, Spain
| | - Jorge Sastre-Serra
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS) Universitat de les Illes Balears, Palma, Spain.,Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Palma de Mallorca, Spain.,Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, Madrid, Spain
| | - Jordi Oliver
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS) Universitat de les Illes Balears, Palma, Spain.,Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Palma de Mallorca, Spain.,Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, Madrid, Spain
| | - Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS) Universitat de les Illes Balears, Palma, Spain.,Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Palma de Mallorca, Spain
| |
Collapse
|
17
|
de Souza PS, Bibá GCC, Melo EDDN, Muzitano MF. Chalcones against the hallmarks of cancer: a mini-review. Nat Prod Res 2021; 36:4809-4826. [PMID: 34865580 DOI: 10.1080/14786419.2021.2000980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Chalcones (1,3-diphenylpropen-1-ones) are a class of flavonoids that have been shown a broad spectrum of biological activities with therapeutic potential. Naturally occurring chalcones or synthetic chalcone derivatives have been extensively investigated as anticancer compounds. Cancer is still among the leading causes of death globally, although cancer treatments have improved over the past decades. Most of chemotherapeutic drugs target proliferating tumor cells; however, the cancer cells capabilities are also associated to tumor surround microenvironment. Thereby, the search of new compounds with a broad antitumor activity is still a great challenge. The cytotoxicity mechanisms of chalcones are beyond apoptosis induction in tumor cells, which make them promising compound for cancer therapy. In this mini-review we summarized recent studies that describe the anticancer potential of chalcones related to some of hallmarks of cancer. We shed a light on sustaining proliferative signaling, tumor-promoting inflammation, activating invasion and metastasis, inducing angiogenesis and resisting cell death.
Collapse
Affiliation(s)
- Paloma Silva de Souza
- Laboratório de Produtos Bioativos, Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Geysa Cristina Caldas Bibá
- Laboratório de Produtos Bioativos, Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Evelynn Dalila do Nascimento Melo
- Laboratório de Produtos Bioativos, Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michelle Frazão Muzitano
- Laboratório de Produtos Bioativos, Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Matias M, Pinho JO, Penetra MJ, Campos G, Reis CP, Gaspar MM. The Challenging Melanoma Landscape: From Early Drug Discovery to Clinical Approval. Cells 2021; 10:3088. [PMID: 34831311 PMCID: PMC8621991 DOI: 10.3390/cells10113088] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma is recognized as the most dangerous type of skin cancer, with high mortality and resistance to currently used treatments. To overcome the limitations of the available therapeutic options, the discovery and development of new, more effective, and safer therapies is required. In this review, the different research steps involved in the process of antimelanoma drug evaluation and selection are explored, including information regarding in silico, in vitro, and in vivo experiments, as well as clinical trial phases. Details are given about the most used cell lines and assays to perform both two- and three-dimensional in vitro screening of drug candidates towards melanoma. For in vivo studies, murine models are, undoubtedly, the most widely used for assessing the therapeutic potential of new compounds and to study the underlying mechanisms of action. Here, the main melanoma murine models are described as well as other animal species. A section is dedicated to ongoing clinical studies, demonstrating the wide interest and successful efforts devoted to melanoma therapy, in particular at advanced stages of the disease, and a final section includes some considerations regarding approval for marketing by regulatory agencies. Overall, considerable commitment is being directed to the continuous development of optimized experimental models, important for the understanding of melanoma biology and for the evaluation and validation of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mariana Matias
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Jacinta O. Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria João Penetra
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Gonçalo Campos
- CICS–UBI–Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal;
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| |
Collapse
|
19
|
Girisa S, Saikia Q, Bordoloi D, Banik K, Monisha J, Daimary UD, Verma E, Ahn KS, Kunnumakkara AB. Xanthohumol from Hop: Hope for cancer prevention and treatment. IUBMB Life 2021; 73:1016-1044. [PMID: 34170599 DOI: 10.1002/iub.2522] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022]
Abstract
Cancer is a major public health concern due to high mortality and poor quality of life of patients. Despite the availability of advanced therapeutic interventions, most treatment modalities are not efficacious, very expensive, and cause several adverse side effects. The factors such as drug resistance, lack of specificity, and low efficacy of the cancer drugs necessitate developing alternative strategies for the prevention and treatment of this disease. Xanthohumol (XN), a prenylated chalcone present in Hop (Humulus lupulus), has been found to possess prominent activities against aging, diabetes, inflammation, microbial infection, and cancer. Thus, this manuscript thoroughly reviews the literature on the anti-cancer properties of XN and its various molecular targets. XN was found to exert its inhibitory effect on the growth and proliferation of cancer cells via modulation of multiple signaling pathways such as Akt, AMPK, ERK, IGFBP2, NF-κB, and STAT3, and also modulates various proteins such as Notch1, caspases, MMPs, Bcl-2, cyclin D1, oxidative stress markers, tumor-suppressor proteins, and miRNAs. Thus, these reports suggest that XN possesses enormous therapeutic potential against various cancers and could be potentially used as a multi-targeted anti-cancer agent with minimal adverse effects.
Collapse
Affiliation(s)
- Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Queen Saikia
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Javadi Monisha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Elika Verma
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
20
|
Harish V, Haque E, Śmiech M, Taniguchi H, Jamieson S, Tewari D, Bishayee A. Xanthohumol for Human Malignancies: Chemistry, Pharmacokinetics and Molecular Targets. Int J Mol Sci 2021; 22:ijms22094478. [PMID: 33923053 PMCID: PMC8123270 DOI: 10.3390/ijms22094478] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022] Open
Abstract
Xanthohumol (XH) is an important prenylated flavonoid that is found within the inflorescence of Humulus lupulus L. (Hop plant). XH is an important ingredient in beer and is considered a significant bioactive agent due to its diverse medicinal applications, which include anti-inflammatory, antimicrobial, antioxidant, immunomodulatory, antiviral, antifungal, antigenotoxic, antiangiogenic, and antimalarial effects as well as strong anticancer activity towards various types of cancer cells. XH acts as a wide ranging chemopreventive and anticancer agent, and its isomer, 8-prenylnaringenin, is a phytoestrogen with strong estrogenic activity. The present review focuses on the bioactivity of XH on various types of cancers and its pharmacokinetics. In this paper, we first highlight, in brief, the history and use of hops and then the chemistry and structure–activity relationship of XH. Lastly, we focus on its prominent effects and mechanisms of action on various cancers and its possible use in cancer prevention and treatment. Considering the limited number of available reviews on this subject, our goal is to provide a complete and detailed understanding of the anticancer effects of XH against different cancers.
Collapse
Affiliation(s)
- Vancha Harish
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144 411, Punjab, India;
| | - Effi Haque
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (M.Ś.); (H.T.)
| | - Magdalena Śmiech
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (M.Ś.); (H.T.)
| | - Hiroaki Taniguchi
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (M.Ś.); (H.T.)
| | - Sarah Jamieson
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144 411, Punjab, India
- Correspondence: (D.T.); or (A.B.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
- Correspondence: (D.T.); or (A.B.)
| |
Collapse
|