1
|
Zheng Y, Fuse H, Alzoubi I, Graeber MB. Microglia-Derived Brain Macrophages Associate with Glioblastoma Stem Cells: A Potential Mechanism for Tumor Progression Revealed by AI-Assisted Analysis. Cells 2025; 14:413. [PMID: 40136662 PMCID: PMC11940947 DOI: 10.3390/cells14060413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/21/2025] [Accepted: 03/08/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Malignant gliomas, and notably glioblastoma, are highly aggressive brain tumors. Understanding the mechanisms underlying their progression is crucial for developing more effective treatments. Recent studies have highlighted the role of microglia and brain macrophages in glioblastoma development, but the specific interactions between these immune cells and glioblastoma stem cells (GSCs) remain unclear. Methods: To address this question, we have utilized AI-assisted cell recognition to investigate the spatial relationship between GSCs expressing high levels of CD276 (B7-H3) and microglia- and bone marrow-derived brain macrophages, respectively. Results: Using PathoFusion, our previously developed open-source AI framework, we were able to map specific immunohistochemical phenotypes at the single-cell level within whole-slide images. This approach enabled us to selectively identify Iba1+ and CD163+ macrophages as well as CD276+ GSCs with high specificity and to study their co-localization. Our analysis suggests a closer association of Iba1+ macrophages with GSCs than between CD163+ macrophages and GSCs in glioblastoma. Conclusions: Our findings provide novel insights into the spatial context of tumor immunity in glioblastoma and point to microglia-GSC interactions as a potential mechanism for tumor progression, especially during diffuse tissue infiltration. These findings have significant implications for our understanding of glioblastoma biology, providing a foundation for a comprehensive analysis of microglia activation phenotypes during glioma development. This, in turn, may lead to new therapeutic strategies targeting the early stages of the immune microenvironment of glioblastoma.
Collapse
Affiliation(s)
- Yuqi Zheng
- Ken Parker Brain Tumour Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia;
| | - Haneya Fuse
- School of Medicine, Sydney Campus, University of Notre Dame, 160 Oxford Street, Darlinghurst, Sydney, NSW 2010, Australia;
| | - Islam Alzoubi
- School of Computer Science, The University of Sydney, J12/1 Cleveland St, Darlington, Sydney, NSW 2008, Australia;
| | - Manuel B. Graeber
- Ken Parker Brain Tumour Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia;
- University of Sydney Association of Professors (USAP), University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
Jensen MP, Qiang Z, Khan DZ, Stoyanov D, Baldeweg SE, Jaunmuktane Z, Brandner S, Marcus HJ. Artificial intelligence in histopathological image analysis of central nervous system tumours: A systematic review. Neuropathol Appl Neurobiol 2024; 50:e12981. [PMID: 38738494 DOI: 10.1111/nan.12981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 05/14/2024]
Abstract
The convergence of digital pathology and artificial intelligence could assist histopathology image analysis by providing tools for rapid, automated morphological analysis. This systematic review explores the use of artificial intelligence for histopathological image analysis of digitised central nervous system (CNS) tumour slides. Comprehensive searches were conducted across EMBASE, Medline and the Cochrane Library up to June 2023 using relevant keywords. Sixty-eight suitable studies were identified and qualitatively analysed. The risk of bias was evaluated using the Prediction model Risk of Bias Assessment Tool (PROBAST) criteria. All the studies were retrospective and preclinical. Gliomas were the most frequently analysed tumour type. The majority of studies used convolutional neural networks or support vector machines, and the most common goal of the model was for tumour classification and/or grading from haematoxylin and eosin-stained slides. The majority of studies were conducted when legacy World Health Organisation (WHO) classifications were in place, which at the time relied predominantly on histological (morphological) features but have since been superseded by molecular advances. Overall, there was a high risk of bias in all studies analysed. Persistent issues included inadequate transparency in reporting the number of patients and/or images within the model development and testing cohorts, absence of external validation, and insufficient recognition of batch effects in multi-institutional datasets. Based on these findings, we outline practical recommendations for future work including a framework for clinical implementation, in particular, better informing the artificial intelligence community of the needs of the neuropathologist.
Collapse
Affiliation(s)
- Melanie P Jensen
- Pathology Department, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
- Briscoe Lab, The Francis Crick Institute, London, UK
| | - Zekai Qiang
- School of Medicine and Population Health, University of Sheffield Medical School, Sheffield, UK
| | - Danyal Z Khan
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- Department of Computer Science, University College London, London, UK
| | - Danail Stoyanov
- Department of Computer Science, University College London, London, UK
| | - Stephanie E Baldeweg
- Department of Diabetes and Endocrinology, University College London Hospitals, London, UK
- Centre for Obesity and Metabolism, Department of Experimental and Translational Medicine, Division of Medicine, University College London, London, UK
| | - Zane Jaunmuktane
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
| | - Sebastian Brandner
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, UK
| | - Hani J Marcus
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- Department of Computer Science, University College London, London, UK
| |
Collapse
|
3
|
Alzoubi I, Zhang L, Zheng Y, Loh C, Wang X, Graeber MB. PathoGraph: An Attention-Based Graph Neural Network Capable of Prognostication Based on CD276 Labelling of Malignant Glioma Cells. Cancers (Basel) 2024; 16:750. [PMID: 38398141 PMCID: PMC10886785 DOI: 10.3390/cancers16040750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Computerized methods have been developed that allow quantitative morphological analyses of whole slide images (WSIs), e.g., of immunohistochemical stains. The latter are attractive because they can provide high-resolution data on the distribution of proteins in tissue. However, many immunohistochemical results are complex because the protein of interest occurs in multiple locations (in different cells and also extracellularly). We have recently established an artificial intelligence framework, PathoFusion which utilises a bifocal convolutional neural network (BCNN) model for detecting and counting arbitrarily definable morphological structures. We have now complemented this model by adding an attention-based graph neural network (abGCN) for the advanced analysis and automated interpretation of such data. Classical convolutional neural network (CNN) models suffer from limitations when handling global information. In contrast, our abGCN is capable of creating a graph representation of cellular detail from entire WSIs. This abGCN method combines attention learning with visualisation techniques that pinpoint the location of informative cells and highlight cell-cell interactions. We have analysed cellular labelling for CD276, a protein of great interest in cancer immunology and a potential marker of malignant glioma cells/putative glioma stem cells (GSCs). We are especially interested in the relationship between CD276 expression and prognosis. The graphs permit predicting individual patient survival on the basis of GSC community features. Our experiments lay a foundation for the use of the BCNN-abGCN tool chain in automated diagnostic prognostication using immunohistochemically labelled histological slides, but the method is essentially generic and potentially a widely usable tool in medical research and AI based healthcare applications.
Collapse
Affiliation(s)
- Islam Alzoubi
- School of Computer Science, The University of Sydney, J12/1 Cleveland St, Darlington, Sydney, NSW 2008, Australia; (I.A.); (L.Z.)
| | - Lin Zhang
- School of Computer Science, The University of Sydney, J12/1 Cleveland St, Darlington, Sydney, NSW 2008, Australia; (I.A.); (L.Z.)
| | - Yuqi Zheng
- Ken Parker Brain Tumour Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia; (Y.Z.); (C.L.)
| | - Christina Loh
- Ken Parker Brain Tumour Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia; (Y.Z.); (C.L.)
| | - Xiuying Wang
- School of Computer Science, The University of Sydney, J12/1 Cleveland St, Darlington, Sydney, NSW 2008, Australia; (I.A.); (L.Z.)
| | - Manuel B. Graeber
- Ken Parker Brain Tumour Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia; (Y.Z.); (C.L.)
- University of Sydney Association of Professors (USAP), University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Alzoubi I, Bao G, Zheng Y, Wang X, Graeber MB. Artificial intelligence techniques for neuropathological diagnostics and research. Neuropathology 2022. [PMID: 36443935 DOI: 10.1111/neup.12880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/17/2022] [Accepted: 10/23/2022] [Indexed: 12/03/2022]
Abstract
Artificial intelligence (AI) research began in theoretical neurophysiology, and the resulting classical paper on the McCulloch-Pitts mathematical neuron was written in a psychiatry department almost 80 years ago. However, the application of AI in digital neuropathology is still in its infancy. Rapid progress is now being made, which prompted this article. Human brain diseases represent distinct system states that fall outside the normal spectrum. Many differ not only in functional but also in structural terms, and the morphology of abnormal nervous tissue forms the traditional basis of neuropathological disease classifications. However, only a few countries have the medical specialty of neuropathology, and, given the sheer number of newly developed histological tools that can be applied to the study of brain diseases, a tremendous shortage of qualified hands and eyes at the microscope is obvious. Similarly, in neuroanatomy, human observers no longer have the capacity to process the vast amounts of connectomics data. Therefore, it is reasonable to assume that advances in AI technology and, especially, whole-slide image (WSI) analysis will greatly aid neuropathological practice. In this paper, we discuss machine learning (ML) techniques that are important for understanding WSI analysis, such as traditional ML and deep learning, introduce a recently developed neuropathological AI termed PathoFusion, and present thoughts on some of the challenges that must be overcome before the full potential of AI in digital neuropathology can be realized.
Collapse
Affiliation(s)
- Islam Alzoubi
- School of Computer Science The University of Sydney Sydney New South Wales Australia
| | - Guoqing Bao
- School of Computer Science The University of Sydney Sydney New South Wales Australia
| | - Yuqi Zheng
- Ken Parker Brain Tumour Research Laboratories Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney Camperdown New South Wales Australia
| | - Xiuying Wang
- School of Computer Science The University of Sydney Sydney New South Wales Australia
| | - Manuel B. Graeber
- Ken Parker Brain Tumour Research Laboratories Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney Camperdown New South Wales Australia
| |
Collapse
|
5
|
Qiao Y, Zhao L, Luo C, Luo Y, Wu Y, Li S, Bu D, Zhao Y. Multi-modality artificial intelligence in digital pathology. Brief Bioinform 2022; 23:6702380. [PMID: 36124675 PMCID: PMC9677480 DOI: 10.1093/bib/bbac367] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022] Open
Abstract
In common medical procedures, the time-consuming and expensive nature of obtaining test results plagues doctors and patients. Digital pathology research allows using computational technologies to manage data, presenting an opportunity to improve the efficiency of diagnosis and treatment. Artificial intelligence (AI) has a great advantage in the data analytics phase. Extensive research has shown that AI algorithms can produce more up-to-date and standardized conclusions for whole slide images. In conjunction with the development of high-throughput sequencing technologies, algorithms can integrate and analyze data from multiple modalities to explore the correspondence between morphological features and gene expression. This review investigates using the most popular image data, hematoxylin-eosin stained tissue slide images, to find a strategic solution for the imbalance of healthcare resources. The article focuses on the role that the development of deep learning technology has in assisting doctors' work and discusses the opportunities and challenges of AI.
Collapse
Affiliation(s)
- Yixuan Qiao
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianhe Zhao
- Corresponding authors: Yi Zhao, Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences; Shandong First Medical University & Shandong Academy of Medical Sciences. Tel.: +86 10 6260 0822; Fax: +86 10 6260 1356; E-mail: ; Lianhe Zhao, Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences. Tel.: +86 18513983324; E-mail:
| | - Chunlong Luo
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufan Luo
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wu
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Shengtong Li
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dechao Bu
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi Zhao
- Corresponding authors: Yi Zhao, Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences; Shandong First Medical University & Shandong Academy of Medical Sciences. Tel.: +86 10 6260 0822; Fax: +86 10 6260 1356; E-mail: ; Lianhe Zhao, Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences. Tel.: +86 18513983324; E-mail:
| |
Collapse
|
6
|
Alzoubi I, Bao G, Zhang R, Loh C, Zheng Y, Cherepanoff S, Gracie G, Lee M, Kuligowski M, Alexander KL, Buckland ME, Wang X, Graeber MB. An Open-Source AI Framework for the Analysis of Single Cells in Whole-Slide Images with a Note on CD276 in Glioblastoma. Cancers (Basel) 2022; 14:3441. [PMID: 35884502 PMCID: PMC9316952 DOI: 10.3390/cancers14143441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Routine examination of entire histological slides at cellular resolution poses a significant if not insurmountable challenge to human observers. However, high-resolution data such as the cellular distribution of proteins in tissues, e.g., those obtained following immunochemical staining, are highly desirable. Our present study extends the applicability of the PathoFusion framework to the cellular level. We illustrate our approach using the detection of CD276 immunoreactive cells in glioblastoma as an example. Following automatic identification by means of PathoFusion's bifocal convolutional neural network (BCNN) model, individual cells are automatically profiled and counted. Only discriminable cells selected through data filtering and thresholding were segmented for cell-level analysis. Subsequently, we converted the detection signals into the corresponding heatmaps visualizing the distribution of the detected cells in entire whole-slide images of adjacent H&E-stained sections using the Discrete Wavelet Transform (DWT). Our results demonstrate that PathoFusion is capable of autonomously detecting and counting individual immunochemically labelled cells with a high prediction performance of 0.992 AUC and 97.7% accuracy. The data can be used for whole-slide cross-modality analyses, e.g., relationships between immunochemical signals and anaplastic histological features. PathoFusion has the potential to be applied to additional problems that seek to correlate heterogeneous data streams and to serve as a clinically applicable, weakly supervised system for histological image analyses in (neuro)pathology.
Collapse
Affiliation(s)
- Islam Alzoubi
- School of Computer Science, The University of Sydney, J12/1 Cleveland St, Sydney, NSW 2008, Australia; (I.A.); (G.B.); (R.Z.)
| | - Guoqing Bao
- School of Computer Science, The University of Sydney, J12/1 Cleveland St, Sydney, NSW 2008, Australia; (I.A.); (G.B.); (R.Z.)
| | - Rong Zhang
- School of Computer Science, The University of Sydney, J12/1 Cleveland St, Sydney, NSW 2008, Australia; (I.A.); (G.B.); (R.Z.)
| | - Christina Loh
- Ken Parker Brain Tumour Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia; (C.L.); (Y.Z.)
| | - Yuqi Zheng
- Ken Parker Brain Tumour Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia; (C.L.); (Y.Z.)
| | - Svetlana Cherepanoff
- St Vincent’s Hospital, Victoria Street, Darlinghurst, NSW 2010, Australia; (S.C.); (G.G.)
| | - Gary Gracie
- St Vincent’s Hospital, Victoria Street, Darlinghurst, NSW 2010, Australia; (S.C.); (G.G.)
| | - Maggie Lee
- Department of Neuropathology, RPA Hospital and Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (M.L.); (K.L.A.); (M.E.B.)
| | - Michael Kuligowski
- Sydney Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Kimberley L. Alexander
- Department of Neuropathology, RPA Hospital and Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (M.L.); (K.L.A.); (M.E.B.)
- Neurosurgery Department, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
| | - Michael E. Buckland
- Department of Neuropathology, RPA Hospital and Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (M.L.); (K.L.A.); (M.E.B.)
| | - Xiuying Wang
- School of Computer Science, The University of Sydney, J12/1 Cleveland St, Sydney, NSW 2008, Australia; (I.A.); (G.B.); (R.Z.)
| | - Manuel B. Graeber
- Ken Parker Brain Tumour Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia; (C.L.); (Y.Z.)
| |
Collapse
|
7
|
Wu Y, Cheng M, Huang S, Pei Z, Zuo Y, Liu J, Yang K, Zhu Q, Zhang J, Hong H, Zhang D, Huang K, Cheng L, Shao W. Recent Advances of Deep Learning for Computational Histopathology: Principles and Applications. Cancers (Basel) 2022; 14:1199. [PMID: 35267505 PMCID: PMC8909166 DOI: 10.3390/cancers14051199] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 01/10/2023] Open
Abstract
With the remarkable success of digital histopathology, we have witnessed a rapid expansion of the use of computational methods for the analysis of digital pathology and biopsy image patches. However, the unprecedented scale and heterogeneous patterns of histopathological images have presented critical computational bottlenecks requiring new computational histopathology tools. Recently, deep learning technology has been extremely successful in the field of computer vision, which has also boosted considerable interest in digital pathology applications. Deep learning and its extensions have opened several avenues to tackle many challenging histopathological image analysis problems including color normalization, image segmentation, and the diagnosis/prognosis of human cancers. In this paper, we provide a comprehensive up-to-date review of the deep learning methods for digital H&E-stained pathology image analysis. Specifically, we first describe recent literature that uses deep learning for color normalization, which is one essential research direction for H&E-stained histopathological image analysis. Followed by the discussion of color normalization, we review applications of the deep learning method for various H&E-stained image analysis tasks such as nuclei and tissue segmentation. We also summarize several key clinical studies that use deep learning for the diagnosis and prognosis of human cancers from H&E-stained histopathological images. Finally, online resources and open research problems on pathological image analysis are also provided in this review for the convenience of researchers who are interested in this exciting field.
Collapse
Affiliation(s)
- Yawen Wu
- MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (Y.W.); (S.H.); (Z.P.); (Y.Z.); (J.L.); (K.Y.); (Q.Z.); (D.Z.)
| | - Michael Cheng
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.C.); (J.Z.); (K.H.)
- Regenstrief Institute, Indiana University, Indianapolis, IN 46202, USA
| | - Shuo Huang
- MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (Y.W.); (S.H.); (Z.P.); (Y.Z.); (J.L.); (K.Y.); (Q.Z.); (D.Z.)
| | - Zongxiang Pei
- MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (Y.W.); (S.H.); (Z.P.); (Y.Z.); (J.L.); (K.Y.); (Q.Z.); (D.Z.)
| | - Yingli Zuo
- MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (Y.W.); (S.H.); (Z.P.); (Y.Z.); (J.L.); (K.Y.); (Q.Z.); (D.Z.)
| | - Jianxin Liu
- MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (Y.W.); (S.H.); (Z.P.); (Y.Z.); (J.L.); (K.Y.); (Q.Z.); (D.Z.)
| | - Kai Yang
- MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (Y.W.); (S.H.); (Z.P.); (Y.Z.); (J.L.); (K.Y.); (Q.Z.); (D.Z.)
| | - Qi Zhu
- MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (Y.W.); (S.H.); (Z.P.); (Y.Z.); (J.L.); (K.Y.); (Q.Z.); (D.Z.)
| | - Jie Zhang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.C.); (J.Z.); (K.H.)
- Regenstrief Institute, Indiana University, Indianapolis, IN 46202, USA
| | - Honghai Hong
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510006, China;
| | - Daoqiang Zhang
- MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (Y.W.); (S.H.); (Z.P.); (Y.Z.); (J.L.); (K.Y.); (Q.Z.); (D.Z.)
| | - Kun Huang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.C.); (J.Z.); (K.H.)
- Regenstrief Institute, Indiana University, Indianapolis, IN 46202, USA
| | - Liang Cheng
- Departments of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Wei Shao
- MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (Y.W.); (S.H.); (Z.P.); (Y.Z.); (J.L.); (K.Y.); (Q.Z.); (D.Z.)
| |
Collapse
|