1
|
Xu M, Wu K, He R, He J, Yang G, Ma H, Peng L, Zhang S, Tan L, Zhang Z, Cai Q. Design, synthesis and evaluation of (E)-1-(4-(2-(1H-pyrazol-5-yl)vinyl)phenyl) derivatives as next generation selective RET inhibitors overcoming RET solvent front mutations (G810C/R). Eur J Med Chem 2025; 286:117294. [PMID: 39879936 DOI: 10.1016/j.ejmech.2025.117294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/31/2025]
Abstract
RET is a well-recognized drug target for cancer treatment. Despite the promising efficacy of selective second-generation RET inhibitors Selpercatinib and Pralsetinib, the clinical benefits have been compromised due to the quickly developed resistance to these drugs. RET G810 mutations at the solvent front site have been identified as the major on-target mutations contributing to resistance against Selpercatinib and Pralsetinib. Therefore, there is an urgent need for the development of next-generation RET inhibitors to overcome acquired solvent-front resistance mutations. In this study, a series of (E)-1-(4-(2-(1H-pyrazol-5-yl)vinyl)phenyl) derivatives have been identified as selective next-generation RET inhibitors. The representative compound, CQ1373 exhibits potent cellular potency with IC50 values of 13.0, 25.7 and 28.4 nM against BaF3 cells expressing CCDC6-RET, CCDC6-RET-G810C and CCDC6-RET-G810R, respectively. A comprehensive selectivity profile across 89 kinases reveals that CQ1373 demonstrates good selectivity toward wild-type RET and solvent front mutants G810C/R with IC50 values of 4.2, 7.1 and 32.4 nM, respectively. Furthermore, western blot analysis reveals that CQ1373 effectively inhibits RET phosphorylation and downstream signaling through SHC. It also induces apoptosis and cell cycle arrest in a dose-dependent manner in BaF3 cells harboring CCDC6-RET, CCDC6-RET-G810C and CCDC6-RET-G810R fusions. More significantly, CQ1373 exhibits promising in vivo anti-tumor efficacy in a CCDC6-RET-G810R mice xenograft model, highlighting its potentials for RET-driven cancers treatment.
Collapse
Affiliation(s)
- Mingjin Xu
- College of Chemistry and Materials Science, Zhejiang Normal University, No. 688 Yingbin Road, Jinhua, Zhejiang Province, 321004, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, School of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Kaifu Wu
- College of Chemistry and Materials Science, Zhejiang Normal University, No. 688 Yingbin Road, Jinhua, Zhejiang Province, 321004, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, School of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Rui He
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, School of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jiahuan He
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, School of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Gangpeng Yang
- College of Chemistry and Materials Science, Zhejiang Normal University, No. 688 Yingbin Road, Jinhua, Zhejiang Province, 321004, China
| | - Haowen Ma
- College of Chemistry and Materials Science, Zhejiang Normal University, No. 688 Yingbin Road, Jinhua, Zhejiang Province, 321004, China
| | - Lijie Peng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Shuyao Zhang
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510632, China
| | - Li Tan
- College of Chemistry and Materials Science, Zhejiang Normal University, No. 688 Yingbin Road, Jinhua, Zhejiang Province, 321004, China.
| | - Zhang Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, School of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, 510632, China; Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510632, China.
| | - Qian Cai
- College of Chemistry and Materials Science, Zhejiang Normal University, No. 688 Yingbin Road, Jinhua, Zhejiang Province, 321004, China.
| |
Collapse
|
2
|
Clifton-Bligh RJ. Mechanisms of resistance to RET-directed therapies. Endocr Relat Cancer 2025; 32:e240224. [PMID: 39655713 PMCID: PMC11798414 DOI: 10.1530/erc-24-0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025]
Abstract
The association between RET and multiple endocrine neoplasia type 2 was established in 1993 and remains one of the very few oncogenes for which distinct phenotypes (medullary thyroid cancer or pheochromocytoma) are associated with the same hot-spot variants occurring in either germline or somatic DNA. Somatic RET fusion events have also been described in several cancers, including papillary thyroid cancer, non-small-cell lung cancer, breast cancer, salivary gland cancer and pancreatic cancer. Highly selective RET inhibitors have improved outcomes in RET-altered cancers and have been well-tolerated. Nevertheless, primary and acquired drug resistance has been observed, arising from distinct genomic alterations either in RET (on-target resistance) or via alternate oncogenic pathways (bypass resistance). The same mechanisms of resistance have been observed across multiple cancer types, which implies RET-altered cancers evolve away from RET addiction via stochastic subclonal events. Understanding these mechanisms is crucial for identifying therapeutic opportunities to overcome resistance. Successful treatment targeting bypass oncogenes has been reported in several instances, at least for short-term outcomes; in contrast, although several compounds have been reported to overcome on-target RET alterations, none have yet been translated into routine clinical practice and this remains an area of urgent clinical need.
Collapse
Affiliation(s)
- Roderick J Clifton-Bligh
- Cancer Genetics, Kolling Institute, Royal North Shore Hospital and University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Mina SA, Shanshal M, Leventakos K, Parikh K. Emerging Targeted Therapies in Non-Small-Cell Lung Cancer (NSCLC). Cancers (Basel) 2025; 17:353. [PMID: 39941723 PMCID: PMC11816067 DOI: 10.3390/cancers17030353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/13/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
Targeted therapies have changed the treatment landscape of non-small-cell lung cancer and led to improved patient survival across all stages of lung cancer. Newer advances in common and novel oncogenic drivers continue to occur at vigorous speed, making it challenging to stay up to date with the rapidly evolving field. In this article, we review the emerging perspectives in the treatment of actionable targets in lung cancer. We focus on the development of newer KRAS-directed therapies, particularly on non-G12C mutations, pan-RAS inhibitors, and RAS-GTP inhibitors. We also describe the current standard of care for EGFR- and ALK-altered NSCLC and dive into the novel treatments expected to be in the clinic soon. A similar approach is taken toward MET, HER2, RET, ROS1, and FGFR alterations as emerging targets in non-small-cell lung cancer. Finally, we conclude this review with the current body of evidence for targeting TROP-2 as a novel target, potentially of importance in post-targeted therapy scenarios.
Collapse
Affiliation(s)
- Syeda A. Mina
- Division of Hematology and Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Kaushal Parikh
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Shen J, Liu J, Tan Z, Li A, Chen S, Li Y. Structure-Based Design of 2-Aminopyrazolpyrimidopyridone Derivatives as New Rearranged During Transfection (RET) Kinase Inhibitors. Chem Biol Drug Des 2025; 105:e70039. [PMID: 39739433 DOI: 10.1111/cbdd.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
RET (Rearranged during transfection) kinase is a validated target for non-small cell lung cancer (NSCLC). In 2020, two selective RET inhibitors, selpercatinib and pralsetinib were approved by the US FDA. However, high treatment costs and clinically acquired resistance (e.g., G810C/S/R) become the new challenges for RET-based therapies. In this work, we discovered a series of 2-aminopyrazolpyrimidopyridone RET inhibitors to overcome the V804M and G810C resistant mutations. One of the compounds, 8w, exhibited inhibitory potency against the BaF3 cells harboring CCDC6-RETV804M mutation with an IC50 value of 0.715 μM. The compound also dose-dependently suppressed the activation of RET and downstream signals. Another compound, 8s suppressed BaF3 cells harboring CCDC6-RETG810C mutation with an IC50 value of 2.91 μM. However, the poor solubility of these compounds will limit their further development. Therefore, compound 8w and 8s might be promising lead compounds for the development of novel RETV804M and RETG810C inhibitors overcoming the clinically acquired resistance.
Collapse
Affiliation(s)
- Jiayi Shen
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou, China
| | - Jihu Liu
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou, China
| | - Zhiyong Tan
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou, China
| | - Anzhi Li
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou, China
| | - Sheng Chen
- Jiangxi ChiralSyn Biological Medicine Co. Ltd, Nanchang, China
| | - Yongdong Li
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou, China
| |
Collapse
|
5
|
Santillan MR, Dadu R, Gagel RF, Grubbs EG, Hu MI. Systemic Therapies for Advanced Medullary Thyroid Carcinoma. Recent Results Cancer Res 2025; 223:293-307. [PMID: 40102263 DOI: 10.1007/978-3-031-80396-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Medullary thyroid carcinoma (MTC) is a rare disease that is indolent in the majority of patients. In a subset of patients, the cancer is more aggressive with symptomatic or progressive disease metastasizing to cervical neck structures, lungs, liver, and/or bones. Definitive cure for metastatic MTC remains elusive. Understanding oncogenic pathways and molecular drivers of disease have led to development and approval of multikinase and highly-specific RET inhibitors for the management of progressive MTC. RET mutations are the most common drivers in MTC, followed by mutually exclusive RAS mutations. Cabozantinib and vandetanib, multikinase inhibitors (MKIs) that exert their therapeutic effect mainly through antiangiogenesis by targeting the vascular endothelial growth factor receptor, have mild anti-RET activity. Despite conveying clinical responses in MTC, MKIs have significant off-target activity causing marked toxicities limiting their effectiveness. Potent and selective RET inhibitors, selpercatinib and pralsetinib, demonstrate significant efficacy in RET-altered cancers and more tolerable side effect profiles than MKIs. However, durable responses can be limited by the acquisition of mutations which confer drug resistance to available treatments. Thus, development of more effective treatments for advanced, progressive MTC remains an urgent priority. In this chapter, we describe the current spectrum of systemic therapies for MTC, their limitations, and ongoing investigations.
Collapse
Affiliation(s)
- Marco Ruiz Santillan
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ramona Dadu
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert F Gagel
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth G Grubbs
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mimi I Hu
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
Hamidi S, Yedururi S, Hu MI, Busaidy NL, Sherman SI, Jimenez C, Grubbs EG, Maniakas A, Zafereo ME, Subbiah V, Waguespack SG. Efficacy and Safety of Selective RET Inhibitors in Patients with Advanced Hereditary Medullary Thyroid Carcinoma. Thyroid 2025; 35:6-17. [PMID: 39630530 DOI: 10.1089/thy.2024.0495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Background: Two selective RET inhibitors (RETis) are effective in treating REarranged during Transfection (RET)-altered medullary thyroid carcinoma (MTC), but clinical trials did not distinguish responses between hereditary MTC (hMTC) and sporadic MTC (sMTC) cases. We reviewed our single-center experience using a RETi to treat advanced hMTC. Methods: We conducted a retrospective cohort study of patients with hMTC treated with a selective RETi at a tertiary cancer center. The primary outcome was overall response rate using Response Evaluation Criteria in Solid Tumors (RECIST) v1.1. Secondary end points included overall survival (OS), progression-free survival (PFS), biochemical response rate, and safety. Results: We identified 23 evaluable patients as follows: 15 (65%) multiple endocrine neoplasia (MEN)2A and 8 (35%) MEN2B. Median age at start of RETi was 51 years (range, 15-79). All patients had distant metastases, and 52% (12/23) had received prior systemic therapy (median = 1, range, 0-3). Patients were treated with selpercatinib (n = 13) or pralsetinib (n = 10), 57% (13/23) within a clinical trial. Median duration of RETi was 25 months (range, 3-72) with 11/23 (48%) patients remaining on drug at data cutoff due to an ongoing response. Median duration of follow-up was 49 months (range, 9-72). Best radiographical response was partial response in 18 (78%) and stable disease in 5 (22%) patients. Median OS was 51 months (confidence interval, 40.5-61.3); median PFS was not reached. Most common adverse events (AEs) were increased alanine aminotransferase (ALT) (48%) and aspartate aminotransferase (26%), dry mouth (39%), QT interval prolongation (39%), fatigue (35%), and hypertension (26%). AEs led to dose reductions in eight (35%) patients. No grade 5 treatment-related AEs occurred. While the germline nature of the RET pathogenic variant in hMTC could hypothetically result in increased drug-related toxicity, the incidence of most AEs, other than grade 1-2 ALT elevation and QT interval prolongation, was comparable to published clinical trials. Conclusions: In patients with advanced hMTC, selective RETis appear safe and effective with outcomes similar to clinical trial cohorts, which mostly comprised patients with sMTC. Duration of response and AE profile was similar to sMTC, although longer follow-up and larger patient numbers are needed to confirm this.
Collapse
Affiliation(s)
- Sarah Hamidi
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sireesha Yedururi
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mimi I Hu
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naifa L Busaidy
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven I Sherman
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Camilo Jimenez
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elizabeth G Grubbs
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anastasios Maniakas
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mark E Zafereo
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven G Waguespack
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
7
|
Qiao JX, Williams D, Gill P, Li L, Norris D, Tokarski JS, Wong J, Qi H, Hafeji Y, Downes DP, Degnen B, Wang YK, Locke G, Fang H, Yu F, Xu S, Naglich J, Zhang J, Nanjappa P, Dai C, Chourb L, Napoline J, Tester R, Jorge C, Li YX, Mathur A, Barbieri C, Soars MG, Venkatanarayan A, Lees E, Borzilleri RM, Gavai AV, Wichroski M, Dhar TGM. Discovery and Synthesis of Heterobifunctional Degraders of Rearranged during Transfection (RET) Kinase. J Med Chem 2024; 67:19736-19754. [PMID: 39437163 DOI: 10.1021/acs.jmedchem.4c02083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
We describe the design, synthesis, and structure-activity relationship (SAR) of heterobifunctional RET ligand-directed degraders (LDDs) derived from three different second-generation RET inhibitors. These LDDs are composed of a target binding motif (TBM) that binds to the RET protein, a linker, and a cereblon binding motif (CBM) as the E3 ligase recognition unit. This led to the identification of a series of pyrazolopyridine-based heterobifunctional LDDs, as exemplified by compound 39. LDD 39 demonstrated high in vitro inhibitory and degradation potency against both RET wild-type and the two representative mutants, V804M and G810R. Importantly, in PK/PD studies, 39 exhibited a differentiated and favorable in vivo profile compared to the corresponding tyrosine kinase inhibitor (TKI), compound 3. Robust and sustained degradation of total-RET (tRET) protein and inhibition of phospho-RET (pRET) signaling were observed in TPC-1 xenograft tumors driven by RET and the RET/G810R mutant following a single dose of LDD 39 at 15 and 75 mg/kg, respectively.
Collapse
Affiliation(s)
- Jennifer X Qiao
- Discovery Chemistry, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - David Williams
- Discovery Chemistry, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Patrice Gill
- Discovery Chemistry, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Ling Li
- Discovery Chemistry, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Derek Norris
- Discovery Chemistry, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - John S Tokarski
- Molecular Structure & Design, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Jessica Wong
- Oncology Discovery Biology, Mechanism of Cancer Resistance, Bristol Myers Squibb, Cambridge, Massachusetts 02141, United States
| | - Huilin Qi
- Oncology Discovery Biology, Mechanism of Cancer Resistance, Bristol Myers Squibb, Cambridge, Massachusetts 02141, United States
| | - Yamnah Hafeji
- Oncology Discovery Biology, Mechanism of Cancer Resistance, Bristol Myers Squibb, Cambridge, Massachusetts 02141, United States
| | - Daniel P Downes
- Leads Discovery & Optimization, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Bill Degnen
- Leads Discovery & Optimization, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Ying-Kai Wang
- Leads Discovery & Optimization, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Gregory Locke
- Leads Discovery & Optimization, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Hua Fang
- Leads Discovery & Optimization, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Fei Yu
- Leads Discovery & Optimization, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Songmei Xu
- Leads Discovery & Optimization, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Joseph Naglich
- Leads Discovery & Optimization, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Jun Zhang
- Leads Discovery & Optimization, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Purushothama Nanjappa
- Discovery Pharmacology and in vivo Biology, Bristol Myers Squibb, Cambridge, Massachusetts 02141, United States
| | - Chao Dai
- Discovery Pharmacology and in vivo Biology, Bristol Myers Squibb, Cambridge, Massachusetts 02141, United States
| | - Lisa Chourb
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Cambridge, Massachusetts 02141, United States
| | - Jonathan Napoline
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Cambridge, Massachusetts 02141, United States
| | - Richland Tester
- Department of Discovery Synthesis, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Christine Jorge
- Department of Discovery Synthesis, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Yi-Xin Li
- Department of Discovery Synthesis, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Arvind Mathur
- Department of Discovery Synthesis, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Christopher Barbieri
- Leads Discovery & Optimization, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Matthew G Soars
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Cambridge, Massachusetts 02141, United States
| | - Avinashnarayan Venkatanarayan
- Oncology Discovery Biology, Mechanism of Cancer Resistance, Bristol Myers Squibb, Cambridge, Massachusetts 02141, United States
| | - Emma Lees
- Oncology Discovery Biology, Mechanism of Cancer Resistance, Bristol Myers Squibb, Cambridge, Massachusetts 02141, United States
| | - Robert M Borzilleri
- Discovery Chemistry, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Ashvinikumar V Gavai
- Discovery Chemistry, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Michael Wichroski
- Oncology Discovery Biology, Mechanism of Cancer Resistance, Bristol Myers Squibb, Cambridge, Massachusetts 02141, United States
| | - T G Murali Dhar
- Discovery Chemistry, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| |
Collapse
|
8
|
Chen L, Xu N, Gou D, Song J, Zhou M, Zhang Y, Zhang H, Zhu L, Huang W, Zhu Y, Gao C, Gu D, Xu Y, Zhou H. TRPM8 overexpression suppresses hepatocellular carcinoma progression and improves survival by modulating the RTP3/STAT3 pathway. Cancer Med 2024; 13:e70109. [PMID: 39385506 PMCID: PMC11464657 DOI: 10.1002/cam4.70109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/02/2024] [Accepted: 08/04/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is a malignant tumour associated with high morbidity and mortality rates worldwide. Recently, TRPM8 was reported to play an important role in tumour progression. However, the precise role of TRPM8 in HCC remains unclear. In this study, we explored the expression levels, molecular functions and underlying mechanisms of TRPM8 in HCC. METHODS Tissue samples were used to analyse the expression of TRPM8 to assess its diagnostic value for prognosis. Cell Counting Kit-8, EdU and colony formation assays were performed to evaluate the effects of TRPM8 on cell proliferation, whereas the Transwell assay was used to assess cell migration and invasion. The role of TRPM8 in vivo was evaluated using a mouse subcutaneous xenograft tumour model. We performed PPI network analyses to understand the possible mechanisms of TRPM8 action. RESULTS TRPM8 expression was decreased in HCC tissues and was correlated with histological grade and poor patient prognosis. Functionally, TRPM8 repressed the proliferation and metastasis of HCC cells both in vitro and in vivo by modulating the RTP3/STAT3 signalling pathway. CONCLUSION Our findings underscore the critical role of the TRPM8-RTP3-STAT3 axis in maintaining the malignant progression of HCC. Moreover, our study demonstrates that AD80 is involved in anti-tumour processes by upregulating the expression of TRPM8.
Collapse
Affiliation(s)
- Lichan Chen
- Department of Laboratory MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital; Shenzhen Key Laboratory of Medical Laboratory and Molecular Diagnostics; Guangzhou Medical UniversityShenzhenChina
| | - Nansong Xu
- State key laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - DongMei Gou
- Shenzhen Third People's HospitalSouthern University of Science and TechnologyShenzhenChina
| | - Jianning Song
- Department of Laboratory MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital; Shenzhen Key Laboratory of Medical Laboratory and Molecular Diagnostics; Guangzhou Medical UniversityShenzhenChina
| | - Mingqin Zhou
- Department of Critical Care MedicineCancer Hospital of Shantou University Medical CollegeShantouChina
| | - Yajun Zhang
- Guangzhou University of Chinese MedicineGuangzhouChina
| | - Haohua Zhang
- Department of Laboratory MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital; Shenzhen Key Laboratory of Medical Laboratory and Molecular Diagnostics; Guangzhou Medical UniversityShenzhenChina
| | - Liwen Zhu
- Department of Laboratory MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital; Shenzhen Key Laboratory of Medical Laboratory and Molecular Diagnostics; Guangzhou Medical UniversityShenzhenChina
| | - Weihong Huang
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Yue Zhu
- Medicine Department of Biochemistry and Molecular BiologyMedical College of Jinan UniversityGuangzhouChina
| | - Cheng Gao
- Department of Laboratory MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital; Shenzhen Key Laboratory of Medical Laboratory and Molecular Diagnostics; Guangzhou Medical UniversityShenzhenChina
| | - Dayong Gu
- Department of Laboratory MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital; Shenzhen Key Laboratory of Medical Laboratory and Molecular Diagnostics; Guangzhou Medical UniversityShenzhenChina
| | - Yong Xu
- Shenzhen Third People's HospitalSouthern University of Science and TechnologyShenzhenChina
| | - Hongzhong Zhou
- Department of Laboratory MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital; Shenzhen Key Laboratory of Medical Laboratory and Molecular Diagnostics; Guangzhou Medical UniversityShenzhenChina
| |
Collapse
|
9
|
Zhang Y, Zheng WH, Zhou SH, Gu JL, Yu Q, Zhu YZ, Yan YJ, Zhu Z, Shang JB. Molecular genetics, therapeutics and RET inhibitor resistance for medullary thyroid carcinoma and future perspectives. Cell Commun Signal 2024; 22:460. [PMID: 39342195 PMCID: PMC11439284 DOI: 10.1186/s12964-024-01837-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
Medullary thyroid carcinoma (MTC) is a rare type of thyroid malignancy that accounts for approximately 1-2% of all thyroid cancers (TCs). MTC include hereditary and sporadic cases, the former derived from a germline mutation of rearrangement during transfection (RET) proto-oncogene, whereas somatic RET mutations are frequently present in the latter. Surgery is the standard treatment for early stage MTC, and the 10-year survival rate of early MTC is over 80%. While for metastatic MTC, chemotherapy showing low response rate, and there was a lack of effective systemic therapies in the past. Due to the high risk (ca. 15-20%) of distant metastasis and limited systemic therapies, the 10-year survival rate of patients with advanced MTC was only 10-40% from the time of first metastasis. Over the past decade, targeted therapy for RET has developed rapidly, bringing hopes to patients with advanced and progressive MTC. Two multi-kinase inhibitors (MKIs) including Cabozantinib and Vandetanib have been shown to increase progression-free survival (PFS) for patients with metastatic MTC and have been approved as choices of first-line treatment. However, these MKIs have not prolonged overall survival (OS) and their utility is limited due to high rates of off-target toxicities. Recently, new generation TKIs, including Selpercatinib and Pralsetinib, have demonstrated highly selective efficacy against RET and more favorable side effect profiles, and gained approval as second-line treatment options. Despite the ongoing development of RET inhibitors, the management of advanced and progressive MTC remains challenging, drug resistance remains the main reason for treatment failure, and the mechanisms are still unclear. Besides, new promising therapeutic approaches, such as novel drug combinations and next generation RET inhibitors are under development. Herein, we overview the pathogenesis, molecular genetics and current management approaches of MTC, and focus on the recent advances of RET inhibitors, summarize the current situation and unmet needs of these RET inhibitors in MTC, and provide an overview of novel strategies for optimizing therapeutic effects.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Wei-Hui Zheng
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shi-Hong Zhou
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jia-Lei Gu
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou, Zhejiang, China
| | - Qing Yu
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yi-Zhou Zhu
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yu-Jie Yan
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Jin-Biao Shang
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China.
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Sayyah E, Oktay L, Tunc H, Durdagi S. Developing Dynamic Structure-Based Pharmacophore and ML-Trained QSAR Models for the Discovery of Novel Resistance-Free RET Tyrosine Kinase Inhibitors Through Extensive MD Trajectories and NRI Analysis. ChemMedChem 2024; 19:e202300644. [PMID: 38523069 DOI: 10.1002/cmdc.202300644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Activation of RET tyrosine kinase plays a critical role in the pathogenesis of various cancers, including non-small cell lung cancer, papillary thyroid cancers, multiple endocrine neoplasia type 2A and 2B (MEN2A, MEN2B), and familial medullary thyroid cancer. Gene fusions and point mutations in the RET proto-oncogene result in constitutive activation of RET signaling pathways. Consequently, developing effective inhibitors to target RET is of utmost importance. Small molecules have shown promise as inhibitors by binding to the kinase domain of RET and blocking its enzymatic activity. However, the emergence of resistance due to single amino acid changes poses a significant challenge. In this study, a structure-based dynamic pharmacophore-driven approach using E-pharmacophore modeling from molecular dynamics trajectories is proposed to select low-energy favorable hypotheses, and ML-trained QSAR models to predict pIC50 values of compounds. For this aim, extensive small molecule libraries were screened using developed ligand-based models, and potent compounds that are capable of inhibiting RET activation were proposed.
Collapse
Affiliation(s)
- Ehsan Sayyah
- Computational Biology and Molecular Simulations Lab, Department of Biophysics, School of Medicine, Bahçeşehir University, Istanbul, Turkey
- Computational Drug Design Center (HITMER), Bahçeşehir University, Istanbul, Turkey
| | - Lalehan Oktay
- Computational Biology and Molecular Simulations Lab, Department of Biophysics, School of Medicine, Bahçeşehir University, Istanbul, Turkey
- Computational Drug Design Center (HITMER), Bahçeşehir University, Istanbul, Turkey
| | - Huseyin Tunc
- Department of Biostatistics and Medical Informatics, School of Medicine, Bahçeşehir University, Istanbul, Turkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Lab, Department of Biophysics, School of Medicine, Bahçeşehir University, Istanbul, Turkey
- Computational Drug Design Center (HITMER), Bahçeşehir University, Istanbul, Turkey
- Molecular Therapy Lab, Department of Pharmaceutical Chemistry, School of Pharmacy, Bahçeşehir University, Istanbul, Turkey
| |
Collapse
|
11
|
Hamidi S, Hu MI. RET kinase inhibitors for the treatment of RET-altered thyroid cancers: Current knowledge and future directions. ANNALES D'ENDOCRINOLOGIE 2024; 85:118-126. [PMID: 38342224 DOI: 10.1016/j.ando.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
RET gain-of-function mutations are the most common drivers in medullary thyroid carcinoma, while RET fusions are identified in 5-10% of papillary thyroid carcinomas. Thus, RET plays a major role in the tumorigenesis of thyroid neoplasia, making it a valuable therapeutic target. Over a decade ago, multikinase inhibitors (MKIs) were first shown to have variable degrees of anti-RET activity. Despite some clinical efficacy in RET-altered thyroid cancers, significant off-target activity of MKIs led to marked toxicities limiting their use. More recently, two potent, highly selective RET inhibitors, selpercatinib and pralsetinib, were shown to have notable efficacy in RET-altered cancers, associated with more tolerable side effect profiles than those of MKIs. However, these treatments are non-curative, and emerging evidence suggests that patients who progress on therapy acquire mutations conferring drug resistance. Thus, the quest for a more definitive treatment for advanced, RET-altered thyroid cancers continues. This year we celebrate the 30th anniversary of the association of germline mutations of the RET proto-oncogene with the multiple endocrine neoplasia (MEN) type 2 syndromes. In this timely review, we summarize the current state-of-the-art treatment strategies for RET-altered thyroid cancers, their limitations, as well as future therapeutic avenues.
Collapse
Affiliation(s)
- Sarah Hamidi
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer, Houston, TX, 77030, USA.
| | - Mimi I Hu
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer, Houston, TX, 77030, USA
| |
Collapse
|
12
|
Wang ZX, Li QQ, Cai J, Wu JZ, Wang JJ, Zhang MY, Wang QX, Tong ZJ, Yang J, Wei TH, Zhou Y, Dai WC, Ding N, Leng XJ, Sun SL, Xue X, Yu YC, Yang Y, Li NG, Shi ZH. Unraveling the Promise of RET Inhibitors in Precision Cancer Therapy by Targeting RET Mutations. J Med Chem 2024; 67:4346-4375. [PMID: 38484122 DOI: 10.1021/acs.jmedchem.3c02319] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Over the past decades, the role of rearranged during transfection (RET) alterations in tumorigenesis has been firmly established. RET kinase inhibition is an essential therapeutic target in patients with RET-altered cancers. In clinical practice, initial efficacy can be achieved in patients through the utilization of multikinase inhibitors (MKIs) with RET inhibitory activity. However, the effectiveness of these MKIs is impeded by the adverse events associated with off-target effects. Recently, many RET-selective inhibitors, characterized by heightened specificity and potency, have been developed, representing a substantial breakthrough in the field of RET precision oncology. This Perspective focuses on the contemporary understanding of RET mutations, recent advancements in next-generation RET inhibitors, and the challenges associated with resistance to RET inhibitors. It provides valuable insights for the development of next-generation MKIs and selective RET inhibitors.
Collapse
Affiliation(s)
- Zi-Xuan Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Qing-Qing Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jiao Cai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jia-Zhen Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jing-Jing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Meng-Yuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Qing-Xin Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Zhen-Jiang Tong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jin Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Tian-Hua Wei
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yun Zhou
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Wei-Chen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xue-Jiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| |
Collapse
|
13
|
Clark L, Fisher G, Brook S, Patel S, Arkenau HT. Selective RET Inhibitors (SRIs) in Cancer: A Journey from Multi-Kinase Inhibitors to the Next Generation of SRIs. Cancers (Basel) 2023; 16:31. [PMID: 38201460 PMCID: PMC10778005 DOI: 10.3390/cancers16010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
RET is a receptor tyrosine kinase that plays an important role in the development of neurons and kidneys. The gene encoding the rearranged-during-transfection (RET) receptor tyrosine kinase was first discovered in the 1980s. Activating RET mutations and rearrangements have since been identified as actionable drivers of oncogenesis in numerous cancer types and are most prevalent in thyroid and non-small-cell lung cancer. Following the modest success of repurposed RET-active multikinase inhibitors, the first selective RET inhibitors (SRIs), selpercatinib and pralsetinib, received regulatory approval in 2020. Now, thousands of patients with RET-altered cancers have benefited from first-generation SRIs, with impressive deep and durable responses. However, following prolonged treatment with these SRIs, a number of acquired on-target resistance mutations have been identified together with other non-RET-dependent resistance mechanisms. Today, the focus is on how we can further evolve and improve the treatment of RET-altered tumors with next-generation SRIs, and a number of candidate drugs are in development. The ideal next-generation SRIs will be active against on-target acquired resistance alterations, including those that emerge in the CNS, and will have improved safety and tolerability relative to first-generation SRIs. In this review, we will provide an update on these candidates and their potential to meet the unmet clinical need for patients who progress on first-generation SRIs.
Collapse
|
14
|
Hamidi S, Hofmann MC, Iyer PC, Cabanillas ME, Hu MI, Busaidy NL, Dadu R. Review article: new treatments for advanced differentiated thyroid cancers and potential mechanisms of drug resistance. Front Endocrinol (Lausanne) 2023; 14:1176731. [PMID: 37435488 PMCID: PMC10331470 DOI: 10.3389/fendo.2023.1176731] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
The treatment of advanced, radioiodine refractory, differentiated thyroid cancers (RR-DTCs) has undergone major advancements in the last decade, causing a paradigm shift in the management and prognosis of these patients. Better understanding of the molecular drivers of tumorigenesis and access to next generation sequencing of tumors have led to the development and Food and Drug Administration (FDA)-approval of numerous targeted therapies for RR-DTCs, including antiangiogenic multikinase inhibitors, and more recently, fusion-specific kinase inhibitors such as RET inhibitors and NTRK inhibitors. BRAF + MEK inhibitors have also been approved for BRAF-mutated solid tumors and are routinely used in RR-DTCs in many centers. However, none of the currently available treatments are curative, and most patients will ultimately show progression. Current research efforts are therefore focused on identifying resistance mechanisms to tyrosine kinase inhibitors and ways to overcome them. Various novel treatment strategies are under investigation, including immunotherapy, redifferentiation therapy, and second-generation kinase inhibitors. In this review, we will discuss currently available drugs for advanced RR-DTCs, potential mechanisms of drug resistance and future therapeutic avenues.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ramona Dadu
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
15
|
Arora A, Zaemes J, Ozdemirli M, Kim C. Response to selpercatinib in a patient with RET fusion-positive pulmonary large-cell neuroendocrine carcinoma: A case report. Front Oncol 2023; 13:1134151. [PMID: 36998440 PMCID: PMC10046803 DOI: 10.3389/fonc.2023.1134151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
Large-cell neuroendocrine carcinoma (LCNEC) is a rare subtype of non-small-cell lung cancer associated with a poor prognosis. LCNEC is genetically heterogeneous, and studies have revealed distinct molecular subtypes of LCNEC, which may have therapeutic implications. Herein, we present a case of a patient with stage IV LCNEC harboring a KIF5B-RET fusion whose disease responded to the selective RET inhibitor selpercatinib both extra- and intra-cranially, highlighting the importance of comprehensive molecular testing in LCNEC for selection of optimal treatment.
Collapse
Affiliation(s)
- Aakriti Arora
- Department of Medicine, MedStar Washington Hospital Center, Washington, DC, United States
| | - Jacob Zaemes
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Metin Ozdemirli
- Department of Pathology, MedStar Georgetown University Hospital, Washington, DC, United States
| | - Chul Kim
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| |
Collapse
|
16
|
Zhao L, Wang N, Zhang D, Jia Y, Kong F. A comprehensive overview of the relationship between RET gene and tumor occurrence. Front Oncol 2023; 13:1090757. [PMID: 36865807 PMCID: PMC9971812 DOI: 10.3389/fonc.2023.1090757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
RET gene plays significant roles in the nervous system and many other tissues. Rearranged during transfection (RET) mutation is related to cell proliferation, invasion, and migration. Many invasive tumors (e.g., non-small cell lung cancer, thyroid cancer, and breast cancer) were found to have changes in RET. Recently, great efforts have been made against RET. Selpercatinib and pralsetinib, with encouraging efficacy, intracranial activity, and tolerability, were approved by the Food and Drug Administration (FDA) in 2020. The development of acquired resistance is inevitable, and a deeper exploration should be conducted. This article systematically reviewed RET gene and its biology as well as the oncogenic role in multiple cancers. Moreover, we also summarized recent advances in the treatment of RET and the mechanism of drug resistance.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Na Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Dou Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China,*Correspondence: Fanming Kong,
| |
Collapse
|
17
|
Rocco D, Sapio L, Della Gravara L, Naviglio S, Gridelli C. Treatment of Advanced Non-Small Cell Lung Cancer with RET Fusions: Reality and Hopes. Int J Mol Sci 2023; 24:2433. [PMID: 36768754 PMCID: PMC9916548 DOI: 10.3390/ijms24032433] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
RET-selective tyrosine kinase inhibitors (TKIs) selpercatinib and pralsetinib have revolutionized the landscape of RET-positive (RET+) advanced non-small cell lung cancer (NSCLC) treatment, thanks to their efficacy and safety profiles. This class of medications currently represents the standard of care for both naïve and patients that have not received selective RET-TKIs in the first-line setting. However, we presently lack a satisfactory understanding of resistance mechanism developing after selective RET-TKIs usage, as well as a specific treatment for patients progressing on selpercatinib or pralsetinib. Chemotherapy ± immunotherapy is considered as a recommended subsequent second-line regimen in these patients. Therefore, it is of paramount importance to better define and understand the resistance mechanisms triggered by RET-TKIs. With this in mind, the present review article has been conceived to provide a comprehensive overview about RET+ advanced NSCLC, both from a therapeutic and molecular point of view. Besides comparing the clinical outcome achieved in RET+ advanced NSCLC patients after multikinase inhibitors (MKIs) and/or RET-selective TKIs' administration, we focused on the molecular mechanisms accountable for their long-term resistance. Finally, a critical perspective on many of today's most debated issues and concerns is provided, with the purpose of shaping the possible pharmacological approaches for tomorrow's therapies.
Collapse
Affiliation(s)
- Danilo Rocco
- Department of Pulmonary Oncology, AORN dei Colli Monaldi, 80131 Naples, Italy
| | - Luigi Sapio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Luigi Della Gravara
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Silvio Naviglio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Cesare Gridelli
- Division of Medical Oncology, ‘S.G. Moscati’ Hospital, 83100 Avellino, Italy
| |
Collapse
|
18
|
Shen Z, Qiu B, Li L, Yang B, Li G. Targeted therapy of RET fusion-positive non-small cell lung cancer. Front Oncol 2022; 12:1033484. [PMID: 36582799 PMCID: PMC9793070 DOI: 10.3389/fonc.2022.1033484] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022] Open
Abstract
Lung cancer has very high morbidity and mortality worldwide, and the prognosis is not optimistic. Previous treatments for non-small cell lung cancer (NSCLC) have limited efficacy, and targeted drugs for some gene mutations have been used in NSCLC with considerable efficacy. The RET proto-oncogene is located on the long arm of chromosome 10 with a length of 60,000 bp, and the expression of RET gene affects cell survival, proliferation, growth and differentiation. This review will describe the basic characteristics and common fusion methods of RET genes; analyze the advantages and disadvantages of different RET fusion detection methods; summarize and discuss the recent application of non-selective and selective RET fusion-positive inhibitors, such as Vandetanib, Selpercatinib, Pralsetinib and Alectinib; discuss the mechanism and coping strategies of resistance to RET fusion-positive inhibitors.
Collapse
Affiliation(s)
- Zixiong Shen
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Binxu Qiu
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Lin Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Bo Yang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China,*Correspondence: Bo Yang, ;; Guanghu Li,
| | - Guanghu Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China,*Correspondence: Bo Yang, ;; Guanghu Li,
| |
Collapse
|
19
|
Zhang Y, Chan S, He R, Liu Y, Song X, Tu ZC, Ren X, Zhou Y, Zhang Z, Wang Z, Zhou F, Ding K. 1-Methyl-3-((4-(quinolin-4-yloxy)phenyl)amino)-1H-pyrazole-4-carboxamide derivatives as new rearranged during Transfection (RET) kinase inhibitors capable of suppressing resistant mutants in solvent-front regions. Eur J Med Chem 2022; 244:114862. [DOI: 10.1016/j.ejmech.2022.114862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/28/2022]
|
20
|
Selective RET inhibitors shift the treatment pattern of RET fusion-positive NSCLC and improve survival outcomes. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04188-7. [PMID: 35838839 DOI: 10.1007/s00432-022-04188-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/04/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE Rearranged during transfection (RET) fusions are important genetic drivers in non-small cell lung cancer (NSCLC). Selective RET inhibitors are setting a new paradigm in RET-driven NSCLC. However, the real-world treatment patterns, outcomes and toxicity remain largely unknown. METHODS Data from RET fusion-positive NSCLC patients treated in our centre were retrospectively analysed. Of them, patients diagnosed before and after August 2018 were included in analysis of treatment patterns; and patients received selective RET inhibitors were eligible for analysis of adverse events (AEs). RESULTS Patients diagnosed before August 2018 (n = 30) predominantly received chemotherapy and immunotherapy (83%) as initial therapy, while patients diagnosed after August 2018 (n = 39) mainly received selective RET inhibitors (38.5% at first-line; 50.0% at second-line). In the total 69 patients, overall survival (OS) was prolonged in patients treated with selective RET inhibitors versus untreated patients (median 34.3 versus 17.5 months; p = 0.002) during a median follow-up of 28.7 months. But there was no difference between patients treated with immunotherapy versus untreated patients. In the 38 patients received selective RET inhibition, median progression-free survival (PFS) was 11.9 months. AEs ≥ grade 3 occurred in 42.1% patients and were not associated with PFS (p = 0.63) or OS (p = 0.60). Haematological toxicity ≥ grade 3 occurred in 31.6% patients and was the leading cause of drug discontinuation. CONCLUSION Selective RET inhibitors are increasingly being adopted into clinical practice and are associated with improved OS. However, treatment-related ≥ grade 3 AEs, especially haematologic AEs, occur frequently in real-world setting.
Collapse
|
21
|
Vodopivec DM, Hu MI. RET kinase inhibitors for RET-altered thyroid cancers. Ther Adv Med Oncol 2022; 14:17588359221101691. [PMID: 35756966 PMCID: PMC9218446 DOI: 10.1177/17588359221101691] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Precision oncology has opened a new era in cancer treatment focused on targeting specific cellular pathways directly involved in tumorigenesis. The REarrangement during Transfection (RET) proto-oncogene is involved in the pathogenesis of various thyroid cancer subtypes. Mutations in RET give rise to both hereditary and sporadic medullary thyroid cancer (MTC). RET fusions are found in follicular cell-derived thyroid cancers (papillary, poorly differentiated, and anaplastic). Hence, drugs that block the RET tyrosine kinase receptor have been explored in the management of locally advanced or metastatic thyroid cancer. The multikinase inhibitors (MKIs) with nonselective RET inhibition are sorafenib, lenvatinib, vandetanib, cabozantinib, and sunitinib. Although the efficacy of these drugs varies, a major issue is the lack of specificity resulting in a higher rate of drug-related toxicities, leading to dose reduction, interruption, or discontinuation. Moreover, MKIs are subject to drug resistance by RET Val804 residue gatekeeper mutations. In phase I/II clinical studies, the highly selective first-generation RET inhibitors, selpercatinib and pralsetinib, demonstrate high efficacy in controlling disease even in the presence of gatekeeper mutations combined with greater tolerability. However, resistance mechanisms such as RET solvent front mutations (SFMs) have evolved in some patients, giving the need to develop the selective second-generation RET inhibitors. Although the approval of selpercatinib and pralsetinib in 2020 has profoundly benefited patients with RET-altered thyroid cancer, further research into optimal treatment strategies, mechanisms of drug resistance, long-term consequences of potent RET-inhibition, and development of more effective agents against emergent mutations are much needed.
Collapse
Affiliation(s)
- Danica M Vodopivec
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4000, USA
| | - Mimi I Hu
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
22
|
Zhao L, Mei Q, Yu Y, Wang N, Zhang D, Liao D, Zuo J, Xie H, Jia Y, Kong F. Research Progress on RET Fusion in Non-Small-Cell Lung Cancer. Front Oncol 2022; 12:894214. [PMID: 35707347 PMCID: PMC9190697 DOI: 10.3389/fonc.2022.894214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/02/2022] [Indexed: 11/24/2022] Open
Abstract
Great progress has been made in the treatment of driver gene-positive Non- Small Cell Lung Cancer (NSCLC) in recent years. RET fusion was seen in 0.7% to 2% of NSCLC and was associated with younger age and never-smoker status. The pralsetinib and selpercatinib for RET fusion NSCLC was recommended by the 2021 NSCLC treatment guidelines. This review outlines the research progress in the treatment of RET fusion NSCLC, identifies current challenges and describes proposals for improving the outlook for these patients.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qingyun Mei
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yongchao Yu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Na Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Dou Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Dongying Liao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jinhui Zuo
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hongxia Xie
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
23
|
Pralsetinib: chemical and therapeutic development with FDA authorization for the management of RET fusion-positive non-small-cell lung cancers. Arch Pharm Res 2022; 45:309-327. [DOI: 10.1007/s12272-022-01385-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 05/17/2022] [Indexed: 12/27/2022]
|
24
|
Ramesh P, Veerappapillai S. Designing Novel Compounds for the Treatment and Management of RET-Positive Non-Small Cell Lung Cancer-Fragment Based Drug Design Strategy. Molecules 2022; 27:1590. [PMID: 35268691 PMCID: PMC8911629 DOI: 10.3390/molecules27051590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 11/29/2022] Open
Abstract
Rearranged during transfection (RET) is an oncogenic driver receptor that is overexpressed in several cancer types, including non-small cell lung cancer. To date, only multiple kinase inhibitors are widely used to treat RET-positive cancer patients. These inhibitors exhibit high toxicity, less efficacy, and specificity against RET. The development of drug-resistant mutations in RET protein further deteriorates this situation. Hence, in the present study, we aimed to design novel drug-like compounds using a fragment-based drug designing strategy to overcome these issues. About 18 known inhibitors from diverse chemical classes were fragmented and bred to form novel compounds against RET proteins. The inhibitory activity of the resultant 115 hybrid molecules was evaluated using molecular docking and RF-Score analysis. The binding free energy and chemical reactivity of the compounds were computed using MM-GBSA and density functional theory analysis, respectively. The results from our study revealed that the developed hybrid molecules except for LF21 and LF27 showed higher reactivity and stability than Pralsetinib. Ultimately, the process resulted in three hybrid molecules namely LF1, LF2, and LF88 having potent inhibitory activity against RET proteins. The scrutinized molecules were then subjected to molecular dynamics simulation for 200 ns and MM-PBSA analysis to eliminate a false positive design. The results from our analysis hypothesized that the designed compounds exhibited significant inhibitory activity against multiple RET variants. Thus, these could be considered as potential leads for further experimental studies.
Collapse
Affiliation(s)
| | - Shanthi Veerappapillai
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, India;
| |
Collapse
|
25
|
Chanana R, Jaiswal A. Are we there RET? CANCER RESEARCH, STATISTICS, AND TREATMENT 2022. [DOI: 10.4103/crst.crst_28_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
26
|
Jager EC, Broekman KE, Kruijff S, Links TP. State of the art and future directions in the systemic treatment of medullary thyroid cancer. Curr Opin Oncol 2022; 34:1-8. [PMID: 34669647 DOI: 10.1097/cco.0000000000000798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Systemic treatment is the only therapeutic option for patients with progressive, metastatic medullary thyroid cancer (MTC). Since the discovery of the rearranged during transfection (RET) proto-oncogene (100% hereditary, 60-90% sporadic MTC), research has focused on finding effective systemic therapies to target this mutation. This review surveys recent findings. RECENT FINDINGS Multikinase inhibitors are systemic agents targeting angiogenesis, inhibiting growth of tumor cells and cells in the tumor environment and healthy endothelium. In the phase III EXAM and ZETA trials, cabozantinib and vandetanib showed progression-free survival benefit, without evidence of prolonged overall survival. Selpercatinib and pralsetinib are kinase inhibitors with high specificity for RET; phase I and II studies showed overall response rates of 73% and 71% in first line, and 69% and 60% in second line treatment, respectively. Although resistance mechanisms to mutation-driven therapy will be a challenge in the future, phase III studies are ongoing and neo-adjuvant therapy with selpercatinib is being studied. SUMMARY The development of selective RET-inhibitors has expanded the therapeutic arsenal to control tumor growth in progressive MTC, with fewer adverse effects than multikinase inhibitors. Future studies should confirm their effectiveness, study neo-adjuvant strategies, and tackle resistance to these inhibitors, ultimately to improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Schelto Kruijff
- Department of Surgical Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | | |
Collapse
|
27
|
Ramesh P, Shin WH, Veerappapillai S. Discovery of a Potent Candidate for RET-Specific Non-Small-Cell Lung Cancer-A Combined In Silico and In Vitro Strategy. Pharmaceutics 2021; 13:pharmaceutics13111775. [PMID: 34834190 PMCID: PMC8619101 DOI: 10.3390/pharmaceutics13111775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
Rearranged during transfection (RET) is a tyrosine kinase oncogenic receptor, activated in several cancers including non-small-cell lung cancer (NSCLC). Multiple kinase inhibitors vandetanib and cabozantinib are commonly used in the treatment of RET-positive NSCLC. However, specificity, toxicity, and reduced efficacy limit the usage of multiple kinase inhibitors in targeting RET protein. Thus, in the present investigation, we aimed to figure out novel and potent candidates for the inhibition of RET protein using combined in silico and in vitro strategies. In the present study, screening of 11,808 compounds from the DrugBank repository was accomplished by different hypotheses such as pharmacophore, e-pharmacophore, and receptor cavity-based models in the initial stage. The results from the different hypotheses were then integrated to eliminate the false positive prediction. The inhibitory activities of the screened compounds were tested by the glide docking algorithm. Moreover, RF score, Tanimoto coefficient, prime-MM/GBSA, and density functional theory calculations were utilized to re-score the binding free energy of the docked complexes with high precision. This procedure resulted in three lead molecules, namely DB07194, DB03496, and DB11982, against the RET protein. The screened lead molecules together with reference compounds were then subjected to a long molecular dynamics simulation with a 200 ns time duration to validate the inhibitory activity. Further analysis of compounds using MM-PBSA and mutation studies resulted in the identification of potent compound DB07194. In essence, a cell viability assay with RET-specific lung cancer cell line LC-2/ad was also carried out to confirm the in vitro biological activity of the resultant compound, DB07194. Indeed, the results from our study conclude that DB07194 can be effectively translated for this new therapeutic purpose, in contrast to the properties for which it was originally designed and synthesized.
Collapse
Affiliation(s)
- Priyanka Ramesh
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, India;
| | - Woong-Hee Shin
- Department of Chemical Science Education, College of Education, Sunchon National University, Suncheon 57922, Korea
- Department of Advanced Components and Materials Engineering, Sunchon National University, Suncheon 57922, Korea
- Correspondence: (W.-H.S.); (S.V.)
| | - Shanthi Veerappapillai
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, India;
- Correspondence: (W.-H.S.); (S.V.)
| |
Collapse
|
28
|
Klubo-Gwiezdzinska J. Targeting RET-mutated thyroid and lung cancer in the personalised medicine era. Lancet Diabetes Endocrinol 2021; 9:473-474. [PMID: 34126047 PMCID: PMC9478888 DOI: 10.1016/s2213-8587(21)00152-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 02/01/2023]
Affiliation(s)
- Joanna Klubo-Gwiezdzinska
- Thyroid Tumors and Functional Thyroid Disorders Section, National Institute of Diabetes and Digestive and Kidney Diseases-National Institutes of Health, Bethesda, MD 20814, USA.
| |
Collapse
|