1
|
Casarcia N, Rogers P, Guld E, Iyer S, Li Y, Burcher JT, DeLiberto LK, Banerjee S, Bishayee A. Phytochemicals for the prevention and treatment of pancreatic cancer: Current progress and future prospects. Br J Pharmacol 2025; 182:2181-2234. [PMID: 37740585 DOI: 10.1111/bph.16249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023] Open
Abstract
Pancreatic cancer is the third leading cause of cancer-related deaths in the United States, owing to its aggressive nature and suboptimal treatment options, emphasizing the need for novel therapeutic approaches. Emerging studies have exhibited promising results regarding the therapeutic utility of plant-derived compounds (phytochemicals) in pancreatic cancer. The purpose of this review is to evaluate the potential of phytochemicals in the treatment and prevention of pancreatic cancer. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses was applied to collect articles for this review. Scholarly databases, including PubMed, Scopus and ScienceDirect, were queried for relevant studies using the following keywords: phytochemicals, phenolics, terpenoids, alkaloids, sulfur-containing compounds, in vitro, in vivo, clinical studies, pancreatic cancer, tumour, treatment and prevention. Aggregate results pooled from qualified studies indicate phytochemicals can inhibit pancreatic cancer cell growth or decrease tumour size and volume in animal models. These effects have been attributed to various mechanisms, such as increasing proapoptotic factors, decreasing antiapoptotic factors, or inducing cell death and cell cycle arrest. Notable signalling pathways modulated by phytochemicals include the rat sarcoma/mitogen activated protein kinase, wingless-related integration site/β-catenin and phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signal transduction pathways. Clinically, phytochemicals have been found to increase survival while being well-tolerated and safe, though research is scarce. While these promising results have produced great interest in this field, further in-depth studies are required to characterize the anticancer activities of phytochemicals before they can be utilized to prevent or treat pancreatic cancer in clinical practice. LINKED ARTICLES: This article is part of a themed issue Natural Products and Cancer: From Drug Discovery to Prevention and Therapy. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.10/issuetoc.
Collapse
Affiliation(s)
- Nicolette Casarcia
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Patrick Rogers
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Emma Guld
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Samvit Iyer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Yutong Li
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Jack T Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Lindsay K DeLiberto
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
2
|
Afroze N, Sundaram MK, Haque S, Hussain A. Long non-coding RNA involved in the carcinogenesis of human female cancer - a comprehensive review. Discov Oncol 2025; 16:122. [PMID: 39912983 PMCID: PMC11803034 DOI: 10.1007/s12672-025-01848-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025] Open
Abstract
Recent years have seen an increase in our understanding of lncRNA and their role in various disease states. lncRNA molecules have been shown to contribute to carcinogenesis and influence the various cancer hallmarks and signalling pathways. It is pertinent to understand the specific contributions and mechanisms of action of these molecules in various cancers. This review provides an overview of the various lncRNA entities that influence and regulate the gynaecological cancers, namely, cervical, breast, ovarian and uterine cancers. The review curates a list of the key players and their effect on cellular processes. lncRNA molecules show immense potential to be used as diagnostic and prognostic indicators and in therapeutic strategies. Several phytochemicals, small molecules, RNA-based regulators, oligos and gene editing tools show promise as a therapeutic strategy. While this review highlights the promising developments in this field, it also underscores the necessity for further research to delineate the complex role of lncRNAs in cancer.
Collapse
Affiliation(s)
- Nazia Afroze
- School of Life Sciences, Manipal Academy of Higher Education, Dubai Campus, P.O. Box 345050, Dubai, United Arab Emirates
| | - Madhumitha K Sundaram
- School of Life Sciences, Manipal Academy of Higher Education, Dubai Campus, P.O. Box 345050, Dubai, United Arab Emirates
| | - Shafiul Haque
- Department of Nursing, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
- School of Medicine, Universidad Espiritu Santo, Samborondon, Ecuador
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai Campus, P.O. Box 345050, Dubai, United Arab Emirates.
| |
Collapse
|
3
|
Wang Z, Xie C, Chen X. Diagnostic and therapeutic role of non-coding RNAs regulating programmed cell death in melanoma. Front Oncol 2024; 14:1476684. [PMID: 39777348 PMCID: PMC11703721 DOI: 10.3389/fonc.2024.1476684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
lncRNAs (long non-coding RNAs) are heterogeneous RNA molecules that modulate various cellular processes, such as proliferation, differentiation, migration, invasion, and apoptosis, via different mechanisms. An increasing amount of research indicates that abnormal expression of lncRNA influences the development of drug resistance as well as the genesis and advancement of cancer, including melanoma. Furthermore, they are attractive biomarkers for non-invasive cancer diagnostics due to their strongly modulated expression and improved tissue and disease specificity. This review offers a succinct overview of the present understanding concerning the potential diagnostic biomarker potential of lncRNAs in melanoma. Cell death occurs frequently during growth and throughout life and is an active, organized, and genetically determined process. It is essential for the regulation of homeostasis. Controlled cell death and non-programmed cell death are both forms of cell death. The most prevalent forms of regulatory cell death are pyroptosis, ferroptosis, autophagy, necroptosis, necrosis, and apoptosis. Ferroptosis, pyroptosis, and autophagy are less common forms of cell death compared to necrosis, apoptosis, and necroptosis. ncRNAs are regulatory RNA molecules that are not involved in encoding proteins. They primarily consist of circular RNAs (circ RNAs), lncRNAs, and microRNAs (miRNAs). Moreover, non-coding RNAs have the ability to modulate tumor cell autophagy, pyroptosis, and ferroptosis at the transcriptional or post-transcriptional stage, as well as function as oncogenes and tumor suppressor genes, which can have considerable effects on the incidence and growth of tumors. This review concentrated on the recent advancements in the research of the diagnostic and therapeutic functions of ncRNAs in the regulation of programmed cell death in melanoma.
Collapse
Affiliation(s)
- Zixu Wang
- Office for Doctoral Studies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Cong Xie
- Office for Doctoral Studies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Xiao Chen
- Office for Postgraduate Student Studies, Kunming Medical University, Kunming, China
| |
Collapse
|
4
|
Jang S, Lee H, Kim HW, Baek M, Jung S, Kim SJ. Human disease-related long noncoding RNAs: Impact of ginsenosides. J Ginseng Res 2024; 48:347-353. [PMID: 39036728 PMCID: PMC11258377 DOI: 10.1016/j.jgr.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/23/2024] [Accepted: 04/10/2024] [Indexed: 07/23/2024] Open
Abstract
Ginsenosides in ginseng are known for their potential health benefits, including antioxidant properties and their potential to exhibit anticancer effects. Besides a various range of coding genes, ginsenosides impose their efficacy by targeting noncoding RNAs. Long noncoding RNA ( lncRNA) has gained significant attention from both basic and clinical oncology fields due to its involvement in various cancer cell activities such as proliferation, apoptosis, metastasis, and autophagy. These events can be achieved either by lncRNA alone or in association with microRNAs or proteins. This review aims to summarize the diverse activities of lncRNAs that are regulated by ginsenosides, focusing on their role in regulating target genes through signaling pathways in human diseases. We highlight the results of studies on the expression profiles of lncRNAs induced by ginsenosides in efforts to inhibit cancer cell proliferation. Finally, we discuss the potential and challenges of utilizing lncRNAs as diagnostic markers for disease treatment.
Collapse
Affiliation(s)
| | | | - Hyeon Woo Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Minjae Baek
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Sanghyun Jung
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Sun Jung Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
5
|
Alkan AH, Ensoy M, Cansaran-Duman D. Strategic and Innovative Roles of lncRNAs Regulated by Naturally-derived Small Molecules in Cancer Therapy. Curr Med Chem 2024; 31:6672-6691. [PMID: 37921177 DOI: 10.2174/0109298673264372230919102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/22/2023] [Accepted: 08/17/2023] [Indexed: 11/04/2023]
Abstract
In the field of precision and personalized medicine, the next generation sequencing method has begun to take an active place as genome-wide screening applications in the diagnosis and treatment of diseases. Studies based on the determination of the therapeutic efficacy of personalized drug use in cancer treatment in the size of the transcriptome and its extension, lncRNA, have been increasing rapidly in recent years. Targeting and/or regulating noncoding RNAs (ncRNAs) consisting of long noncoding RNAs (lncRNAs) are promising strategies for cancer treatment. Within the scope of rapidly increasing studies in recent years, it has been shown that many natural agents obtained from biological organisms can potentially alter the expression of many lncRNAs associated with oncogenic functions. Natural agents include effective small molecules that provide anti-cancer effects and have been used as chemotherapy drugs or in combination with standard anti-cancer drugs used in routine treatment. In this review, it was aimed to provide detailed information about the potential of natural agents to regulate and/or target non-coding RNAs and their mechanisms of action to provide an approach for cancer therapy. The discovery of novel anti-cancer targets and subsequent development of effective drugs or combination strategies that are still needed for most cancers will be promising for cancer treatment.
Collapse
Affiliation(s)
- Ayşe Hale Alkan
- Biotechnology Institute, Ankara University, Keçiören, Ankara, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science, Bartın University, Bartın, Turkey
| | - Mine Ensoy
- Biotechnology Institute, Ankara University, Keçiören, Ankara, Turkey
| | | |
Collapse
|
6
|
Javadi M, Sazegar H, Doosti A. Genome editing approaches with CRISPR/Cas9: the association of NOX4 expression in breast cancer patients and effectiveness evaluation of different strategies of CRISPR/Cas9 to knockout Nox4 in cancer cells. BMC Cancer 2023; 23:1155. [PMID: 38012557 PMCID: PMC10683234 DOI: 10.1186/s12885-023-11183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/16/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND The increasing prevalence of cancer detection necessitated practical strategies to deliver highly accurate, beneficial, and dependable processed information together with experimental results. We deleted the cancer biomarker NOX4 using three novel genetic knockout (KO) methods. Homology-directed repair (HDR), Dual allele HITI (Du-HITI) and CRISPR-excision were utilized in this study. METHODS The predictive value of the NOX4 expression profile was assessed using a combined hazard ratio (HR) with a 95% confidence interval (CI). With a 95% confidence interval, a pooled odd ratio (OR) was used to calculate the relationship between NOX4 expression patterns and cancer metastasis. There were 1060 tumor patients in all sixteen research that made up this meta-analysis. To stop the NOX4 from being transcribed, we employed three different CRISPR/Cas9-mediated knockdown methods. The expression of RNA was assessed using RT-PCR. We employed the CCK-8 assay, colony formation assays, and the invasion transwell test for our experiments measuring cell proliferation and invasion. Using a sphere-formation test, the stemness was determined. Luciferase reporter tests were carried out to verify molecular adhesion. Utilizing RT-qPCR, MTT, and a colony formation assay, the functional effects of NOX4 genetic mutation in CRISPR-excision, CRISPR-HDR, and CRISPR du-HITI knockdown cell lines of breast cancer were verified. RESULTS There were 1060 malignant tumors in the 16 studies that made up this meta-analysis. In the meta-analysis, higher NOX4 expression was linked to both a shorter overall survival rate (HR = 1.93, 95% CI 1.49-2.49, P < 0.001) and a higher percentage of lymph node metastases (OR = 3.22, 95% CI 2.18-4.29, P < 0.001). In breast carcinoma cells, it was discovered that NOX4 was overexpressed, and this increase was linked to a poor prognosis. The gain and loss-of-function assays showed enhanced NOX4 breast carcinoma cell proliferation, sphere-forming capacity, and tumor development. To activate transcription, the transcriptional factor E2F1 also attaches to the promoter region of the Nanog gene. The treatment group (NOX4 ablation) had substantially more significant levels of proapoptotic gene expression than the control group (P < 0.01). Additionally, compared to control cells, mutant cells expressed fewer antiapoptotic genes (P < 0.001). The du-HITI technique incorporated a reporter and a transcription termination marker into the two target alleles. Both donor vector preparation and cell selection were substantially simpler using this approach than with "CRISPR HDR" or "CRISPR excision." Furthermore, single-cell knockouts for both genotypes were created when this method was applied in the initial transfection experiment. CONCLUSIONS The NOX4 Knockout cell lines generated in this research may be used for additional analytical studies to reveal the entire spectrum of NOX4 activities. The du-HITI method described in this study was easy to employ and could produce homozygous individuals who were knockout for a specific protein of interest.
Collapse
Affiliation(s)
- Marzieh Javadi
- Department of Biology, Faculty of Science, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Hossein Sazegar
- Department of Biology, Faculty of Science, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
7
|
Zhang L, Kang Q, Kang M, Jiang S, Yang F, Gong J, Ou G, Wang S. Regulation of main ncRNAs by polyphenols: A novel anticancer therapeutic approach. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155072. [PMID: 37714063 DOI: 10.1016/j.phymed.2023.155072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Plant polyphenols have shown promising applications in oncotherapy. Increasing evidence reveals that polyphenols possess the antitumor potential for multiple cancers. Non-coding RNAs (ncRNAs), mainly including small ncRNAs (microRNA) and long ncRNAs (lncRNAs), play critical roles in cancer initiation and progression. PURPOSE To establish the modulation of ncRNAs by polyphenols as a novel and promising approach in anticancer treatment. STUDY DESIGN The present research employed ncRNA, miRNA, lncRNA, and regulatory mechanism as keywords to retrieve the literature from PubMed, Web of Science, Science direct, and Google Scholar, in a 20-year period from 2003 to 2023. This study critically reviewed the current literature and presented the regulation of prominent ncRNAs by polyphenols. A comprehensive total of 169 papers were retrieved on polyphenols and their related ncRNAs in cancers. RESULTS NcRNAs, mainly including miRNA and lncRNA, play critical roles in cancer initiation and progression, which are potential modulatory targets of bioactive polyphenols, such as resveratrol, genistein, curcumin, EGCG, quercetin, in cancer management. The mechanism involved in polyphenol-mediated ncRNA regulation includes epigenetic and transcriptional modification, and post-transcriptional processing. CONCLUSION Regulatory ncRNAs are potential therapeutic targets of bioactive polyphenols, and these phytochemicals could modulate the level of these ncRNAs directly and indirectly. A better comprehension of the ncRNA regulation by polyphenols in cancers, their functional outcomes on tumor pathophysiology and regulatory molecular mechanisms, may be helpful to develop effective strategies to fight the devastating disease.
Collapse
Affiliation(s)
- Liang Zhang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan 430079, China
| | - Qingzheng Kang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518061, China
| | | | - Suwei Jiang
- School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Feng Yang
- BGI-Shenzhen, Shenzhen 518103, China
| | - Jun Gong
- Central Laboratory, Yunfu People's Hospital, Yunfu 527399, China
| | - Gaozhi Ou
- School of Physical Education, China University of Geosciences, Wuhan 430074, China
| | - Song Wang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
8
|
Khodayari S, Khodayari H, Saeedi E, Mahmoodzadeh H, Sadrkhah A, Nayernia K. Single-Cell Transcriptomics for Unlocking Personalized Cancer Immunotherapy: Toward Targeting the Origin of Tumor Development Immunogenicity. Cancers (Basel) 2023; 15:3615. [PMID: 37509276 PMCID: PMC10377122 DOI: 10.3390/cancers15143615] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer immunotherapy is a promising approach for treating malignancies through the activation of anti-tumor immunity. However, the effectiveness and safety of immunotherapy can be limited by tumor complexity and heterogeneity, caused by the diverse molecular and cellular features of tumors and their microenvironments. Undifferentiated tumor cell niches, which we refer to as the "Origin of Tumor Development" (OTD) cellular population, are believed to be the source of these variations and cellular heterogeneity. From our perspective, the existence of distinct features within the OTD is expected to play a significant role in shaping the unique tumor characteristics observed in each patient. Single-cell transcriptomics is a high-resolution and high-throughput technique that provides insights into the genetic signatures of individual tumor cells, revealing mechanisms of tumor development, progression, and immune evasion. In this review, we explain how single-cell transcriptomics can be used to develop personalized cancer immunotherapy by identifying potential biomarkers and targets specific to each patient, such as immune checkpoint and tumor-infiltrating lymphocyte function, for targeting the OTD. Furthermore, in addition to offering a possible workflow, we discuss the future directions of, and perspectives on, single-cell transcriptomics, such as the development of powerful analytical tools and databases, that will aid in unlocking personalized cancer immunotherapy through the targeting of the patient's cellular OTD.
Collapse
Affiliation(s)
- Saeed Khodayari
- International Center for Personalized Medicine (P7MEDICINE), Luise-Rainer-Str. 6-12, 40235 Düsseldorf, Germany
| | - Hamid Khodayari
- International Center for Personalized Medicine (P7MEDICINE), Luise-Rainer-Str. 6-12, 40235 Düsseldorf, Germany
| | - Elnaz Saeedi
- Oxford Clinical Trials Research Unit, Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford OX3 7LD, UK
| | - Habibollah Mahmoodzadeh
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran 1819613844, Iran
| | | | - Karim Nayernia
- International Center for Personalized Medicine (P7MEDICINE), Luise-Rainer-Str. 6-12, 40235 Düsseldorf, Germany
| |
Collapse
|
9
|
Asif Ali M, Khan N, Kaleem N, Ahmad W, Alharethi SH, Alharbi B, Alhassan HH, Al-Enazi MM, Razis AFA, Modu B, Calina D, Sharifi-Rad J. Anticancer properties of sulforaphane: current insights at the molecular level. Front Oncol 2023; 13:1168321. [PMID: 37397365 PMCID: PMC10313060 DOI: 10.3389/fonc.2023.1168321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/16/2023] [Indexed: 07/04/2023] Open
Abstract
Sulforaphane (SFN) is an isothiocyanate with multiple biomedical applications. Sulforaphane can be extracted from the plants of the genus Brassica. However, broccoli sprouts are the chief source of sulforaphane and are 20 to 50 times richer than mature broccoli as they contain 1,153 mg/100 g. SFN is a secondary metabolite that is produced as a result of the hydrolysis of glucoraphanin (a glucosinolate) by the enzyme myrosinase. This review paper aims to summarize and understand the mechanisms behind the anticancer potential of sulforaphane. The data was collected by searching PubMed/MedLine, Scopus, Web of Science, and Google Scholar. This paper concludes that sulforaphane provides cancer protection through the alteration of various epigenetic and non-epigenetic pathways. It is a potent anticancer phytochemical that is safe to consume with minimal side effects. However, there is still a need for further research regarding SFN and the development of a standard dose.
Collapse
Affiliation(s)
- Muhammad Asif Ali
- Department of Food Science and Human Nutrition, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Noohela Khan
- Department of Nutrition Sciences, Rashid Latif Medical College, Lahore, Pakistan
| | - Nabeeha Kaleem
- Department of Food Science and Human Nutrition, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Waqas Ahmad
- Department of Food Science and Human Nutrition, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran, Saudi Arabia
| | - Bandar Alharbi
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail, Saudi Arabia
| | - Hassan H. Alhassan
- Department of Clinical Laboratory Science, College of Applied medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Maher M. Al-Enazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Babagana Modu
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Science, University of Maiduguri, Maiduguri, Borno, Nigeria
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | |
Collapse
|
10
|
Chuang YT, Shiau JP, Tang JY, Farooqi AA, Chang FR, Tsai YH, Yen CY, Chang HW. Connection of Cancer Exosomal LncRNAs, Sponging miRNAs, and Exosomal Processing and Their Potential Modulation by Natural Products. Cancers (Basel) 2023; 15:cancers15082215. [PMID: 37190145 DOI: 10.3390/cancers15082215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Cancerous exosomes contain diverse biomolecules that regulate cancer progression. Modulating exosome biogenesis with clinical drugs has become an effective strategy for cancer therapy. Suppressing exosomal processing (assembly and secretion) may block exosomal function to reduce the proliferation of cancer cells. However, the information on natural products that modulate cancer exosomes lacks systemic organization, particularly for exosomal long noncoding RNAs (lncRNAs). There is a gap in the connection between exosomal lncRNAs and exosomal processing. This review introduces the database (LncTarD) to explore the potential of exosomal lncRNAs and their sponging miRNAs. The names of sponging miRNAs were transferred to the database (miRDB) for the target prediction of exosomal processing genes. Moreover, the impacts of lncRNAs, sponging miRNAs, and exosomal processing on the tumor microenvironment (TME) and natural-product-modulating anticancer effects were then retrieved and organized. This review sheds light on the functions of exosomal lncRNAs, sponging miRNAs, and exosomal processing in anticancer processes. It also provides future directions for the application of natural products when regulating cancerous exosomal lncRNAs.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Hong Tsai
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Hsueh-Wei Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
11
|
Bhal S, Kundu CN. Targeting crosstalk of signaling pathways in cancer stem cells: a promising approach for development of novel anti-cancer therapeutics. Med Oncol 2023; 40:82. [PMID: 36662310 DOI: 10.1007/s12032-022-01905-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/21/2022] [Indexed: 01/21/2023]
Abstract
Wnt, Hedgehog (Hh), and Notch signaling pathways are the evolutionarily conserved signaling pathways that regulate the embryonic development and also play crucial role in maintaining stemness properties of cancer stem cells (CSCs) and inducing epithelial-to-mesenchymal transition (EMT), metastasis, and angiogenesis. It has been highly challenging to inhibit the CSCs growth and proliferation as these are capable of evading chemotherapeutic drugs and cause cancer recurrence through multiple signaling pathways. Therefore, novel therapeutic strategies to target the key players involved in the crosstalk of these signaling pathways need to be developed. In this review, we have identified the interacting molecules of Wnt, Hh, and Notch pathways responsible for enhancing the malignant properties of CSCs. Analyzing the functions of these crosstalk molecules will help us to find an approach toward the development of new anti-cancer drugs for inhibition of CSCs growth and progression. Long non-coding RNAs (LncRNAs) play a significant role in various cellular processes, like chromatin remodeling, epigenetic modifications, transcriptional, and post-transcriptional regulations. Here, we have highlighted the research findings suggesting the involvement of LncRNAs in maintenance of the stemness properties of CSCs through modulation of the above-mentioned signaling pathways. We have also discussed about the different therapeutic approaches targeting those key players responsible for mediating the crosstalk between the pathways. Overall, this review article will surely help the cancer biologists to design novel anti-CSCs agents that will open up a new horizon in the field of anti-cancer therapeutics.
Collapse
Affiliation(s)
- Subhasmita Bhal
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
12
|
El-Sheikh NM, Abulsoud AI, Wasfey EF, Hamdy NM. Insights on the potential oncogenic impact of long non-coding RNA nicotinamide nucleotide transhydrogenase antisense RNA 1 in different cancer types; integrating pathway(s) and clinical outcome(s) association. Pathol Res Pract 2022; 240:154183. [PMID: 36327824 DOI: 10.1016/j.prp.2022.154183] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
Long non-coding RNAs (lncRNAs) are becoming more prevalent in the cancer field arena, with functional roles in both oncogenic and onco-suppressive pathways. Despite their widespread aberrant expression in a range of human malignancies, the biological activities of the ncRNAs majority are unknown. All showed the involvement of the lncRNA nicotinamide nucleotide transhydrogenase antisense RNA 1 (NNT-AS1). Since NNT-AS1 influences cellular proliferation, invasion, migration, apoptosis, and metastasis, this lncRNA appears to be linked to deregulating the normal cellular processes driving malignancy. This was observed in breast cancer (BC), gastric cancer (GC), colorectal cancer (CRC), epithelial ovarian cancer (EOC), and hepatocellular carcinoma (HCC). The current narrative non-systematic review will discuss "the significance of lncRNAs in cancer", as well as "lncRNAs future potential application(s) as diagnostic or predictive biomarkers", therefore, comprising an opportunity as treatment target(s). The review will have a special emphasis on lncRNA NNT-AS1.
Collapse
Affiliation(s)
- Nada M El-Sheikh
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, El Salam City, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, El Salam City, Cairo 11785, Egypt; Biochemistry Department, Faculty of Pharmacy (Boy's branch), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Eman F Wasfey
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt.
| |
Collapse
|
13
|
Sharma U, Tuli HS, Uttam V, Choudhary R, Sharma B, Sharma U, Prakash H, Jain A. Role of Hedgehog and Hippo signaling pathways in cancer: A special focus on non-coding RNAs. Pharmacol Res 2022; 186:106523. [DOI: 10.1016/j.phrs.2022.106523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022]
|
14
|
Zhang Y, Fan F, Zhang Q, Luo Y, Liu Q, Gao J, Liu J, Chen G, Zhang H. Identification and Functional Analysis of Long Non-Coding RNA (lncRNA) in Response to Seed Aging in Rice. PLANTS (BASEL, SWITZERLAND) 2022; 11:3223. [PMID: 36501265 PMCID: PMC9737669 DOI: 10.3390/plants11233223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Many lncRNAs have been shown to play a vital role in aging processes. However, how lncRNAs regulate seed aging remains unknown. In this study, we performed whole transcriptome strand-specific RNA sequencing of samples from rice embryos, analyzed the differences in expression of rice seed lncRNAs before and after artificial aging treatment (AAT), and systematically screened 6002 rice lncRNAs. During the AAT period, the expression levels of most lncRNAs (454) were downregulated and only four were upregulated among the 458 differentially expressed lncRNAs (DELs). Cis- or trans-regulated target genes of the four upregulated lncRNAs were mainly related to base repair, while 454 downregulated lncRNAs were related to plant-pathogen interaction, plant hormones, energy metabolism, and secondary metabolism. The pathways of DEL target genes were similar with those of differentially expressed mRNAs (DEGs). A competing endogenous RNA (ceRNA) network composed of 34 lncRNAs, 24 microRNAs (miRNA), and 161 mRNAs was obtained. The cDNA sequence of lncRNA LNC_037529 was obtained by rapid amplification of cDNA ends (RACE) cloning with a total length of 1325 bp, a conserved 5' end, and a non-conserved 3' end. Together, our findings indicate that genome-wide selection for lncRNA downregulation was an important mechanism for rice seed aging. LncRNAs can be used as markers of seed aging in rice. These findings provide a future path to decipher the underlying mechanism associated with lncRNAs in seed aging.
Collapse
Affiliation(s)
- Yixin Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Fan Fan
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Qunjie Zhang
- Guangdong Key Lab for Crop Germplasm Resources Preservation and Utilization/Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yongjian Luo
- Guangdong Key Lab for Crop Germplasm Resources Preservation and Utilization/Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qinjian Liu
- Guangdong Key Lab for Crop Germplasm Resources Preservation and Utilization/Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jiadong Gao
- Guangdong Key Lab for Crop Germplasm Resources Preservation and Utilization/Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jun Liu
- Guangdong Key Lab for Crop Germplasm Resources Preservation and Utilization/Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Guanghui Chen
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Haiqing Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
15
|
Kalhori MR, Soleimani M, Yari K, Moradi M, Kalhori AA. MiR-1290: a potential therapeutic target for regenerative medicine or diagnosis and treatment of non-malignant diseases. Clin Exp Med 2022:10.1007/s10238-022-00854-9. [PMID: 35802264 DOI: 10.1007/s10238-022-00854-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
MicroRNAs are a set of small non-coding RNAs that could change gene expression with post-transcriptional regulation. MiRNAs have a significant role in regulating molecular signaling pathways and innate and adaptive immune system activity. Moreover, miRNAs can be utilized as a powerful instrument for tissue engineers and regenerative medicine by altering the expression of genes and growth factors. MiR-1290, which was first discovered in human embryonic stem cells, is one of those miRNAs that play an essential role in developing the fetal nervous system. This review aims to discuss current findings on miR-1290 in different human pathologies and determine whether manipulation of miR-1290 could be considered a possible therapeutic strategy to treat different non-malignant diseases. The results of these studies suggest that the regulation of miR-1290 may be helpful in the treatment of some bacterial (leprosy) and viral infections (HIV, influenza A, and Borna disease virus). Also, adjusting the expression of miR-1290 in non-infectious diseases such as celiac disease, necrotizing enterocolitis, polycystic ovary syndrome, pulmonary fibrosis, ankylosing spondylitis, muscle atrophy, sarcopenia, and ischemic heart disease can help to treat these diseases better. In addition to acting as a biomarker for the diagnosis of non-malignant diseases (such as NAFLD, fetal growth, preeclampsia, down syndrome, chronic rhinosinusitis, and oral lichen planus), the miR-1290 can also be used as a valuable instrument in tissue engineering and reconstructive medicine. Consequently, it is suggested that the regulation of miR-1290 could be considered a possible therapeutic target in the treatment of non-malignant diseases in the future.
Collapse
Affiliation(s)
- Mohammad Reza Kalhori
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kheirollah Yari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahmoudreza Moradi
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Ali Kalhori
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
16
|
Azadbakht N, Doosti A, Jami MS. CRISPR/Cas9-mediated LINC00511 knockout strategies, increased apoptosis of breast cancer cells via suppressing antiapoptotic genes. Biol Proced Online 2022; 24:8. [PMID: 35790898 PMCID: PMC9254607 DOI: 10.1186/s12575-022-00171-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/20/2022] [Indexed: 12/19/2022] Open
Abstract
Background The growing detection of long noncoding RNAs (lncRNAs) required the application of functional approaches in order to provide absolutely precise, conducive, and reliable processed information along with effective consequences. We utilized genetic knockout (KO) techniques to ablate the Long Intergenic Noncoding RNA 00,511 gene in several humans who suffered from breast cancer cells and at the end we analyzed and examined the results. Results The predictive relevance of LINC00511 expression pattern was measured by using a pooled hazard ratio (HR) with a 95% confidence interval (CI). The link among LINC00511 expression profiles and cancer metastasis was measured by using a pooled odds ratio (OR) with a 95% confidence interval. This meta- analysis was composed of fifteen studies which contained a total of 1040 tumor patients. We used three distinct CRISPR/Cas9-mediated knockdown techniques to prevent the LINC00511 lncRNA from being transcribed. RT-PCR was used to measure lncRNA and RNA expression. We used CCK-8, colony formation tests, and the invasion transwell test to measure cell proliferation and invasion. The stemness was measured by using a sphere-formation test. To validate molecular attachment, luciferase reporter assays were performed. The functional impacts of LINC00511 gene deletion in knockdown breast cancer cell lines were confirmed by using RT-qPCR, MTT, and a colony formation test. This meta-analysis was composed of 15 trials which contained a total of 1040 malignant tumors. Greater LINC00511 expression was ascribed to a lower overall survival (HR = 1.93, 95% CI 1.49–2.49, < P 0.001) and to an increased proportion of lymph node metastasis (OR = 3.07, 95% CI 2.23–4.23, P < 0.001) in the meta‐analysis. It was found that the role of LINC00511 was overexpressed in breast cancer samples, and this overexpression was ascribed to a poor prognosis. The gain and loss-of-function tests demonstrated findings such as LINC00511 increased breast cancer cell proliferation, sphere-forming ability, and tumor growth. Additionally, the transcription factor E2F1 binds to the Nanog gene's promoter site to induce transcription. P57, P21, Prkca, MDM4, Map2k6, and FADD gene expression in the treatment group (LINC00511 deletion) was significantly higher than in the control group (P < 0.01). In addition, knockout cells had lower expression of BCL2 and surviving genes than control cells P < 0.001). In each of the two target alleles, the du-HITI approach introduced a reporter and a transcription termination signal. This strategy's donor vector preparation was significantly easier than "CRISPR HDR," and cell selection was likewise much easier than "CRISPR excision." Furthermore, when this approach was used in the initial transfection attempt, single-cell knockouts for both alleles were generated. Conclusions The methods employed and described in this work could be extended to the production of LINC00511 knockout cell lines and, in theory, to the deletion of other lncRNAs to study their function. Supplementary Information The online version contains supplementary material available at 10.1186/s12575-022-00171-1.
Collapse
|
17
|
The Targeting of Noncoding RNAs by Quercetin in Cancer Prevention and Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4330681. [PMID: 35656022 PMCID: PMC9155922 DOI: 10.1155/2022/4330681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/11/2022] [Indexed: 12/14/2022]
Abstract
The dietary flavonoid quercetin is ubiquitously distributed in fruits, vegetables, and medicinal herbs. Quercetin has been a focal point in recent years due to its versatile health-promoting benefits and high pharmacological values. It has well documented that quercetin exerts anticancer actions by inhibiting cell proliferation, inducing apoptosis, and retarding the invasion and metastasis of cancer cells. However, the exact mechanism of quercetin-mediated cancer chemoprevention is still not fully understood. With the advances in high-throughput sequencing technologies, the intricate oncogenic signaling networks have been gradually characterized. Increasing evidence on the close association between noncoding RNA (ncRNAs) and cancer etiopathogenesis emphasizes the potential of ncRNAs as promising molecular targets for cancer treatment. Available experimental studies indicate that quercetin can dominate multiple cancer-associated ncRNAs, hence repressing carcinogenesis and cancer development. Thus, modulation of ncRNAs serves as a key mechanism responsible for the anticancer effects of quercetin. In this review, we focus on the chemopreventive effects of quercetin on cancer pathogenesis by targeting cancer-relevant ncRNAs, supporting the viewpoint that quercetin holds promise as a drug candidate for cancer chemoprevention and chemotherapy. An in-depth comprehension of the interplay between quercetin and ncRNAs in the inhibition of cancer development and progression will raise the possibility of developing this bioactive compound as an anticancer agent that could be highly efficacious and safe in clinical practice.
Collapse
|
18
|
Zhang Y, Zheng P, Yan G, Zhuo Y, Wu JL, Sun B. Chemical profiling and antioxidants screening from natural products: using CiNingJi as an example. Food Sci Biotechnol 2022; 31:407-421. [PMID: 35464243 PMCID: PMC8994799 DOI: 10.1007/s10068-022-01049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/21/2022] [Accepted: 02/09/2022] [Indexed: 11/30/2022] Open
Abstract
Natural products with good antioxidative properties have been paid increased attention globally. However, due to its chemical complexity, it is difficult to find out its antioxidative compounds. Herein, the chemical profiling and antioxidant capacity of CiNingJi (CNJ) were analyzed, as an example. By using UHPLC-Q-TOF/MS, a total of 82 compounds were tentatively deduced. Furthermore, its free radical scavenging capacity was assessed by different in vitro spectrophotometric-based assays. The result showed that one ingredient, Rosa roxburghii, plays a critical role in its antioxidant activity. In addition, 18 potential antioxidants were screened out in CNJ by comparing the difference of it with and without DPPH reaction. They were identified mainly as catechin, ellagic acid, kajiichigoside F1, and their derivatives or isomers. With the further quantification of major found antioxidants, our results may provide some knowledge on predicting the antioxidative compounds of natural products. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01049-4.
Collapse
Affiliation(s)
- Yida Zhang
- Present Address: Department of Allergy and Clinical Immunology, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, No.151 Yanjiang Xi Lu, Yuexiu District, Guangzhou, China
| | - Peiyan Zheng
- Present Address: Department of Allergy and Clinical Immunology, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, No.151 Yanjiang Xi Lu, Yuexiu District, Guangzhou, China
| | - Guanyu Yan
- Present Address: Department of Allergy and Clinical Immunology, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, No.151 Yanjiang Xi Lu, Yuexiu District, Guangzhou, China
| | - Yue Zhuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 510405 Guangzhou, China
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China
| | - Baoqing Sun
- Present Address: Department of Allergy and Clinical Immunology, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, No.151 Yanjiang Xi Lu, Yuexiu District, Guangzhou, China
| |
Collapse
|
19
|
A Pleiotropic Role of Long Non-Coding RNAs in the Modulation of Wnt/β-Catenin and PI3K/Akt/mTOR Signaling Pathways in Esophageal Squamous Cell Carcinoma: Implication in Chemotherapeutic Drug Response. Curr Oncol 2022; 29:2326-2349. [PMID: 35448163 PMCID: PMC9031703 DOI: 10.3390/curroncol29040189] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 02/06/2023] Open
Abstract
Despite the availability of modern techniques for the treatment of esophageal squamous cell carcinoma (ESCC), tumor recurrence and metastasis are significant challenges in clinical management. Thus, ESCC possesses a poor prognosis and low five-year overall survival rate. Notably, the origin and recurrence of the cancer phenotype are under the control of complex cancer-related signaling pathways. In this review, we provide comprehensive knowledge about long non-coding RNAs (lncRNAs) related to Wnt/β-catenin and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway in ESCC and its implications in hindering the efficacy of chemotherapeutic drugs. We observed that a pool of lncRNAs, such as HERES, TUG1, and UCA1, associated with ESCC, directly or indirectly targets various molecules of the Wnt/β-catenin pathway and facilitates the manifestation of multiple cancer phenotypes, including proliferation, metastasis, relapse, and resistance to anticancer treatment. Additionally, several lncRNAs, such as HCP5 and PTCSC1, modulate PI3K/Akt/mTOR pathways during the ESCC pathogenesis. Furthermore, a few lncRNAs, such as AFAP1-AS1 and LINC01014, block the efficiency of chemotherapeutic drugs, including cisplatin, 5-fluorouracil, paclitaxel, and gefitinib, used for ESCC treatment. Therefore, this review may help in designing a better therapeutic strategy for ESCC patients.
Collapse
|
20
|
Ruiz-Manriquez LM, Estrada-Meza C, Benavides-Aguilar JA, Ledesma-Pacheco SJ, Torres-Copado A, Serrano-Cano FI, Bandyopadhyay A, Pathak S, Chakraborty S, Srivastava A, Sharma A, Paul S. Phytochemicals mediated modulation of microRNAs and long non-coding RNAs in cancer prevention and therapy. Phytother Res 2021; 36:705-729. [PMID: 34932245 DOI: 10.1002/ptr.7338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/07/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are two main categories of noncoding RNAs (ncRNAs) that can influence essential biological functions in various ways, as well as their expression and function are tightly regulated in physiological homeostasis. Additionally, the dysregulation of these ncRNAs seems to be crucial to the pathogenesis of human diseases. The latest findings indicate that ncRNAs execute vital roles in cancer initiation and progression, and the cancer phenotype can be reversed by modulating their expression. Available scientific discoveries suggest that phytochemicals such as polyphenols, alkaloids, terpenoids, and organosulfur compounds can significantly modulate multiple cancer-associated miRNAs and lncRNAs, thereby inhibiting cancer initiation and development. However, despite promising outcomes of experimental research, only a few clinical trials are currently being conducted to evaluate the therapeutic effectiveness of these compounds. Nevertheless, understanding phytochemical-mediated ncRNA regulation in cancer and the underlying molecular mechanisms on tumor pathophysiology can aid in the development of novel therapeutic strategies to combat this deadly disease.
Collapse
Affiliation(s)
- Luis M Ruiz-Manriquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, San Pablo, Mexico
| | - Carolina Estrada-Meza
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, San Pablo, Mexico
| | | | - S Janin Ledesma-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, San Pablo, Mexico
| | - Andrea Torres-Copado
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, San Pablo, Mexico
| | - Francisco I Serrano-Cano
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, San Pablo, Mexico
| | - Anindya Bandyopadhyay
- C4 Rice Center, International Rice Research Institute, Manila, Philippines.,Synthetic Biology, Biofuel and Genome Editing R&D, Reliance Industries Ltd, Navi Mumbai, India
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, India
| | - Samik Chakraborty
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, San Pablo, Mexico
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, San Pablo, Mexico
| |
Collapse
|
21
|
Kalhori MR, Soleimani M, Arefian E, Alizadeh AM, Mansouri K, Echeverria J. The potential role of miR-1290 in cancer progression, diagnosis, prognosis, and treatment: An oncomiR or onco-suppressor microRNA? J Cell Biochem 2021; 123:506-531. [PMID: 34897783 DOI: 10.1002/jcb.30191] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/20/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022]
Abstract
Cancer is one of the leading causes of death in humans because of the lack of early diagnosis, distant metastases, and the resistance to adjuvant therapies, including chemotherapy and radiotherapy. In addition to playing an essential role in tumor progression and development, microRNAs (miRNAs) can be used as a robust biomarker in the early detection of cancer. MiR-1290 was discovered for the first time in human embryonic stem cells, and under typical physiological situations, plays an essential role in neuronal differentiation and neural stem cell proliferation. Its coding sequence is located at the 1p36.13 regions in the first intron of the aldehyde dehydrogenase 4 gene member A1. miR-1290 is out of control in many cancers such as breast cancer, colorectal cancer, esophageal squamous cell carcinoma, gastric cancer, lung cancer, pancreatic cancer, and plays a vital role in their development. Therefore, it is suggested that miR-1290 can be considered as a potential diagnostic and therapeutic target in many cancers. In addition to the importance of miR-1290 in the noninvasive diagnosis of various cancers, this systematic review study discussed the role of miR-1290 in altering the expression of different genes involved in cancer development and chemo-radiation resistance. Moreover, it considered the regulatory effect of natural products on miR-1290 expression and the interaction of lncRNAs by miR-1290.
Collapse
Affiliation(s)
- Mohammad Reza Kalhori
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, Molecular Virology Lab, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ali Mohammad Alizadeh
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverria
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
22
|
Williams DE. Indoles Derived From Glucobrassicin: Cancer Chemoprevention by Indole-3-Carbinol and 3,3'-Diindolylmethane. Front Nutr 2021; 8:734334. [PMID: 34660663 PMCID: PMC8517077 DOI: 10.3389/fnut.2021.734334] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/27/2021] [Indexed: 12/22/2022] Open
Abstract
Hydrolysis of glucobrassicin by plant or bacterial myrosinase produces multiple indoles predominantly indole-3-carbinol (I3C). I3C and its major in vivo product, 3,3'-diindolylmethane (DIM), are effective cancer chemopreventive agents in pre-clinical models and show promise in clinical trials. The pharmacokinetics/pharmacodynamics of DIM have been studied in both rodents and humans and urinary DIM is a proposed biomarker of dietary intake of cruciferous vegetables. Recent clinical studies at Oregon State University show surprisingly robust metabolism of DIM in vivo with mono- and di-hydroxylation followed by conjugation with sulfate or glucuronic acid. DIM has multiple mechanisms of action, the most well-characterized is modulation of aryl hydrocarbon receptor (AHR) signaling. In rainbow trout dose-dependent cancer chemoprevention by dietary I3C is achieved when given prior to or concurrent with aflatoxin B1, polycyclic aromatic hydrocarbons, nitrosamines or direct acting carcinogens such as N-methyl-N'-nitro-nitrosoguanidine. Feeding pregnant mice I3C inhibits transplacental carcinogenesis. In humans much of the focus has been on chemoprevention of breast and prostate cancer. Alteration of cytochrome P450-dependent estrogen metabolism is hypothesized to be an important driver of DIM-dependent breast cancer prevention. The few studies done to date comparing glucobrassicin-rich crucifers such as Brussels sprouts with I3C/DIM supplements have shown the greater impact of the latter is due to dose. Daily ingestion of kg quantities of Brussels sprouts is required to produce in vivo levels of DIM achievable by supplementation. In clinical trials these supplement doses have elicited few if any adverse effects. Sulforaphane from glucoraphanin can act synergistically with glucobrassicin-derived DIM and this may lead to opportunities for combinatorial approaches (supplement and food-based) in the clinic.
Collapse
Affiliation(s)
- David E. Williams
- Department of Environmental and Molecular Toxicology, Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
23
|
Wozniak M, Czyz M. The Functional Role of Long Non-Coding RNAs in Melanoma. Cancers (Basel) 2021; 13:cancers13194848. [PMID: 34638331 PMCID: PMC8508152 DOI: 10.3390/cancers13194848] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
Melanoma is the most lethal skin cancer, with increasing incidence worldwide. The molecular events that drive melanoma development and progression have been extensively studied, resulting in significant improvements in diagnostics and therapeutic approaches. However, a high drug resistance to targeted therapies and adverse effects of immunotherapies are still a major challenge in melanoma treatment. Therefore, the elucidation of molecular mechanisms of melanomagenesis and cancer response to treatment is of great importance. Recently, many studies have revealed the close association of long noncoding RNAs (lncRNAs) with the development of many cancers, including melanoma. These RNA molecules are able to regulate a plethora of crucial cellular processes including proliferation, differentiation, migration, invasion and apoptosis through diverse mechanisms, and even slight dysregulation of their expression may lead to tumorigenesis. lncRNAs are able to bind to protein complexes, DNA and RNAs, affecting their stability, activity, and localization. They can also regulate gene expression in the nucleus. Several functions of lncRNAs are context-dependent. This review summarizes current knowledge regarding the involvement of lncRNAs in melanoma. Their possible role as prognostic markers of melanoma response to treatment and in resistance to therapy is also discussed.
Collapse
|
24
|
Ahmad S, Abbas M, Ullah MF, Aziz MH, Beylerli O, Alam MA, Syed MA, Uddin S, Ahmad A. Long non-coding RNAs regulated NF-κB signaling in cancer metastasis: Micromanaging by not so small non-coding RNAs. Semin Cancer Biol 2021; 85:155-163. [PMID: 34314819 DOI: 10.1016/j.semcancer.2021.07.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023]
Abstract
Cancer metastasis is a major reason for the cancer-associated deaths and a role of long non-coding RNAs (lncRNAs) in cancer metastasis is increasingly being realized. Among the many oncogenic pathways, NF-κB signalling's involvement in cancer metastasis as a key inflammation-regulatory transcription factor has been a subject of interest for long time. Accumulating data from in vitro as well as in vivo studies along with analysis of clinical cancer tissues points to regulation of NF-κB signalling by lncRNAs with implications toward the onset of cancer metastasis. LncRNAs FOXD2-AS1, KRT19P3 and the NF-κB interacting lncRNA (NKILA) associate with lymph node metastasis and poor prognosis of individual cancers. The role of epithelial-mesenchymal transition (EMT) in cancer metastasis is well known. EMT is regulated by NF-κB and regulation of NF-κB/EMT-induced metastasis by lncRNAs remains a hot topic of research with indications for such roles of lncRNAs MALAT1, SNHG15, CRNDE and AC007271.3. Among the many lncRNAs, NKILA stands out as the most investigated lncRNA for its regulation of NF-κB. This tumor suppressive lncRNA has been reported downregulated in clinical samples representing different human cancers. Mechanistically, NKILA has been consistently shown to inhibit NF-κB activation via inhibition of IκBα phosphorylation and the resulting suppression of EMT. NKILA is also a target of natural anticancer compounds. Given the importance of NF-κB as a master regulatory transcription factor, lncRNAs, as the modulators of NF-κB signaling, can provide alternate targets for metastatic cancers with constitutively active NF-κB.
Collapse
Affiliation(s)
- Shaniya Ahmad
- Translational Research Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Madiha Abbas
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mohammad Fahad Ullah
- Prince Fahd Research Chair, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Tabuk, Saudi Arabia
| | - Moammir H Aziz
- James H. Quillen VA Medical Center, Johnson City, TN, 37604, USA
| | - Ozal Beylerli
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Majid Ali Alam
- Dermatology Institute and Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shahab Uddin
- Dermatology Institute and Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory of Animal Center, Qatar University, Doha, Qatar
| | - Aamir Ahmad
- Dermatology Institute and Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|