1
|
Kim YY, Gryder BE, Sinniah R, Peach ML, Shern JF, Abdelmaksoud A, Pomella S, Woldemichael GM, Stanton BZ, Milewski D, Barchi JJ, Schneekloth JS, Chari R, Kowalczyk JT, Shenoy SR, Evans JR, Song YK, Wang C, Wen X, Chou HC, Gangalapudi V, Esposito D, Jones J, Procter L, O'Neill M, Jenkins LM, Tarasova NI, Wei JS, McMahon JB, O'Keefe BR, Hawley RG, Khan J. KDM3B inhibitors disrupt the oncogenic activity of PAX3-FOXO1 in fusion-positive rhabdomyosarcoma. Nat Commun 2024; 15:1703. [PMID: 38402212 PMCID: PMC10894237 DOI: 10.1038/s41467-024-45902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/07/2024] [Indexed: 02/26/2024] Open
Abstract
Fusion-positive rhabdomyosarcoma (FP-RMS) is an aggressive pediatric sarcoma driven primarily by the PAX3-FOXO1 fusion oncogene, for which therapies targeting PAX3-FOXO1 are lacking. Here, we screen 62,643 compounds using an engineered cell line that monitors PAX3-FOXO1 transcriptional activity identifying a hitherto uncharacterized compound, P3FI-63. RNA-seq, ATAC-seq, and docking analyses implicate histone lysine demethylases (KDMs) as its targets. Enzymatic assays confirm the inhibition of multiple KDMs with the highest selectivity for KDM3B. Structural similarity search of P3FI-63 identifies P3FI-90 with improved solubility and potency. Biophysical binding of P3FI-90 to KDM3B is demonstrated using NMR and SPR. P3FI-90 suppresses the growth of FP-RMS in vitro and in vivo through downregulating PAX3-FOXO1 activity, and combined knockdown of KDM3B and KDM1A phenocopies P3FI-90 effects. Thus, we report KDM inhibitors P3FI-63 and P3FI-90 with the highest specificity for KDM3B. Their potent suppression of PAX3-FOXO1 activity indicates a possible therapeutic approach for FP-RMS and other transcriptionally addicted cancers.
Collapse
Affiliation(s)
| | - Berkley E Gryder
- Genetics Branch, NCI, NIH, Bethesda, MD, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | | | - Megan L Peach
- Basic Science Program, Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD, USA
| | - Jack F Shern
- Pediatric Oncology Branch, NCI, NIH, Bethesda, MD, USA
| | | | - Silvia Pomella
- Genetics Branch, NCI, NIH, Bethesda, MD, USA
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Girma M Woldemichael
- Leidos Biomed Res Inc, FNLCR, Basic Sci Program, Frederick, MD, USA
- Molecular Targets Program, NCI, NIH, Frederick, MD, USA
| | - Benjamin Z Stanton
- Genetics Branch, NCI, NIH, Bethesda, MD, USA
- Nationwide Children's Hospital, Center for Childhood Cancer Research, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Biological Chemistry & Pharmacology, The Ohio State University College of Medicine, Columbus, OH, USA
| | | | | | | | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, FNLCR, Frederick, MD, USA
| | | | - Shilpa R Shenoy
- Leidos Biomed Res Inc, FNLCR, Basic Sci Program, Frederick, MD, USA
- Molecular Targets Program, NCI, NIH, Frederick, MD, USA
| | - Jason R Evans
- Natural Products Branch, NCI, NIH, Frederick, MD, USA
| | | | - Chaoyu Wang
- Genetics Branch, NCI, NIH, Bethesda, MD, USA
| | - Xinyu Wen
- Genetics Branch, NCI, NIH, Bethesda, MD, USA
| | | | | | | | - Jane Jones
- Protein Expression Laboratory, FNLCR, NIH, Frederick, MD, USA
| | - Lauren Procter
- Protein Expression Laboratory, FNLCR, NIH, Frederick, MD, USA
| | - Maura O'Neill
- Protein Characterization Laboratory, FNLCR, NIH, Frederick, MD, USA
| | | | | | - Jun S Wei
- Genetics Branch, NCI, NIH, Bethesda, MD, USA
| | | | - Barry R O'Keefe
- Molecular Targets Program, NCI, NIH, Frederick, MD, USA
- Natural Products Branch, NCI, NIH, Frederick, MD, USA
| | - Robert G Hawley
- Genetics Branch, NCI, NIH, Bethesda, MD, USA
- Department of Anatomy and Cell Biology, George Washington University, Washington, DC, USA
| | - Javed Khan
- Genetics Branch, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|
2
|
O'Brien E, Tse C, Tracy I, Reddin I, Selfe J, Gibson J, Tapper W, Pengelly RJ, Gao J, Aladowicz E, Petts G, Thway K, Popov S, Kelsey A, Underwood TJ, Shipley J, Walters ZS. Pharmacological EZH2 inhibition combined with retinoic acid treatment promotes differentiation and apoptosis in rhabdomyosarcoma cells. Clin Epigenetics 2023; 15:167. [PMID: 37858275 PMCID: PMC10588044 DOI: 10.1186/s13148-023-01583-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Rhabdomyosarcomas (RMS) are predominantly paediatric sarcomas thought to originate from muscle precursor cells due to impaired myogenic differentiation. Despite intensive treatment, 5-year survival for patients with advanced disease remains low (< 30%), highlighting a need for novel therapies to improve outcomes. Differentiation therapeutics are agents that induce differentiation of cancer cells from malignant to benign. The histone methyltransferase, Enhancer of Zeste Homolog 2 (EZH2) suppresses normal skeletal muscle differentiation and is highly expressed in RMS tumours. RESULTS We demonstrate combining inhibition of the epigenetic modulator EZH2 with the differentiating agent retinoic acid (RA) is more effective at reducing cell proliferation in RMS cell lines than single agents alone. In PAX3-FOXO1 positive RMS cells this is due to an RA-driven induction of the interferon pathway resulting in apoptosis. In fusion negative RMS, combination therapy led to an EZH2i-driven upregulation of myogenic signalling resulting in differentiation. In both subtypes, EZH2 is significantly associated with enrichment of trimethylated lysine 27 on histone 3 (H3K27me3) in genes that are downregulated in untreated RMS cells and upregulated with EZH2 inhibitor treatment. These results provide insight into the mechanism that drives the anti-cancer effect of the EZH2/RA single agent and combination treatment and indicate that the reduction of EZH2 activity combined with the induction of RA signalling represents a potential novel therapeutic strategy to treat both subtypes of RMS. CONCLUSIONS The results of this study demonstrate the potential utility of combining EZH2 inhibitors with differentiation agents for the treatment of paediatric rhabdomyosarcomas. As EZH2 inhibitors are currently undergoing clinical trials for adult and paediatric solid tumours and retinoic acid differentiation agents are already in clinical use this presents a readily translatable potential therapeutic strategy. Moreover, as inhibition of EZH2 in the poor prognosis FPRMS subtype results in an inflammatory response, it is conceivable that this strategy may also synergise with immunotherapies for a more effective treatment in these patients.
Collapse
Affiliation(s)
- Eleanor O'Brien
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Carmen Tse
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ian Tracy
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ian Reddin
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Joanna Selfe
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Jane Gibson
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - William Tapper
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Reuben J Pengelly
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jinhui Gao
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ewa Aladowicz
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Gemma Petts
- Department of Paediatric Pathology, University of Manchester Foundation Trust, Manchester, UK
| | - Khin Thway
- Pathology Department, Royal Marsden NHS Foundation Trust, London, UK
| | - Sergey Popov
- Cellular Pathology Department, Cardiff and Vale UHB, Cardiff, UK
| | - Anna Kelsey
- Department of Paediatric Pathology, University of Manchester Foundation Trust, Manchester, UK
| | - Timothy J Underwood
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Janet Shipley
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Zoë S Walters
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK.
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
3
|
Pomella S, Danielli SG, Alaggio R, Breunis WB, Hamed E, Selfe J, Wachtel M, Walters ZS, Schäfer BW, Rota R, Shipley JM, Hettmer S. Genomic and Epigenetic Changes Drive Aberrant Skeletal Muscle Differentiation in Rhabdomyosarcoma. Cancers (Basel) 2023; 15:2823. [PMID: 37345159 DOI: 10.3390/cancers15102823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Rhabdomyosarcoma (RMS), the most common soft-tissue sarcoma in children and adolescents, represents an aberrant form of skeletal muscle differentiation. Both skeletal muscle development, as well as regeneration of adult skeletal muscle are governed by members of the myogenic family of regulatory transcription factors (MRFs), which are deployed in a highly controlled, multi-step, bidirectional process. Many aspects of this complex process are deregulated in RMS and contribute to tumorigenesis. Interconnected loops of super-enhancers, called core regulatory circuitries (CRCs), define aberrant muscle differentiation in RMS cells. The transcriptional regulation of MRF expression/activity takes a central role in the CRCs active in skeletal muscle and RMS. In PAX3::FOXO1 fusion-positive (PF+) RMS, CRCs maintain expression of the disease-driving fusion oncogene. Recent single-cell studies have revealed hierarchically organized subsets of cells within the RMS cell pool, which recapitulate developmental myogenesis and appear to drive malignancy. There is a large interest in exploiting the causes of aberrant muscle development in RMS to allow for terminal differentiation as a therapeutic strategy, for example, by interrupting MEK/ERK signaling or by interfering with the epigenetic machinery controlling CRCs. In this review, we provide an overview of the genetic and epigenetic framework of abnormal muscle differentiation in RMS, as it provides insights into fundamental mechanisms of RMS malignancy, its remarkable phenotypic diversity and, ultimately, opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Silvia Pomella
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS Istituto Ospedale Pediatrico Bambino Gesu, Viale San Paolo 15, 00146 Rome, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Sara G Danielli
- Department of Oncology and Children's Research Center, University Children's Hospital of Zurich, 8032 Zürich, Switzerland
| | - Rita Alaggio
- Department of Pathology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Viale San Paolo 15, 00146 Rome, Italy
| | - Willemijn B Breunis
- Department of Oncology and Children's Research Center, University Children's Hospital of Zurich, 8032 Zürich, Switzerland
| | - Ebrahem Hamed
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, 79106 Freiburg, Germany
| | - Joanna Selfe
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London SM2 FNG, UK
| | - Marco Wachtel
- Department of Oncology and Children's Research Center, University Children's Hospital of Zurich, 8032 Zürich, Switzerland
| | - Zoe S Walters
- Translational Epigenomics Team, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Beat W Schäfer
- Department of Oncology and Children's Research Center, University Children's Hospital of Zurich, 8032 Zürich, Switzerland
| | - Rossella Rota
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS Istituto Ospedale Pediatrico Bambino Gesu, Viale San Paolo 15, 00146 Rome, Italy
| | - Janet M Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London SM2 FNG, UK
| | - Simone Hettmer
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, 79106 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), 79104 Freiburg, Germany
- Comprehensive Cancer Centre Freiburg (CCCF), University Medical Center Freiburg, 790106 Freiburg, Germany
| |
Collapse
|
4
|
Wu Q, Young B, Wang Y, Davidoff AM, Rankovic Z, Yang J. Recent Advances with KDM4 Inhibitors and Potential Applications. J Med Chem 2022; 65:9564-9579. [PMID: 35838529 PMCID: PMC9531573 DOI: 10.1021/acs.jmedchem.2c00680] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The histone lysine demethylase 4 (KDM4) family plays an important role in regulating gene transcription, DNA repair, and metabolism. The dysregulation of KDM4 functions is associated with many human disorders, including cancer, obesity, and cardiovascular diseases. Selective and potent KDM4 inhibitors may help not only to understand the role of KDM4 in these disorders but also to provide potential therapeutic opportunities. Here, we provide an overview of the field and discuss current status, challenges, and opportunities lying ahead in the development of KDM4-based anticancer therapeutics.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Brandon Young
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Yan Wang
- Department of Geriatrics and Occupational Disease, Qingdao Central Hospital, Qingdao 266044, China
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States.,Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, 930 Madison Avenue, Suite 500, Memphis, Tennessee 38163, United States
| |
Collapse
|