1
|
Kiran S, Xue Y, Sarker DB, Sang QXA. Effects of Induced Pluripotent Stem Cell-Derived Astrocytes on Cisplatin Sensitivity in Pediatric Brain Cancer Cells. Cancers (Basel) 2025; 17:997. [PMID: 40149331 PMCID: PMC11940393 DOI: 10.3390/cancers17060997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/06/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Background: ATRTs and DIPGs are deadly pediatric brain tumors with poor prognosis. These tumors can develop resistance to chemotherapies, which may be significantly influenced by their microenvironment. Since astrocytes are the most abundant glial cell type in the brain microenvironment and may support tumor growth and chemoresistance, this study investigated the effects of induced pluripotent stem cell-derived astrocytes (iPSC-astrocytes) on cisplatin sensitivity in CHLA-05-ATRT and SF8628 (DIPG) cells. iPSCs provide an unlimited and standardized source of nascent astrocytes, which enables modeling the interaction between childhood brain tumor cells and iPSC-astrocytes within a controlled coculture system. Methods: To study the effects on tumor growth, the iPSC-astrocytes were cocultured with tumor cells. Additionally, the tumor cells were exposed to various concentrations of cisplatin to evaluate their chemosensitivity in the presence of astrocytes. Results: The paracrine interaction of iPSC-astrocytes with tumor cells upregulated astrocyte activation markers GFAP and STAT3 and promoted tumor cell proliferation. Moreover, the cisplatin treatment significantly decreased the viability of CHLA-05-ATRT and SF8628 cells. However, tumor cells exhibited reduced sensitivity to cisplatin in the coculture with iPSC-astrocytes. During cisplatin treatment, DIPG cells in particular showed upregulation of resistance markers, ERK1, STAT3, and MTDH, which are associated with enhanced proliferation and invasion. They also had increased expression of APEX1, which is involved in the base excision repair pathway following cisplatin-induced DNA damage. Conclusion: These findings underscore the significance of the tumor microenvironment in modulating tumor cell survival and chemosensitivity.
Collapse
Affiliation(s)
- Sonia Kiran
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA; (S.K.); (Y.X.); (D.B.S.)
| | - Yu Xue
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA; (S.K.); (Y.X.); (D.B.S.)
| | - Drishty B. Sarker
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA; (S.K.); (Y.X.); (D.B.S.)
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA; (S.K.); (Y.X.); (D.B.S.)
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
2
|
Lan SF, Yang ZH, Feng L, Wen YT, Chen KN, Fan LL, Wang MJ, Liu WT. MTDH inhibits CrAT to promote mitochondrial damage in palmitic acid-induced renal tubular cells. Acta Diabetol 2025:10.1007/s00592-025-02476-5. [PMID: 40100360 DOI: 10.1007/s00592-025-02476-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 02/11/2025] [Indexed: 03/20/2025]
Abstract
PURPOSE Mitochondrial dysfunction leading to impaired energy metabolism has been recognized as a pivotal factor contributing to renal tubular epithelial cells (RTECs) damage in the context of dyslipidemia conditions in diabetic kidney disease (DKD). The primary objective of this study is to elucidate the role and underlying mechanism of the proto-oncogene Metadherin (MTDH) in mediating mitochondrial damage within this specific pathological context in vitro. METHODS The expression of MTDH in RTECs was modulated by transfecting small interfering RNA and plasmid, while palmitic acid (PA) was employed to simulate diabetic lipid metabolism disorder. Mitochondrial damage was evaluated by examining various parameters including mitochondrial morphology, membrane potential, reactive oxygen species (ROS) production, adenosine triphosphate (ATP) production, as well as morphological and structural alterations. Additionally, Carnitine acetyltransferase (CrAT) expression was assessed using Western blotting and quantitative real-time polymerase chain reaction, and CrAT activity was quantified. RESULT MTDH expression was upregulated in PA-induced RTECs, while CrAT expression and activity were inhibited. Downregulation of MTDH mitigated PA-induced mitochondrial damage, as demonstrated by the preservation of mitochondrial membrane potential, reduction in mitochondrial ROS production, prevention of ATP depletion, and maintenance of mitochondrial structure. This was accompanied by an upregulation in CrAT expression and activity. Conversely, overexpression of MTDH exacerbated mitochondrial dysfunction by impairing membrane potential, augmenting mitochondrial ROS production, inhibiting ATP synthesis, and suppressing CrAT expression and activity. CONCLUSION In the context of dyslipidemia conditions, MTDH is upregulated and suppresses the expression and activity of CrAT in RTECs, thereby inducing mitochondrial dysfunction and perturbing energy metabolism. These alterations exacerbate the injury to RTECs, consequently promoting the progression of DKD.
Collapse
Affiliation(s)
- Shan-Fen Lan
- Department of Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China
| | - Zhen-Hua Yang
- Department of Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China
| | - Li Feng
- Department of Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China
| | - Yu-Ting Wen
- Department of Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China
| | - Kun-Ni Chen
- Department of Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China
| | - Lang-Lin Fan
- Department of Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China
| | - Ming-Jun Wang
- Department of Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China.
| | - Wen-Ting Liu
- Department of Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China.
| |
Collapse
|
3
|
Xu B, Yang L, Yang L, Al-Maamari A, Zhang J, Song H, Wang M, Su S, Song Z. Role of glutaminyl-peptide cyclotransferase in breast cancer doxorubicin sensitivity. Cancer Biol Ther 2024; 25:2321767. [PMID: 38417050 PMCID: PMC10903679 DOI: 10.1080/15384047.2024.2321767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 02/18/2024] [Indexed: 03/01/2024] Open
Abstract
Doxorubicin (DOX) is one of the most effective and widely used chemotherapeutic drugs. However, DOX resistance is a critical risk problem for breast cancer treatment. Previous studies have demonstrated that metadherin (MTDH) involves in DOX resistance in breast cancer, but the exact mechanism remains unclear. In this study, we found that glutaminyl-peptide cyclotransferase (QPCT) was a MTDH DOX resistance-related downstream gene in breast cancer. Elevated expression of QPCT was found in the GEPIA database, breast cancer tissue, and breast cancer cells. Clinical data showed that QPCT expression was positively associated with poor prognosis in DOX-treated patients. Overexpression of QPCT could promote the proliferation, invasion and migration, and reduce DOX sensitivity in MCF-7 and MDA-MB-231 cells. Mechanistically, MTDH positively regulates the expressions of NF-κB (p65) and QPCT, and NF-κB (p65) directly regulates the expression of QPCT. Therefore, MTDH/NF-κB (p65)/QPCT signal axis was proposed. Collectively, our findings delineate the mechanism by which the MTDH/NF-κB (p65) axis regulate QPCT signaling and suggest that this complex may play an essential role in breast cancer progression and affect DOX sensitivity.
Collapse
Affiliation(s)
- Bin Xu
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Liu Yang
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lixian Yang
- Department of Breast Surgery, Xingtai People’s Hospital, Xingtai, Hebei, China
| | - Ahmed Al-Maamari
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jingyu Zhang
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Heng Song
- Department of Radiotherapy, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Meiqi Wang
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Suwen Su
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhenchuan Song
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
4
|
Yang L, Han M, Zhao X, Zheng L, Kong F, Zhang S, Jia L, Li X, Wang M. Comprehensive pan‑cancer analysis of MTDH for human tumor prognosis and as an immunological biomarker including breast and kidney cancer. Oncol Lett 2024; 28:349. [PMID: 38872862 PMCID: PMC11170258 DOI: 10.3892/ol.2024.14482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Metadherin (MTDH), initially discovered in primary astrocytes of the human fetus through rapid subtraction hybridization and labeled as astrocyte elevated gene-1, represents a widely recognized oncogene present in multiple types of cancers. However, the role of MTDH in different types of cancer remains unclear. To address this, a comprehensive analysis of MTDH across various types of cancers was conducted by utilizing multiple databases such as The Cancer Genome Atlas. The present analysis discovered that MTDH exhibits differential expression in different types of cancer and is associated with important factors including tumor mutational burden and microsatellite instability. These findings highlighted the significance of MTDH in the tumor microenvironment and its involvement in the development of immune cells in specific cancers. Furthermore, the results of the present study indicated that the expression of MTDH is strongly correlated with clinical prognosis, mutations and immune cell infiltration. MTDH could serve as a potential indicator of patient prognosis and potentially play a role in modulating the immune system. Given its potential as a novel immunological checkpoint, MTDH may be a viable target for tumor immunotherapy.
Collapse
Affiliation(s)
- Lixian Yang
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei 054001, P.R. China
| | - Mingqiang Han
- Department of Thyroid Surgery, Xingtai People's Hospital, Xingtai, Hebei 054001, P.R. China
| | - Xiaoling Zhao
- Oncology Laboratory, Xingtai People's Hospital, Xingtai, Hebei 054001, P.R. China
| | - Lei Zheng
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei 054001, P.R. China
| | - Fanting Kong
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei 054001, P.R. China
| | - Shiyu Zhang
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei 054001, P.R. China
| | - Lining Jia
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei 054001, P.R. China
| | - Xiaowei Li
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei 054001, P.R. China
| | - Meng Wang
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei 054001, P.R. China
| |
Collapse
|
5
|
Saverino A, Qu X, Mendoza RG, Raha S, Manna D, Ermi AG, Subler MA, Windle JJ, Liu J, Sarkar D. Spatial transcriptomics unravels palmitoylation and zonation-dependent gene regulation by AEG-1 in mouse liver. J Biol Chem 2024; 300:107322. [PMID: 38677511 PMCID: PMC11134871 DOI: 10.1016/j.jbc.2024.107322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
Obesity-induced metabolic dysfunction-associated steatohepatitis (MASH) leads to hepatocellular carcinoma (HCC). Astrocyte-elevated gene-1/Metadherin (AEG-1/MTDH) plays a key role in promoting MASH and HCC. AEG-1 is palmitoylated at residue cysteine 75 (Cys75) and a knock-in mouse representing mutated Cys75 to serine (AEG-1-C75S) showed activation of MASH- and HCC-promoting gene signature when compared to wild-type littermates (AEG-1-WT). The liver consists of three zones, periportal, mid-lobular, and pericentral, and zone-specific dysregulated gene expression impairs metabolic homeostasis in the liver, contributing to MASH and HCC. Here, to elucidate how palmitoylation influences AEG-1-mediated gene regulation in regard to hepatic zonation, we performed spatial transcriptomics (ST) in the livers of AEG-1-WT and AEG-1-C75S littermates. ST identified six different clusters in livers and using zone- and cell-type-specific markers we attributed specific zones and cell types to specific clusters. Ingenuity Pathway Analysis (IPA) of differentially expressed genes in each cluster unraveled activation of pro-inflammatory and MASH- and HCC-promoting pathways, mainly in periportal and pericentral hepatocytes, in AEG-1-C75S liver compared to AEG-1-WT. Interestingly, in AEG-1-C75S liver, the mid-lobular zone exhibited widespread inhibition of xenobiotic metabolism pathways and inhibition of PXR/RXR and LXR/RXR activation, versus AEG-1-WT. In conclusion, AEG-1-C75S mutant exhibited zone-specific differential gene expression, which might contribute to metabolic dysfunction and dysregulated drug metabolism leading to MASH and HCC.
Collapse
Affiliation(s)
- Alissa Saverino
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Xufeng Qu
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Rachel G Mendoza
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Suchismita Raha
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Debashri Manna
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ali Gawi Ermi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mark A Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA; Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jinze Liu
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA; Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA; Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.
| |
Collapse
|
6
|
Todorović N, Amedei A. Metadherin-driven promotion of cancer stem cell phenotypes and its effect on immunity in hepatocellular carcinoma. World J Gastroenterol 2024; 30:2624-2628. [PMID: 38855151 PMCID: PMC11154677 DOI: 10.3748/wjg.v30.i20.2624] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/24/2024] [Accepted: 05/09/2024] [Indexed: 05/27/2024] Open
Abstract
In this editorial we provide commentary on the article published by Wang et al, featured in the recent issue of the World Journal of Gastroenterology in 2024. We focus on the metadherin (MTDH), also known as astrocyte elevated gene-1 or lysine rich CEACAM1, and its effects on cancer stem cells (CSCs) and immunity in hepatocellular carcinoma (HCC). HCC is the most common primary liver cancer and one of the leading causes of cancer-related deaths worldwide. Most HCC cases develop in the context of liver cirrhosis. Among the pivotal mechanisms of carcinogenesis are gene mutations, dysregulation of diverse signaling pathways, epigenetic alterations, hepatitis B virus-induced hepatocarcinogenesis, chronic inflammation, impact of tumor microenvironment, oxidative stress. Over the years, extensive research has been conducted on the MTDH role in various tumor pathologies, such as lung, breast, ovarian, gastric, hepatocellular, colorectal, renal carcinoma, neuroblastoma, melanoma, and leukemias. Specifically, its involvement in tumor development processes including transformation, apoptosis evasion, angiogenesis, invasion, and metastasis via multiple signaling pathways. It has been demonstrated that knockdown or knockout of MTDH disrupt tumor development and metastasis. In addition, numerous reports have been carried out regarding the MTDH influence on HCC, demonstrating its role as a predictor of poor prognosis, aggressive tumor phenotypes prone to metastasis and recurrence, and exhibiting significant potential for therapy resistance. Finally, more studies finely investigated the influence of MTDH on CSCs. The CSCs are a small subpopulation of tumor cells that sharing traits with normal stem cells like self-renewal and differentiation abilities, alongside a high plasticity that alters their phenotype. Beyond their presumed role in tumor initiation, they can drive also disease relapse, metastasis, and resistance to chemo and radiotherapy.
Collapse
Affiliation(s)
- Nevena Todorović
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
- Clinic for Infectious and Tropical Diseases, University Clinical Centre of Serbia, Belgrade 11000, Serbia
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| |
Collapse
|
7
|
Chen H, Zhan M, Zhang Y, Liu J, Wang R, An Y, Gao Z, Jiang L, Xing Y, Kang Y, Li Z, Yin F. Intracellular Delivery of Stabilized Peptide Blocking MTDH-SND1 Interaction for Breast Cancer Suppression. JACS AU 2024; 4:139-149. [PMID: 38274259 PMCID: PMC10806767 DOI: 10.1021/jacsau.3c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 01/27/2024]
Abstract
Triple-negative breast cancer is one of the most prevalent malignant cancers worldwide. Disrupting the MTDH-SND1 protein-protein interaction has recently been shown to be a promising strategy for breast cancer therapy. In this work, a novel potent stabilized peptide with a stronger binding affinity was obtained through rational structure-based optimization. Furthermore, a sulfonium-based peptide delivery system was established to improve the cell penetration and antitumor effects of stabilized peptides in metastatic breast cancer. Our study further broadens the in vivo applications of the stabilized peptides for blocking MTDH-SND1 interaction and provides promising opportunities for breast cancer therapy.
Collapse
Affiliation(s)
- Hailing Chen
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
| | - Meimiao Zhan
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
| | - Yaping Zhang
- Pingshan
Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Jianbo Liu
- Pingshan
Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Rui Wang
- Pingshan
Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Yuhao An
- Pingshan
Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Zhanxia Gao
- Pingshan
Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Leying Jiang
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
| | - Yun Xing
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
| | - Yibin Kang
- Department
of Molecular Biology and Ludwig Institute for Cancer Research Princeton
Branch, Princeton University, Princeton, New Jersey 08544, United States
| | - Zigang Li
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
- Pingshan
Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Feng Yin
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
- Pingshan
Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| |
Collapse
|
8
|
Hung SW, Gaetani M, Li Y, Tan Z, Zheng X, Zhang R, Ding Y, Man GCW, Zhang T, Song Y, Wang Y, Chung JPW, Chan TH, Zubarev RA, Wang CC. Distinct molecular targets of ProEGCG from EGCG and superior inhibition of angiogenesis signaling pathways for treatment of endometriosis. J Pharm Anal 2024; 14:100-114. [PMID: 38352946 PMCID: PMC10859541 DOI: 10.1016/j.jpha.2023.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 02/16/2024] Open
Abstract
Endometriosis is a common chronic gynecological disease with endometrial cell implantation outside the uterus. Angiogenesis is a major pathophysiology in endometriosis. Our previous studies have demonstrated that the prodrug of epigallocatechin gallate (ProEGCG) exhibits superior anti-endometriotic and anti-angiogenic effects compared to epigallocatechin gallate (EGCG). However, their direct binding targets and underlying mechanisms for the differential effects remain unknown. In this study, we demonstrated that oral ProEGCG can be effective in preventing and treating endometriosis. Additionally, 1D and 2D Proteome Integral Solubility Alteration assay-based chemical proteomics identified metadherin (MTDH) and PX domain containing serine/threonine kinase-like (PXK) as novel binding targets of EGCG and ProEGCG, respectively. Computational simulation and BioLayer interferometry were used to confirm their binding affinity. Our results showed that MTDH-EGCG inhibited protein kinase B (Akt)-mediated angiogenesis, while PXK-ProEGCG inhibited epidermal growth factor (EGF)-mediated angiogenesis via the EGF/hypoxia-inducible factor (HIF-1a)/vascular endothelial growth factor (VEGF) pathway. In vitro and in vivo knockdown assays and microvascular network imaging further confirmed the involvement of these signaling pathways. Moreover, our study demonstrated that ProEGCG has superior therapeutic effects than EGCG by targeting distinct signal transduction pathways and may act as a novel antiangiogenic therapy for endometriosis.
Collapse
Affiliation(s)
- Sze Wan Hung
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Massimiliano Gaetani
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, SE 17177, Sweden
- Chemical Proteomics Core Facility, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, SE 17177, Sweden
- Unit of Chemical Proteomics, Science for Life Laboratory (SciLifeLab), Stockholm, SE 17177, Sweden
| | - Yiran Li
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhouyurong Tan
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Xu Zheng
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ruizhe Zhang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Yang Ding
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Gene Chi Wai Man
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tao Zhang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yi Song
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yao Wang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Tak Hang Chan
- Department of Chemistry, McGill University, Montreal, H3A2K6, Canada
| | - Roman A. Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, SE 17177, Sweden
- Unit of Chemical Proteomics, Science for Life Laboratory (SciLifeLab), Stockholm, SE 17177, Sweden
- Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, 119146, Russia
| | - Chi Chiu Wang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
- Reproduction and Development, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Sriramulu S, Malayaperumal S, Banerjee A, Anbalagan M, Kumar MM, Radha RKN, Liu X, Zhang H, Hu G, Sun XF, Pathak S. AEG-1 as a Novel Therapeutic Target in Colon Cancer: A Study from Silencing AEG-1 in BALB/c Mice to Large Data Analysis. Curr Gene Ther 2024; 24:307-320. [PMID: 38783530 DOI: 10.2174/0115665232273077240104045022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/15/2023] [Accepted: 12/07/2023] [Indexed: 05/25/2024]
Abstract
BACKGROUND Astrocyte elevated gene-1 (AEG-1) is overexpressed in various malignancies. Exostosin-1 (EXT-1), a tumor suppressor, is an intermediate for malignant tumors. Understanding the mechanism behind the interaction between AEG-1 and EXT-1 may provide insights into colon cancer metastasis. METHODS AOM/DSS was used to induce tumor in BALB/c mice. Using an in vivo-jetPEI transfection reagent, transient transfection of AEG-1 and EXT-1 siRNAs were achieved. Histological scoring, immunohistochemical staining, and gene expression studies were performed from excised tissues. Data from the Cancer Genomic Atlas and GEO databases were obtained to identify the expression status of AEG-1 and itsassociation with the survival. RESULTS In BALB/c mice, the AOM+DSS treated mice developed necrotic, inflammatory and dysplastic changes in the colon with definite clinical symptoms such as loss of goblet cells, colon shortening, and collagen deposition. Administration of AEG-1 siRNA resulted in a substantial decrease in the disease activity index. Mice treated with EXT-1 siRNA showed diffusely reduced goblet cells. In vivo investigations revealed that PTCH-1 activity was influenced by upstream gene AEG-1, which in turn may affect EXT-1 activity. Data from The Cancer Genomic Atlas and GEO databases confirmed the upregulation of AEG-1 and downregulation of EXT-1 in cancer patients. CONCLUSIONS This study revealed that AEG-1 silencing might alter EXT-1 expression indirectly through PTCH-1, influencing cell-ECM interactions, and decreasing dysplastic changes, proliferation and invasion.
Collapse
Affiliation(s)
- Sushmitha Sriramulu
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India
| | - Sarubala Malayaperumal
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India
| | - Muralidharan Anbalagan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Makalakshmi Murali Kumar
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India
| | - Rajesh Kanna Nandagopal Radha
- Department of Pathology, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India
| | - Xingyi Liu
- Center for Systems Biology, Department of Bioinformatics, School of Basic Medicine and Biological Sciences, Suzhou, China
| | - Hong Zhang
- School of Medicine, Institute of Medical Sciences, Orebro University, SE-701 82 Orebro, Sweden
| | - Guang Hu
- School of Medicine, Institute of Medical Sciences, Orebro University, SE-701 82 Orebro, Sweden
| | - Xiao-Feng Sun
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India
| |
Collapse
|
10
|
Jovičić SM. Uncovering novel therapeutic targets in glucose, nucleotides and lipids metabolism during cancer and neurological diseases. Int J Immunopathol Pharmacol 2024; 38:3946320241250293. [PMID: 38712748 PMCID: PMC11080811 DOI: 10.1177/03946320241250293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 04/11/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Cell metabolism functions without a stop in normal and pathological cells. Different metabolic changes occur in the disease. Cell metabolism influences biochemical and metabolic processes, signaling pathways, and gene regulation. Knowledge regarding disease metabolism is limited. OBJECTIVE The review examines the cell metabolism of glucose, nucleotides, and lipids during homeostatic and pathological conditions of neurotoxicity, neuroimmunological disease, Parkinson's disease, thymoma in myasthenia gravis, and colorectal cancer. METHODS Data collection includes electronic databases, the National Center for Biotechnology Information, and Google Scholar, with several inclusion criteria: cell metabolism, glucose metabolism, nucleotide metabolism, and lipid metabolism in health and disease patients suffering from neurotoxicity, neuroinflammation, Parkinson's disease, thymoma in myasthenia gravis. The initial number of collected and analyzed papers is 250. The final analysis included 150 studies out of 94 selected papers. After the selection process, 62.67% remains useful. RESULTS AND CONCLUSION A literature search shows that signaling molecules are involved in metabolic changes in cells. Differences between cancer and neuroimmunological diseases are present in the result section. Our finding enables insight into novel therapeutic targets and the development of scientific approaches for cancer and neurological disease onset, outcome, progression, and treatment, highlighting the importance of metabolic dysregulation. Current understanding, emerging research technologies and potential therapeutic interventions in metabolic programming is disucussed and highlighted.
Collapse
Affiliation(s)
- Snežana M Jovičić
- Department of Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
11
|
Meng XL, Yuan PB, Wang XJ, Hang J, Shi XM, Zhao YY, Wei Y. The Proteome Landscape of Human Placentas for Monochorionic Twins with Selective Intrauterine Growth Restriction. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:1246-1259. [PMID: 37121272 PMCID: PMC11082409 DOI: 10.1016/j.gpb.2023.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/20/2023] [Accepted: 03/09/2023] [Indexed: 05/02/2023]
Abstract
In perinatal medicine, intrauterine growth restriction (IUGR) is one of the greatest challenges. The etiology of IUGR is multifactorial, but most cases are thought to arise from placental insufficiency. However, identifying the placental cause of IUGR can be difficult due to numerous confounding factors. Selective IUGR (sIUGR) would be a good model to investigate how impaired placentation affects fetal development, as the growth discordance between monochorionic twins cannot be explained by confounding genetic or maternal factors. Herein, we constructed and analyzed the placental proteomic profiles of IUGR twins and normal cotwins. Specifically, we identified a total of 5481 proteins, of which 233 were differentially expressed (57 up-regulated and 176 down-regulated) in IUGR twins. Bioinformatics analysis indicates that these differentially expressed proteins (DEPs) are mainly associated with cardiovascular system development and function, organismal survival, and organismal development. Notably, 34 DEPs are significantly enriched in angiogenesis, and diminished placental angiogenesis in IUGR twins has been further elaborately confirmed. Moreover, we found decreased expression of metadherin (MTDH) in the placentas of IUGR twins and demonstrated that MTDH contributes to placental angiogenesis and fetal growth in vitro. Collectively, our findings reveal the comprehensive proteomic signatures of placentas for sIUGR twins, and the DEPs identified may provide in-depth insights into the pathogenesis of placental dysfunction and subsequent impaired fetal growth.
Collapse
Affiliation(s)
- Xin-Lu Meng
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Peng-Bo Yuan
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Xue-Ju Wang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Jing Hang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Xiao-Ming Shi
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Yang-Yu Zhao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.
| | - Yuan Wei
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
12
|
Zhao X, Ma Y, Li J, Sun X, Sun Y, Qu F, Shi X, Xie Y, Liu S, Ma Y, Ji C, Hu W, Che S, Zhang X. The AEG-1-USP10-PARP1 axis confers radioresistance in esophageal squamous cell carcinoma via facilitating homologous recombination-dependent DNA damage repair. Cancer Lett 2023; 577:216440. [PMID: 37838281 DOI: 10.1016/j.canlet.2023.216440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/12/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
Radiotherapy is the standard adjuvant treatment for esophageal squamous cell carcinoma (ESCC), yet radioresistance remains a major obstacle leading to treatment failure and unfavorable prognosis. Previous reports have demonstrated the involvement of astrocyte elevated gene-1 (AEG-1) in tumorigenesis and progression of multiple malignancies. Nevertheless, the precise role of AEG-1 in the radioresistance of ESCC remains elusive. Here, we unveiled a strong correlation between aberrant AEG-1 gene overexpression and malignant progression as well as adverse prognosis in ESCC patients. Moreover, both in vitro and in vivo investigations revealed that AEG-1 significantly alleviated irradiation-induced DNA damage and enhanced radiation resistance in ESCC cells. Mechanistically, AEG-1 recruited the deubiquitinase USP10 to remove the K48-linked polyubiquitin chains at the Lys425 of PARP1, thus preventing its proteasomal degradation. This orchestrated process facilitated homologous recombination-mediated DNA double-strand breaks (DSBs) repair, culminating in mitigated DNA damage and acquired radioresistance in ESCC cells. Notably, PARP1 overexpression reversed the radiosensitizing effect caused by AEG-1 deficiency. Collectively, these findings shed new light on the mechanism of ESCC radioresistance, providing potential therapeutic targets to enhance the efficacy of radiotherapy in ESCC.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Yuan Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Jing Li
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Xuanzi Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Yuchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Fengyi Qu
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Xiaobo Shi
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuchen Xie
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Siqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Yanfang Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Chao Ji
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Weibin Hu
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Shaomin Che
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi, 710061, China.
| | - Xiaozhi Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
13
|
Liao SY, Rudoy D, Frank SB, Phan LT, Klezovitch O, Kwan J, Coleman I, Haffner MC, Li D, Nelson PS, Emili A, Vasioukhin V. SND1 binds to ERG and promotes tumor growth in genetic mouse models of prostate cancer. Nat Commun 2023; 14:7435. [PMID: 37973913 PMCID: PMC10654515 DOI: 10.1038/s41467-023-43245-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
SND1 and MTDH are known to promote cancer and therapy resistance, but their mechanisms and interactions with other oncogenes remain unclear. Here, we show that oncoprotein ERG interacts with SND1/MTDH complex through SND1's Tudor domain. ERG, an ETS-domain transcription factor, is overexpressed in many prostate cancers. Knocking down SND1 in human prostate epithelial cells, especially those overexpressing ERG, negatively impacts cell proliferation. Transcriptional analysis shows substantial overlap in genes regulated by ERG and SND1. Mechanistically, we show that ERG promotes nuclear localization of SND1/MTDH. Forced nuclear localization of SND1 prominently increases its growth promoting function irrespective of ERG expression. In mice, prostate-specific Snd1 deletion reduces cancer growth and tumor burden in a prostate cancer model (PB-Cre/Ptenflox/flox/ERG mice), Moreover, we find a significant overlap between prostate transcriptional signatures of ERG and SND1. These findings highlight SND1's crucial role in prostate tumorigenesis, suggesting SND1 as a potential therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Sheng-You Liao
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Dmytro Rudoy
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sander B Frank
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Luan T Phan
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Olga Klezovitch
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Julian Kwan
- Center for Network Systems Biology, Departments of Biochemistry & Biology, Boston University, Boston, MA, USA
| | - Ilsa Coleman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michael C Haffner
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Dapei Li
- Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Andrew Emili
- Center for Network Systems Biology, Departments of Biochemistry & Biology, Boston University, Boston, MA, USA
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Valeri Vasioukhin
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
14
|
The Journey of Cancer Cells to the Brain: Challenges and Opportunities. Int J Mol Sci 2023; 24:ijms24043854. [PMID: 36835266 PMCID: PMC9967224 DOI: 10.3390/ijms24043854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Cancer metastases into the brain constitute one of the most severe, but not uncommon, manifestations of cancer progression. Several factors control how cancer cells interact with the brain to establish metastasis. These factors include mediators of signaling pathways participating in migration, infiltration of the blood-brain barrier, interaction with host cells (e.g., neurons, astrocytes), and the immune system. Development of novel therapies offers a glimpse of hope for increasing the diminutive life expectancy currently forecasted for patients suffering from brain metastasis. However, applying these treatment strategies has not been sufficiently effective. Therefore, there is a need for a better understanding of the metastasis process to uncover novel therapeutic targets. In this review, we follow the journey of various cancer cells from their primary location through the diverse processes that they undergo to colonize the brain. These processes include EMT, intravasation, extravasation, and infiltration of the blood-brain barrier, ending up with colonization and angiogenesis. In each phase, we focus on the pathways engaging molecules that potentially could be drug target candidates.
Collapse
|
15
|
Jin C, Han-Hua D, Qiu-Meng L, Deng N, Peng-Chen D, Jie M, Lei X, Xue-Wu Z, Hui-Fang L, Yan C, Xiao-Ping C, Bi-Xiang Z. MTDH-stabilized DDX17 promotes tumor initiation and progression through interacting with YB1 to induce EGFR transcription in Hepatocellular Carcinoma. Oncogene 2023; 42:169-183. [PMID: 36385375 DOI: 10.1038/s41388-022-02545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
Metadherin (MTDH) is a well-established oncogene in various cancers including Hepatocellular Carcinoma (HCC). However, the precise mechanism through which MTDH promotes cancer-related signaling pathways in HCC remains unknown. In this study, we identified DDX17 as a novel binding partner of MTDH. Furthermore, MTDH increased the protein level of DDX17 by inhibiting its ubiquitination. We confirmed that DDX17 was a novel oncogene, with dramatically upregulated expression in HCC tissues. The increased expression of DDX17 was closely associated with vascular invasion, TNM stage, BCLC stage, and poor prognosis. In vitro and in vivo tests demonstrated that DDX17, a downstream target of MTDH, played a crucial role in tumor initiation and progression. Mechanistically, DDX17 acted as a transcriptional regulator that interacted with Y-box binding protein 1 (YB1) in the nucleus, which in turn drove the binding of YB1 to its target epidermal growth factor receptor (EGFR) gene promoter to increase its transcription. This in turn increased expression of EGFR and the activation of the downstream MEK/pERK signaling pathway. Our results identify DDX17, stabilized by MTDH, as a powerful oncogene in HCC and suggest that the DDX17/YB1/EGFR axis contributes to tumorigenesis and metastasis of HCC.
Collapse
Affiliation(s)
- Chen Jin
- Hepatic Surgery Center, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Hubei key laboratory of hepato-pancreato-biliary diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Han-Hua
- Hepatic Surgery Center, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Hubei key laboratory of hepato-pancreato-biliary diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Qiu-Meng
- Hepatic Surgery Center, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Hubei key laboratory of hepato-pancreato-biliary diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Deng
- Hepatic Surgery Center, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Hubei key laboratory of hepato-pancreato-biliary diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Du Peng-Chen
- Hepatic Surgery Center, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Hubei key laboratory of hepato-pancreato-biliary diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mo Jie
- Hepatic Surgery Center, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Hubei key laboratory of hepato-pancreato-biliary diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Lei
- Hepatic Surgery Center, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Hubei key laboratory of hepato-pancreato-biliary diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Xue-Wu
- Hepatic Surgery Center, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Hubei key laboratory of hepato-pancreato-biliary diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Hui-Fang
- Hepatic Surgery Center, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Hubei key laboratory of hepato-pancreato-biliary diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Yan
- General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chen Xiao-Ping
- Hepatic Surgery Center, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Hubei key laboratory of hepato-pancreato-biliary diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Key Laboratory of Organ Transplantation, Ministry of Education; Key Laboratory of Organ Transplantation, National Health Commission; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Zhang Bi-Xiang
- Hepatic Surgery Center, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Hubei key laboratory of hepato-pancreato-biliary diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Key Laboratory of Organ Transplantation, Ministry of Education; Key Laboratory of Organ Transplantation, National Health Commission; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
16
|
Chen H, Zhan M, Liu J, Liu Z, Shen M, Yang F, Kang Y, Yin F, Li Z. Structure-Based Design, Optimization, and Evaluation of Potent Stabilized Peptide Inhibitors Disrupting MTDH and SND1 Interaction. J Med Chem 2022; 65:12188-12199. [PMID: 36044768 DOI: 10.1021/acs.jmedchem.2c00862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Blocking the interaction of MTDH/SND1 complex is an attractive strategy for cancer therapeutics. In this work, we designed and obtained a novel class of potent stabilized peptide inhibitors derived from MTDH sequence to disrupt MTDH/SND1 interaction. Through structure-based optimization and biological evaluation, stabilized peptides were obtained with tight binding affinity, improved cell penetration, and antitumor effects in the triple-negative breast cancer (TNBC) cells without nonspecific toxicity. To date, our study was the first report to demonstrate that stabilized peptides truncated from MTDH could serve as promising candidates to disrupt the MTDH/SND1 interaction for potential breast cancer treatment.
Collapse
Affiliation(s)
- Hailing Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Meimiao Zhan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jianbo Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Zhihong Liu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Minhong Shen
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, New Jersey 08544, United States
| | - Fenfang Yang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| |
Collapse
|
17
|
Daisy Precilla S, Biswas I, Kuduvalli SS, Anitha TS. Crosstalk between PI3K/AKT/mTOR and WNT/β-Catenin signaling in GBM - Could combination therapy checkmate the collusion? Cell Signal 2022; 95:110350. [PMID: 35525406 DOI: 10.1016/j.cellsig.2022.110350] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/11/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme is one of the calamitous primary glial brain tumors with extensive heterogeneity at cellular and molecular levels. While maximal surgical resection trailed by radio and chemotherapy employing temozolomide remains the gold-standard treatment for malignant glioma patients, the overall prognosis remains dismal and there exists an unmet need for effective therapeutic strategies. In this context, we hypothesize that proper understanding of signaling pathways responsible for glioblastoma multiforme proliferation would be the first trump card while searching for novel targeted therapies. Among the pathways aberrantly activated, PI3K/AKT/mTOR is the most significant pathway, that is clinically implicated in malignancies such as high-grade glioma. Further, the WNT/β-Catenin cascade is well-implicated in several malignancies, while its role in regulating glioma pathogenesis has only emerged recently. Nevertheless, oncogenic activation of both these pathways is a frequent event in malignant glioma that facilitates tumor proliferation, stemness and chemo-resistance. Recently, it has been reported that the cross-talk of PI3K/AKT/mTOR pathway with multiple signaling pathways could promote glioma progression and reduce the sensitivity of glioma cells to the standard therapy. However, very few studies had focused on the relationship between PI3K/AKT/mTOR and WNT/β-Catenin pathways in glioblastoma multiforme. Interestingly, in homeostatic and pathologic circumstances, both these pathways depict fine modulation and are connected at multiple levels by upstream and downstream effectors. Thus, gaining deep insights on the collusion between these pathways would help in discovering unique therapeutic targets for glioblastoma multiforme management. Hence, the current review aims to address, "the importance of inter-play between PI3K/AKT/mTOR and WNT/β-Catenin pathways", and put forward, "the possibility of combinatorially targeting them", for glioblastoma multiforme treatment enhancement.
Collapse
Affiliation(s)
- S Daisy Precilla
- Central Inter-Disciplinary Research Facility, School of Biological Sciences, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Indrani Biswas
- Central Inter-Disciplinary Research Facility, School of Biological Sciences, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Shreyas S Kuduvalli
- Central Inter-Disciplinary Research Facility, School of Biological Sciences, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - T S Anitha
- Central Inter-Disciplinary Research Facility, School of Biological Sciences, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India.
| |
Collapse
|
18
|
Molecular Mechanisms of Cancer Drug Resistance: Emerging Biomarkers and Promising Targets to Overcome Tumor Progression. Cancers (Basel) 2022; 14:cancers14071614. [PMID: 35406386 PMCID: PMC8997078 DOI: 10.3390/cancers14071614] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer still represents a major global burden, being the second leading cause of death worldwide [...].
Collapse
|
19
|
Jia Y, Tian C, Wang H, Yu F, Lv W, Duan Y, Cheng Z, Wang X, Wang Y, Liu T, Wang J, Liu L. Long non-coding RNA NORAD/miR-224-3p/MTDH axis contributes to CDDP resistance of esophageal squamous cell carcinoma by promoting nuclear accumulation of β-catenin. Mol Cancer 2021; 20:162. [PMID: 34893064 PMCID: PMC8662861 DOI: 10.1186/s12943-021-01455-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/05/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Cis-diamminedichloro-platinum (CDDP)-based chemotherapy regimens are the most predominant treatment strategies for patients with esophageal squamous cell carcinoma (ESCC). Dysregulated long non-coding RNAs (lncRNAs) contribute to CDDP resistance, which results in treatment failure in ESCC patients. However, the majority of lncRNAs involved in CDDP resistance in ESCC remain to be elucidated. METHODS The public Gene Expression Omnibus (GEO) dataset GSE45670 was analysed to reveal potential lncRNAs involved in CDDP resistance of ESCC. Candidate upregulated lncRNAs were detected in ESCC specimens by qRT-PCR to identify crucial lncRNAs. Non-coding RNA activated by DNA damage (NORAD) was selected for further study. Kaplan-Meier analysis and a COX proportional regression model were performed to analyse the potential of NORAD for predicting prognosis of ESCC patients. The role of NORAD in CDDP resistance were determined by conducting gain and loss-of-function experiments in vitro. Fluorescence in situ hybridization (FISH) was performed to determine the subcellular location of NORAD in ESCC cells. A public GEO dataset and bioinformatic algorithms were used to predict the microRNAs (miRNAs) that might be latently sponged by NORAD. qRT-PCR was conducted to verify the expression of candidate miRNAs. Luciferase reporter and Argonaute-2 (Ago2)-RNA immunoprecipitation (RIP) assays were conducted to evaluate the interaction between NORAD and candidate miRNAs. A miRNA rescue experiment was performed to authenticate the NORAD regulatory axis and its effects on CDDP resistance in ESCC cells. Western blotting was conducted to confirm the precise downstream signalling pathway of NORAD. A xenograft mouse model was established to reveal the effect of NORAD on CDDP resistance in vivo. RESULTS The expression of NORAD was higher in CDDP-resistant ESCC tissues and cells than in CDDP-sensitive tissues and cells. NORAD expression was negatively correlated with the postoperative prognosis of ESCC patients who underwent CDDP-based chemotherapy. NORAD knockdown partially arrested CDDP resistance of ESCC cells. FISH showed that NORAD was located in the cytoplasm in ESCC cells. Furthermore, overlapping results from bioinformatic algorithms analyses and qRT-PCR showed that NORAD could sponge miR-224-3p in ESCC cells. Ago2-RIP demonstrated that NORAD and miR-224-3p occupied the same Ago2 to form an RNA-induced silencing complex (RISC) and subsequently regulated the expression of metadherin (MTDH) in ESCC cells. The NORAD/miR-224-3p/MTDH axis promoted CDDP resistance and progression in ESCC cells by promoting nuclear accumulation of β-catenin in vitro and in vivo. CONCLUSIONS NORAD upregulates MTDH to promote CDDP resistance and progression in ESCC by sponging miR-224-3p. Our results highlight the potential of NORAD as a therapeutic target in ESCC patients receiving CDDP-based chemotherapy.
Collapse
Affiliation(s)
- Yunlong Jia
- Department of Tumor Immunotherapy, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, 050035, China
| | - Cong Tian
- Department of Tumor Immunotherapy, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, 050035, China
| | - Hongyan Wang
- Department of Thoracic Surgery, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, 050011, China
| | - Fan Yu
- Department of Thoracic Surgery, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, 050011, China
| | - Wei Lv
- Department of Tumor Immunotherapy, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, 050035, China
| | - Yuqing Duan
- Department of Tumor Immunotherapy, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, 050035, China
| | - Zishuo Cheng
- Department of Tumor Immunotherapy, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, 050035, China
| | - Xuexiao Wang
- Department of Tumor Immunotherapy, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, 050035, China
| | - Yu Wang
- Department of Tumor Immunotherapy, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, 050035, China
| | - Tianxu Liu
- Department of Tumor Immunotherapy, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, 050035, China
| | - Jiali Wang
- Department of Tumor Immunotherapy, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, 050035, China
| | - Lihua Liu
- Department of Tumor Immunotherapy, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, 050035, China. .,Cancer Research Institute of Hebei Province, Shijiazhuang, 050011, China. .,China International Cooperation Laboratory of Stem Cell Research, Hebei Medical University, Shijiazhuang, 050011, China.
| |
Collapse
|
20
|
Zhang F, Huang H, Qin Y, Chen C, She L, Wang J, Huang D, Tang Q, Liu Y, Zhu G, Zhang X. MTDH associates with m6A RNA methylation and predicts cancer response for immune checkpoint treatment. iScience 2021; 24:103102. [PMID: 34622157 PMCID: PMC8479698 DOI: 10.1016/j.isci.2021.103102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 11/25/2022] Open
Abstract
Immune checkpoint blockade (ICB) persistently provides a prognosis improvement but only in a small fraction of patients with cancer due to immunotherapy resistance induced by the consecutive activated oncogenic pathways, including MAPK, Akt, and WNT pathway partially driven by Metadherin (MTDH). However, there is no study to investigate the potential role and mechanisms of MTDH in ICB-treated cancers. Here, we systematically explored the cohorts from The Cancer Genome Atlas (TCGA) and independent cancer cohorts. Elevated MTDH expression was founded to associate with a worse overall survival and poorer immune response in patients with cancer. Dysregulated tumor-infiltrating immune cells and inhibitory immune checkpoint expression were correlated with MTDH expression. Furthermore, the mutual interactions between epithelial-to-mesenchymal-transition, m6A-RNA-methylation, and MTDH may illustrate the potential mechanisms of MTDH resistant to ICB treatment. Although more designed experiments and trials are needed in the future, targeting MTDH may help to overcome immunotherapy resistance in a wide range of cancers. MTDH associates with prognosis and immunotherapy response for patients with cancer MTDH associates with dysregulated tumor immune environment and checkpoint expression The MTDH/m6A RNA methylation/EMT pathway may contribute to immunotherapy resistance
Collapse
Affiliation(s)
- Fen Zhang
- Department of Emergency Medicine, Changsha Central Hospital, University of South China, Changsha 410001, China
| | - Huimei Huang
- Department of Otolaryngology-Head and Neck Surgery, Second Xiangya Hospital, Central South University, Changsha 410010, China
| | - Yuexiang Qin
- Health Management Center, Third Xiangya Hospital, Central South University, Changsha 410011, China
| | - Changhan Chen
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Li She
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Juncheng Wang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Donghai Huang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qinglai Tang
- Department of Otolaryngology-Head and Neck Surgery, Second Xiangya Hospital, Central South University, Changsha 410010, China
| | - Yong Liu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Gangcai Zhu
- Department of Otolaryngology-Head and Neck Surgery, Second Xiangya Hospital, Central South University, Changsha 410010, China
| | - Xin Zhang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|