1
|
Chan YT, Zhang C, Wu J, Lu P, Xu L, Yuan H, Feng Y, Chen ZS, Wang N. Biomarkers for diagnosis and therapeutic options in hepatocellular carcinoma. Mol Cancer 2024; 23:189. [PMID: 39242496 PMCID: PMC11378508 DOI: 10.1186/s12943-024-02101-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Liver cancer is a global health challenge, causing a significant social-economic burden. Hepatocellular carcinoma (HCC) is the predominant type of primary liver cancer, which is highly heterogeneous in terms of molecular and cellular signatures. Early-stage or small tumors are typically treated with surgery or ablation. Currently, chemotherapies and immunotherapies are the best treatments for unresectable tumors or advanced HCC. However, drug response and acquired resistance are not predictable with the existing systematic guidelines regarding mutation patterns and molecular biomarkers, resulting in sub-optimal treatment outcomes for many patients with atypical molecular profiles. With advanced technological platforms, valuable information such as tumor genetic alterations, epigenetic data, and tumor microenvironments can be obtained from liquid biopsy. The inter- and intra-tumoral heterogeneity of HCC are illustrated, and these collective data provide solid evidence in the decision-making process of treatment regimens. This article reviews the current understanding of HCC detection methods and aims to update the development of HCC surveillance using liquid biopsy. Recent critical findings on the molecular basis, epigenetic profiles, circulating tumor cells, circulating DNAs, and omics studies are elaborated for HCC diagnosis. Besides, biomarkers related to the choice of therapeutic options are discussed. Some notable recent clinical trials working on targeted therapies are also highlighted. Insights are provided to translate the knowledge into potential biomarkers for detection and diagnosis, prognosis, treatment response, and drug resistance indicators in clinical practice.
Collapse
Affiliation(s)
- Yau-Tuen Chan
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Cheng Zhang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Junyu Wu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Pengde Lu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Lin Xu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hongchao Yuan
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Zhe-Sheng Chen
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
2
|
Kassem PH, Montasser IF, Mahmoud RM, Ghorab RA, AbdelHakam DA, Fathi MESA, Wahed MAA, Mohey K, Ibrahim M, Hadidi ME, Masssoud YM, Salah M, Abugable A, Bahaa M, Khamisy SE, Meteini ME. Genomic landscape of hepatocellular carcinoma in Egyptian patients by whole exome sequencing. BMC Med Genomics 2024; 17:202. [PMID: 39123171 PMCID: PMC11311965 DOI: 10.1186/s12920-024-01965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Chronic hepatitis and liver cirrhosis lead to accumulation of genetic alterations driving HCC pathogenesis. This study is designed to explore genomic landscape of HCC in Egyptian patients by whole exome sequencing. METHODS Whole exome sequencing using Ion Torrent was done on 13 HCC patients, who underwent surgical intervention (7 patients underwent living donor liver transplantation (LDLT) and 6 patients had surgical resection}. RESULTS Mutational signature was mostly S1, S5, S6, and S12 in HCC. Analysis of highly mutated genes in both HCC and Non-HCC revealed the presence of highly mutated genes in HCC (AHNAK2, MUC6, MUC16, TTN, ZNF17, FLG, MUC12, OBSCN, PDE4DIP, MUC5b, and HYDIN). Among the 26 significantly mutated HCC genes-identified across 10 genome sequencing studies-in addition to TCGA, APOB and RP1L1 showed the highest number of mutations in both HCC and Non-HCC tissues. Tier 1, Tier 2 variants in TCGA SMGs in HCC and Non-HCC (TP53, PIK3CA, CDKN2A, and BAP1). Cancer Genome Landscape analysis revealed Tier 1 and Tier 2 variants in HCC (MSH2) and in Non-HCC (KMT2D and ATM). For KEGG analysis, the significantly annotated clusters in HCC were Notch signaling, Wnt signaling, PI3K-AKT pathway, Hippo signaling, Apelin signaling, Hedgehog (Hh) signaling, and MAPK signaling, in addition to ECM-receptor interaction, focal adhesion, and calcium signaling. Tier 1 and Tier 2 variants KIT, KMT2D, NOTCH1, KMT2C, PIK3CA, KIT, SMARCA4, ATM, PTEN, MSH2, and PTCH1 were low frequency variants in both HCC and Non-HCC. CONCLUSION Our results are in accordance with previous studies in HCC regarding highly mutated genes, TCGA and specifically enriched pathways in HCC. Analysis for clinical interpretation of variants revealed the presence of Tier 1 and Tier 2 variants that represent potential clinically actionable targets. The use of sequencing techniques to detect structural variants and novel techniques as single cell sequencing together with multiomics transcriptomics, metagenomics will integrate the molecular pathogenesis of HCC in Egyptian patients.
Collapse
Affiliation(s)
- Perihan Hamdy Kassem
- Clinical Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Iman Fawzy Montasser
- Tropical Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Ramy Mohamed Mahmoud
- Clinical Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Rasha Ahmed Ghorab
- Clinical Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Dina A AbdelHakam
- Clinical Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Marwa A Abdel Wahed
- Clinical Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Khaled Mohey
- Clinical Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mariam Ibrahim
- Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed El Hadidi
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham Dubai Campus, Dubai, United Arab Emirates
- Bioinformatics Group, Center for Informatics Science(CIS), School of Information Technology and Computer Science(ITCS), Nile University, Giza, Egypt
| | - Yasmine M Masssoud
- Tropical Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Manar Salah
- Tropical Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Arwa Abugable
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Mohamad Bahaa
- Hepato-Pancreatico-Biliary Surgery Department and liver Transplantation, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Mahmoud El Meteini
- Hepato-Pancreatico-Biliary Surgery Department and liver Transplantation, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Wongsurawat T, Jenjaroenpun P, Anekwiang P, Arigul T, Thongrattana W, Jamshidi‐Parsian A, Boysen G, Suriyaphol P, Suktitipat B, Srirabheebhat P, Cheunsuchon P, Tanboon J, Nookaew I, Sathornsumetee S. Exploiting nanopore sequencing for characterization and grading of IDH-mutant gliomas. Brain Pathol 2024; 34:e13203. [PMID: 37574201 PMCID: PMC10711254 DOI: 10.1111/bpa.13203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023] Open
Abstract
The 2021 WHO Classification of Central Nervous System Tumors recommended evaluation of cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) deletion in addition to codeletion of 1p/19q to characterize IDH-mutant gliomas. Here, we demonstrated the use of a nanopore-based copy-number variation sequencing (nCNV-seq) approach to simultaneously identify deletions of CDKN2A/B and 1p/19q. The nCNV-seq approach was initially evaluated on three distinct glioma cell lines and then applied to 19 IDH-mutant gliomas (8 astrocytomas and 11 oligodendrogliomas) from patients. The whole-arm 1p/19q codeletion was detected in all oligodendrogliomas with high concordance among nCNV-seq, FISH, DNA methylation profiling, and whole-genome sequencing. For the CDKN2A/B deletion, nCNV-seq detected the loss in both astrocytoma and oligodendroglioma, with strong correlation with the CNV profiles derived from whole-genome sequencing (Pearson correlation (r) = 0.95, P < 2.2 × 10-16 to r = 0.99, P < 2.2 × 10-16 ) and methylome profiling. Furthermore, nCNV-seq can differentiate between homozygous and hemizygous deletions of CDKN2A/B. Taken together, nCNV-seq holds promise as a new, alternative approach for a rapid and simultaneous detection of the molecular signatures of IDH-mutant gliomas without capital expenditure for a sequencer.
Collapse
Affiliation(s)
- Thidathip Wongsurawat
- Division of Medical Bioinformatics, Department of Research and Development, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
- Department of Biomedical Informatics, College of MedicineUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Piroon Jenjaroenpun
- Division of Medical Bioinformatics, Department of Research and Development, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
- Department of Biomedical Informatics, College of MedicineUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Panatna Anekwiang
- Department of Medicine (Neurology), Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Tantip Arigul
- Division of Medical Bioinformatics, Department of Research and Development, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Wichayapat Thongrattana
- Division of Medical Bioinformatics, Department of Research and Development, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Azemat Jamshidi‐Parsian
- Department of Radiation OncologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Gunnar Boysen
- Department of Environmental and Occupational HealthUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Prapat Suriyaphol
- Division of Medical Bioinformatics, Department of Research and Development, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Bhoom Suktitipat
- Division of Medical Bioinformatics, Department of Research and Development, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
- Department of Biochemistry, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Prajak Srirabheebhat
- Department of Surgery (Neurosurgery), Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Pornsuk Cheunsuchon
- Department of Pathology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Jantima Tanboon
- Department of Pathology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of MedicineUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Sith Sathornsumetee
- Department of Medicine (Neurology), Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| |
Collapse
|
4
|
Dekky B, Azar F, Bonnier D, Monseur C, Kalebić C, Arpigny E, Colige A, Legagneux V, Théret N. ADAMTS12 is a stromal modulator in chronic liver disease. FASEB J 2023; 37:e23237. [PMID: 37819632 DOI: 10.1096/fj.202200692rrrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Adamalysins, a family of metalloproteinases containing a disintegrin and metalloproteinases (ADAMs) and ADAM with thrombospondin motifs (ADAMTSs), belong to the matrisome and play important roles in various biological and pathological processes, such as development, immunity and cancer. Using a liver cancer dataset from the International Cancer Genome Consortium, we developed an extensive in silico screening that identified a cluster of adamalysins co-expressed in livers from patients with hepatocellular carcinoma (HCC). Within this cluster, ADAMTS12 expression was highly associated with recurrence risk and poorly differentiated HCC signatures. We showed that ADAMTS12 was expressed in the stromal cells of the tumor and adjacent fibrotic tissues of HCC patients, and more specifically in activated stellate cells. Using a mouse model of carbon tetrachloride-induced liver injury, we showed that Adamts12 was strongly and transiently expressed after a 24 h acute treatment, and that fibrosis was exacerbated in Adamts12-null mice submitted to carbon tetrachloride-induced chronic liver injury. Using the HSC-derived LX-2 cell line, we showed that silencing of ADAMTS12 resulted in profound changes of the gene expression program. In particular, genes previously reported to be induced upon HSC activation, such as PAI-1, were mostly down-regulated following ADAMTS12 knock-down. The phenotype of these cells was changed to a less differentiated state, showing an altered actin network and decreased nuclear spreading. These phenotypic changes, together with the down-regulation of PAI-1, were offset by TGF-β treatment. The present study thus identifies ADAMTS12 as a modulator of HSC differentiation, and a new player in chronic liver disease.
Collapse
Affiliation(s)
- Bassil Dekky
- University of Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Rennes, France
| | - Fida Azar
- University of Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Rennes, France
| | - Dominique Bonnier
- University of Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Rennes, France
| | - Christine Monseur
- Laboratory of Connective Tissues Biology, GIGA-R, University of Liege, Liege, Belgium
| | - Chiara Kalebić
- University of Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Rennes, France
| | - Esther Arpigny
- Laboratory of Connective Tissues Biology, GIGA-R, University of Liege, Liege, Belgium
| | - Alain Colige
- Laboratory of Connective Tissues Biology, GIGA-R, University of Liege, Liege, Belgium
| | - Vincent Legagneux
- University of Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Rennes, France
| | - Nathalie Théret
- University of Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Rennes, France
| |
Collapse
|
5
|
Zheng B, Yi K, Zhang Y, Pang T, Zhou J, He J, Lan H, Xian H, Li R. Multi-omics analysis of multiple myeloma patients with differential response to first-line treatment. Clin Exp Med 2023; 23:3833-3846. [PMID: 37515690 DOI: 10.1007/s10238-023-01148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023]
Abstract
The genome backgrounds of multiple myeloma (MM) would affect the efficacy of specific treatment. However, the mutational and transcriptional landscapes in MM patients with differential response to first-line treatment remains unclear. We collected paired whole-exome sequencing (WES) and transcriptomic data of over 200 MM cases from MMRF-COMPASS project. R package, maftools was applied to analyze the somatic mutations and mutational signatures across MM samples. Differential expressed genes (DEG) was calculated using R package, DESeq2. The feature selection of the predictive model was determined by LASSO regression. In silico analysis revealed newly discovered recurrent mutated genes such as TTN, MUC16. TP53 mutation was observed more frequent in nonCR (complete remission) group with poor prognosis. DNA repair-associated mutational signatures were enriched in CR patients. Transcriptomic profiling showed that the activity of NF-kappa B and TGF-β pathways was suppressed in CR patients. A transcriptome-based response predictive model was constructed and showed promising predictive accuracy in MM patients receiving first-line treatment. Our study delineated distinctive mutational and transcriptional landscapes in MM patients with differential response to first-line treatment. Furthermore, we constructed a 20-gene predictive model which showed promising accuracy in predicting treatment response in newly diagnosed MM patients.
Collapse
Affiliation(s)
- Bo Zheng
- Nuclear Radiation Injury Protection and Treatment Department, Navy Medical Center of PLA, Naval Medical University, Huaihai West Road No. 338, Shanghai, 200050, China.
| | - Ke Yi
- Nuclear Radiation Injury Protection and Treatment Department, Navy Medical Center of PLA, Naval Medical University, Huaihai West Road No. 338, Shanghai, 200050, China
| | - Yajun Zhang
- Nuclear Radiation Injury Protection and Treatment Department, Navy Medical Center of PLA, Naval Medical University, Huaihai West Road No. 338, Shanghai, 200050, China
| | - Tongfang Pang
- Nuclear Radiation Injury Protection and Treatment Department, Navy Medical Center of PLA, Naval Medical University, Huaihai West Road No. 338, Shanghai, 200050, China
| | - Jieyi Zhou
- Nuclear Radiation Injury Protection and Treatment Department, Navy Medical Center of PLA, Naval Medical University, Huaihai West Road No. 338, Shanghai, 200050, China
| | - Jie He
- Nuclear Radiation Injury Protection and Treatment Department, Navy Medical Center of PLA, Naval Medical University, Huaihai West Road No. 338, Shanghai, 200050, China
| | - Hongyan Lan
- Nuclear Radiation Injury Protection and Treatment Department, Navy Medical Center of PLA, Naval Medical University, Huaihai West Road No. 338, Shanghai, 200050, China
| | - Hongming Xian
- Nuclear Radiation Injury Protection and Treatment Department, Navy Medical Center of PLA, Naval Medical University, Huaihai West Road No. 338, Shanghai, 200050, China
| | - Rong Li
- Nuclear Radiation Injury Protection and Treatment Department, Navy Medical Center of PLA, Naval Medical University, Huaihai West Road No. 338, Shanghai, 200050, China.
| |
Collapse
|
6
|
Manea I, Iacob R, Iacob S, Cerban R, Dima S, Oniscu G, Popescu I, Gheorghe L. Liquid biopsy for early detection of hepatocellular carcinoma. Front Med (Lausanne) 2023; 10:1218705. [PMID: 37809326 PMCID: PMC10556479 DOI: 10.3389/fmed.2023.1218705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly prevalent and lethal cancer globally. Over 90% of HCC cases arise in the context of liver cirrhosis, and the severity of the underlying liver disease or advanced tumor stage at diagnosis significantly limits treatment options. Early diagnosis is crucial, and all guidelines stress the importance of screening protocols for HCC early detection as a public health objective. As serum biomarkers are not optimal for early diagnosis, liquid biopsy has emerged as a promising tool for diagnosis, prognostication, and patients' stratification for personalized therapy in various solid tumors, including HCC. While circulating tumor cells (CTCs) are better suited for personalized therapy and prognosis, cell-free DNA (cfDNA) and extracellular vesicle-based technologies show potential for early diagnosis, HCC screening, and surveillance protocols. Evaluating the added value of liquid biopsy genetic and epigenetic biomarkers for HCC screening is a key goal in translational research. Somatic mutations commonly found in HCC can be investigated in cfDNA and plasma exosomes as genetic biomarkers. Unique methylation patterns in cfDNA or cfDNA fragmentome features have been suggested as innovative tools for early HCC detection. Likewise, extracellular vesicle cargo biomarkers such as miRNAs and long non-coding RNAs may serve as potential biomarkers for early HCC detection. This review will explore recent findings on the utility of liquid biopsy for early HCC diagnosis. Combining liquid biopsy methods with traditional serological biomarkers could improve the overall diagnostic accuracy for early HCC detection.
Collapse
Affiliation(s)
- Ioana Manea
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Razvan Iacob
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Speranta Iacob
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Razvan Cerban
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Simona Dima
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Gabriel Oniscu
- Transplant Division, Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Irinel Popescu
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Liliana Gheorghe
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
7
|
Gu X, Li S, Ma X, Huang D, Li P. Heterogeneity characterization of hepatocellular carcinoma based on the sensitivity to 5-fluorouracil and development of a prognostic regression model. Front Pharmacol 2023; 14:1252805. [PMID: 37745063 PMCID: PMC10512943 DOI: 10.3389/fphar.2023.1252805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Background: 5-Fluorouracil (5-FU) is a widely used chemotherapeutic drug in clinical cancer treatment, including hepatocellular carcinoma (HCC). A correct understanding of the mechanisms leading to a low or lack of sensitivity of HCC to 5-FU-based treatment is a key element in the current personalized medical treatment. Methods: Weighted gene co-expression network analysis (WGCNA) was used to analyze the expression profiles of the cancer cell line from GDSC2 to identify 5-FU-related modules and hub genes. According to hub genes, HCC was classified and the machine learning model was developed by ConsensusClusterPlus and five different machine learning algorithms. Furthermore, we performed quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis on the genes in our model. Results: A total of 19 modules of the cancer cell line were divided by WGCNA, and the most negative correlation with 5-FU was the midnight blue module, from which 45 hub genes were identified. HCC was divided into three subgroups (C1, C2, and C3) with significant overall survival (OS) differences. OS of C1 was the shortest, which was characterized by a high clinical grade and later T stage and stage. OS of C3 was the longest. OS of C2 was between the two subtypes, and its immune infiltration was the lowest. Five out of 45 hub genes, namely, TOMM40L, SNRPA, ILF3, CPSF6, and NUP205, were filtered to develop a risk regression model as an independent prognostic indicator for HCC. The qRT-PCR results showed that TOMM40L, SNRPA, ILF3, CPSF6, and NUP205 were remarkably highly expressed in hepatocellular carcinoma. Conclusion: The HCC classification based on the sensitivity to 5-FU was in line with the prognostic differences observed in HCC and most of the genomic variation, immune infiltration, and heterogeneity of pathological pathways. The regression model related to 5-FU sensitivity may be of significance in individualized prognostic monitoring of HCC.
Collapse
Affiliation(s)
- Xinyu Gu
- Department of Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Shuang Li
- Hematology Department, Traditional Chinese Hospital of Luan, Lu’an, China
| | - Xiao Ma
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Penghui Li
- The Department of General Surgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
8
|
Liu L, Wang Q, Wu L, Zhang L, Huang Y, Yang H, Guo L, Fang Z, Wang X. Overexpression of POLA2 in hepatocellular carcinoma is involved in immune infiltration and predicts a poor prognosis. Cancer Cell Int 2023; 23:138. [PMID: 37452331 PMCID: PMC10349470 DOI: 10.1186/s12935-023-02949-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/16/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the second malignancy worldwide. POLA2 initiates DNA replication, regulates cell cycle and gene repair that promote tumorigenesis and disease progression. However, the prognostic and biological function roles of POLA2 in HCC had not been conclusively determined. METHODS The expression levels and prognosis role of POLA1 and POLA2 in HCC were analyzed based on TCGA-LIHC database and recruited 24 HCC patients. Gene mutations were analyzed using "maftools" package. POLA2 and immune cells correlations were analyzed by TIMER. POLA2 co-expressed genes functional enrichment were evaluated using Metascape. The mRNA and protein level of POLA2 was detected in HCC cells and tissues. Cell migration, invasion, proliferation, cell cycle and HCC cell lines derived xenograft model were performed to investigate POLA2 biological function. RESULTS POLA2 was significantly high expressed in HCC than in normal liver tissue in both TCGA-LIHC and our collected HCC samples. In validation cohort, POLA2 significantly related to tumor differentiation, tumor size and Ki-67 (p < 0.05). In TCGA-LIHC cohort, overexpression of POLA2 predicted a low OS and associated with different clinical stages. Multivariate Cox regression showed overexpression of POLA2 effectively distinguished the prognosis at different T, N, M, stages and grades of HCC. POLA2 expression correlated with mutation burden, immune cells infiltration and immune-associated genes expression of HCC. Functional enrichment revealed that POLA2 co-expressed genes were linked to cellular activity, plasma membrane protein complex and leukocyte activity, immune response-regulated cell surface receptor signaling pathway, and immune response-regulated signaling pathway. Moreover, POLA2 was also positively co-expressed with some immune checkpoints (CD274, CTL-4, HAVCR2, PDCD1, PDCD1LG2, TIGIT, and LAG3) (p < 0.001). Gene knockdown revealed that POLA2 promoted proliferation, migration, invasion, and cell cycle of SMMC-7721 and HepG2. The HCC xenograft tumor model also demonstrated remarkably tumor size inhibition, tumor proliferation inhibtion and tumor necrosis promotion when POLA2 knockdown. CONCLUSIONS POLA2 influenced immune microenvironment and tumor progression of HCC indicated that it might be a potential molecular marker for prognostic evaluation or a therapeutic target for HCC.
Collapse
Affiliation(s)
- Long Liu
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province, Zhejiang University, Linhai, 317000, Zhejiang, China
| | - Qi Wang
- Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Linjun Wu
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province, Zhejiang University, Linhai, 317000, Zhejiang, China
- Taizhou Hospital Library, Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Lele Zhang
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Yuxi Huang
- Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Haihua Yang
- Department of Radiation Oncology, Taizhou Hospital of Zhejiang Province, Linhai, 317000, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive, System Tumor of Zhejiang Province, Zhejiang, China
| | - Le Guo
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Zheping Fang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province, Zhejiang University, Linhai, 317000, Zhejiang, China.
- Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, 317000, Zhejiang, China.
| | - Xuequan Wang
- Department of Radiation Oncology, Taizhou Hospital of Zhejiang Province, Linhai, 317000, Zhejiang, China.
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive, System Tumor of Zhejiang Province, Zhejiang, China.
| |
Collapse
|
9
|
Lin LH, Chang KW, Cheng HW, Liu CJ. Identification of Somatic Mutations in Plasma Cell-Free DNA from Patients with Metastatic Oral Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:10408. [PMID: 37373553 DOI: 10.3390/ijms241210408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The accurate diagnosis and treatment of oral squamous cell carcinoma (OSCC) requires an understanding of its genomic alterations. Liquid biopsies, especially cell-free DNA (cfDNA) analysis, are a minimally invasive technique used for genomic profiling. We conducted comprehensive whole-exome sequencing (WES) of 50 paired OSCC cell-free plasma with whole blood samples using multiple mutation calling pipelines and filtering criteria. Integrative Genomics Viewer (IGV) was used to validate somatic mutations. Mutation burden and mutant genes were correlated to clinico-pathological parameters. The plasma mutation burden of cfDNA was significantly associated with clinical staging and distant metastasis status. The genes TTN, PLEC, SYNE1, and USH2A were most frequently mutated in OSCC, and known driver genes, including KMT2D, LRP1B, TRRAP, and FLNA, were also significantly and frequently mutated. Additionally, the novel mutated genes CCDC168, HMCN2, STARD9, and CRAMP1 were significantly and frequently present in patients with OSCC. The mutated genes most frequently found in patients with metastatic OSCC were RORC, SLC49A3, and NUMBL. Further analysis revealed that branched-chain amino acid (BCAA) catabolism, extracellular matrix-receptor interaction, and the hypoxia-related pathway were associated with OSCC prognosis. Choline metabolism in cancer, O-glycan biosynthesis, and protein processing in the endoplasmic reticulum pathway were associated with distant metastatic status. About 20% of tumors carried at least one aberrant event in BCAA catabolism signaling that could possibly be targeted by an approved therapeutic agent. We identified molecular-level OSCC that were correlated with etiology and prognosis while defining the landscape of major altered events of the OSCC plasma genome. These findings will be useful in the design of clinical trials for targeted therapies and the stratification of patients with OSCC according to therapeutic efficacy.
Collapse
Affiliation(s)
- Li-Han Lin
- Department of Medical Research, MacKay Memorial Hospital No. 92, Sec. 2, Chung San N. Rd., Taipei 10449, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 11121, Taiwan
| | - Hui-Wen Cheng
- Department of Medical Research, MacKay Memorial Hospital No. 92, Sec. 2, Chung San N. Rd., Taipei 10449, Taiwan
| | - Chung-Ji Liu
- Department of Medical Research, MacKay Memorial Hospital No. 92, Sec. 2, Chung San N. Rd., Taipei 10449, Taiwan
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Oral and Maxillofacial Surgery, Taipei MacKay Memorial Hospital, Taipei 10449, Taiwan
| |
Collapse
|
10
|
Yao N, Jiang W, Wang Y, Song Q, Cao X, Zheng W, Zhang J. An immune-related signature for optimizing prognosis prediction and treatment decision of hepatocellular carcinoma. Eur J Med Res 2023; 28:123. [PMID: 36918943 PMCID: PMC10015788 DOI: 10.1186/s40001-023-01091-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND An immune-related gene signature (IGS) was established for discriminating prognosis, predicting benefit of immunotherapy, and exploring therapeutic options in hepatocellular carcinoma (HCC). METHODS Based on Immune-related hub genes and The Cancer Genome Atlas (TCGA) LIHC dataset (n = 363), an immune-related gene signature (IGS) was established by least absolute shrinkage and selection operator (LASSO) analysis. The prognostic significance and clinical implications of IGS were verified in International Cancer Genome Consortium (ICGC) and Chinese HCC (CHCC) cohorts. The molecular and immune characteristics and the benefit of immune checkpoint inhibitor (ICI) therapy in IGS-defined subgroups were analyzed. In addition, by leveraging the Cancer Therapeutics Response Portal (CTRP) and PRISM Repurposing datasets, we determined the potential therapeutic agents for high IGS-risk patients. RESULTS The IGS was constructed based on 8 immune-related hub genes with individual coefficients. The IGS risk model could robustly predict the survival of HCC patients in TCGA, ICGC, and CHCC cohorts. Compared with 4 previous established immune genes-based signatures, IGS exhibited superior performance in survival prediction. Additionally, for immunological characteristics and enriched pathways, a low-IGS score was correlated with IL-6/JAK/STAT3 signaling, inflammatory response and interferon α/γ response pathways, low TP53 mutation rate, high infiltration level, and more benefit from ICI therapy. In contrast, high IGS score manifested an immunosuppressive microenvironment and activated aggressive pathways. Finally, by in silico screening potential compounds, vindesine, ispinesib and dasatinib were identified as potential therapeutic agents for high-IGS risk patients. CONCLUSIONS This study developed a robust IGS model for survival prediction of HCC patients, providing new insights into integrating tailored risk stratification with precise immunotherapy and screening potentially targeted agents.
Collapse
Affiliation(s)
- Ninghua Yao
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
| | - Wei Jiang
- Department of Neurology, Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Yilang Wang
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, People's Republic of China
| | - Qianqian Song
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, USA
| | - Xiaolei Cao
- School of Medicine, Nantong University, Nantong, 226001, Jiangsu, China.
| | - Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China.
| | - Jie Zhang
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China.
| |
Collapse
|
11
|
Youssef SS, El-Araby RE, Abbas EAER, Hassany M, Elbaz T. Prognostic and survival impact of BCL9 and RPS6KB1 copy number variation detected from circulating free DNA in hepatocellular carcinoma. Expert Rev Mol Diagn 2023; 23:267-278. [PMID: 36803362 DOI: 10.1080/14737159.2023.2182191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
BACKGROUND Circulating cell-free DNA (cfDNA) is a noninvasive substitute to liver biopsy for hepatocellular carcinoma (HCC) molecular profiling. This study aimed to use cfDNA to investigate copy number variation (CNV) in the BCL9 and RPS6KB1 genes and its impact on prognosis in HCC. METHODS Real-Time Polymerase Chain Reaction was used to determine the CNV and cfDNA integrity index in 100 HCC patients. RESULTS CNV gain in BCL9 and RPS6KB1 genes was detected in 14% and 24% of patients, respectively. Gain in CNV of BCL9 associated with risk of HCC in alcohol drinkers and hepatitis C seropositivity. In patients with RPS6KB1 gain, HCC risk increased with a high body mass index, smoking, schistosomiasis, and Barcelona clinical liver cancer stage (BCLC) A. Gain in both genes showed a high risk of HCC with elevated liver enzymes, Schistosomiasis, BCLC C, and PS > 1. The integrity of cfDNA was higher in patients with CNV gain in RPS6KB1 than those harboring CNV gain in BCL9. Lastly, BCL9 gain and BCL9 + RPS6KB1 gain led to higher mortality rates and reduced survival times. CONCLUSION cfDNA was used to detect BCL9 and RPS6KB1 CNVs, which influence prognosis and can be used as independent predictors of HCC patient survival.
Collapse
Affiliation(s)
| | - Rady Eid El-Araby
- Division of Oral Biology, Department of Periodontology, Tufts University School of Medicine, Boston, MA, USA.,Central Lab, Theodor Bilharz Research Institute (TBRI), Ministry of Scientific Research, Giza, Egypt
| | | | - Mohamed Hassany
- Tropical Medicine Department, National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| | - Tamer Elbaz
- Department of Endemic Medicine and Hepatogastroenterology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
12
|
Lu J, Zhu D, Zhang X, Wang J, Cao H, Li L. The crucial role of LncRNA MIR210HG involved in the regulation of human cancer and other disease. Clin Transl Oncol 2023; 25:137-150. [PMID: 36088513 DOI: 10.1007/s12094-022-02943-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/30/2022] [Indexed: 01/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) have evoked considerable interest in recent years due to their critical functions in the regulation of disease processes. Abnormal expression of lncRNAs is found in multiple diseases, and lncRNAs have been exploited for diverse medical applications. The lncRNA MIR210HG is a recently discovered lncRNA that is widely dysregulated in human disease. MIR210HG was described to have biological functions with potential roles in disease development, including cell proliferation, invasion, migration, and energy metabolism. And MIR210HG dysregulation was confirmed to have promising clinical values in disease diagnosis, treatment, and prognosis. In this review, we systematically summarize the expression profiles, roles, underlying mechanisms, and clinical applications of MIR210HG in human disease.
Collapse
Affiliation(s)
- Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Xiaoqian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
13
|
Gómez-Flores-Ramos L, Barraza-Arellano AL, Mohar A, Trujillo-Martínez M, Grimaldo L, Ortiz-Lopez R, Treviño V. Germline Variants in Cancer Genes from Young Breast Cancer Mexican Patients. Cancers (Basel) 2022; 14:cancers14071647. [PMID: 35406420 PMCID: PMC8997148 DOI: 10.3390/cancers14071647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
Breast cancer (BC) is one of the most frequent cancer types in women worldwide. About 7% is diagnosed in young women (YBC) less than 40 years old. In Mexico, however, YBC reaches 15% suggesting a higher genetic susceptibility. There have been some reports of germline variants in YBC across the world. However, there is only one report from a Mexican population, which is not restricted by age and limited to a panel of 143 genes resulting in 15% of patients carrying putatively pathogenic variants. Nevertheless, expanding the analysis to whole exome involves using more complex tools to determine which genes and variants could be pathogenic. We used germline whole exome sequencing combined with the PeCanPie tool to analyze exome variants in 115 YBC patients. Our results showed that we were able to identify 49 high likely pathogenic variants involving 40 genes on 34% of patients. We noted many genes already reported in BC and YBC worldwide, such as BRCA1, BRCA2, ATM, CHEK2, PALB2, and POLQ, but also others not commonly reported in YBC in Latin America, such as CLTCL1, DDX3X, ERCC6, FANCE, and NFKBIE. We show further supporting and controversial evidence for some of these genes. We conclude that exome sequencing combined with robust annotation tools and further analysis, can identify more genes and more patients affected by germline mutations in cancer.
Collapse
Affiliation(s)
- Liliana Gómez-Flores-Ramos
- CONACYT/Center for Population Health Research, National Institute of Public Health, Universidad No. 655, Cuernavaca 62100, Morelos, Mexico; (L.G.-F.-R.); (L.G.)
| | - Angélica Leticia Barraza-Arellano
- School of Medicine, Tecnologico de Monterrey, Morones Prieto Av 3000, Los Doctores, Monterrey 64710, Nuevo Leon, Mexico; (A.L.B.-A.); (R.O.-L.)
| | - Alejandro Mohar
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Dirección de Investigación, Instituto Nacional de Cancerología, Av. San Fernando #22, Col. Sección XVI, Delegación Tlalpan, Mexico City 14080, Mexico;
| | - Miguel Trujillo-Martínez
- Instituto Mexicano del Seguro Social, Hospital General de Zona con Medicina Familiar No. 7, Cuautla 62780, Morelos, Mexico;
| | - Lizbeth Grimaldo
- CONACYT/Center for Population Health Research, National Institute of Public Health, Universidad No. 655, Cuernavaca 62100, Morelos, Mexico; (L.G.-F.-R.); (L.G.)
| | - Rocío Ortiz-Lopez
- School of Medicine, Tecnologico de Monterrey, Morones Prieto Av 3000, Los Doctores, Monterrey 64710, Nuevo Leon, Mexico; (A.L.B.-A.); (R.O.-L.)
- The Institute for Obesity Research, Tecnologico de Monterrey, Eugenio Garza Sada Av 2501, Monterrey 64849, Nuevo Leon, Mexico
| | - Víctor Treviño
- School of Medicine, Tecnologico de Monterrey, Morones Prieto Av 3000, Los Doctores, Monterrey 64710, Nuevo Leon, Mexico; (A.L.B.-A.); (R.O.-L.)
- The Institute for Obesity Research, Tecnologico de Monterrey, Eugenio Garza Sada Av 2501, Monterrey 64849, Nuevo Leon, Mexico
- Correspondence:
| |
Collapse
|
14
|
Lee JW, Park YS, Choi JY, Chang WJ, Lee S, Sung JS, Kim B, Lee SB, Lee SY, Choi J, Kim YH. Genetic Characteristics Associated With Drug Resistance in Lung Cancer and Colorectal Cancer Using Whole Exome Sequencing of Cell-Free DNA. Front Oncol 2022; 12:843561. [PMID: 35402275 PMCID: PMC8987589 DOI: 10.3389/fonc.2022.843561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Circulating cell-free DNA (cfDNA) can be used to characterize tumor genomes through next-generation sequencing (NGS)-based approaches. We aim to identify novel genetic alterations associated with drug resistance in lung cancer and colorectal cancer patients who were treated with EGFR-targeted therapy and cytotoxic chemotherapy through whole exome sequencing (WES) of cfDNA. A cohort of 18 lung cancer patients was treated with EGFR TKI or cytotoxic chemotherapy, and a cohort of 37 colorectal cancer patients was treated with EGFR monoclonal antibody or cytotoxic chemotherapy alone. Serum samples were drawn before and after development of drug resistance, and the genetic mutational profile was analyzed with WES data. For 110 paired cfDNA and matched germline DNA WES samples, mean coverage of 138x (range, 52–208.4x) and 47x (range, 30.5–125.1x) was achieved, respectively. After excluding synonymous variants, mutants identified in more than two patients at the time of acquired resistance were selected. Seven genes in lung cancer and 16 genes in colorectal cancer were found, namely, APC, TP53, KRAS, SMAD4, and EGFR. In addition, the GPR155 I357S mutation in lung cancer and ADAMTS20 S1597P and TTN R7415H mutations in colorectal cancer were frequently detected at the time of acquired resistance, indicating that these mutations have an important function in acquired resistance to chemotherapy. Our data suggest that novel genetic variants associated with drug resistance can be identified using cfDNA WES. Further validation is necessary, but these candidate genes are promising therapeutic targets for overcoming drug resistance in lung cancer and colorectal cancer.
Collapse
Affiliation(s)
- Jong Won Lee
- Cancer Research Institute, Korea University College of Medicine, Seoul, South Korea
- Brain Korea 21 Plus Project for Biomedical Science, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Young Soo Park
- Cancer Research Institute, Korea University College of Medicine, Seoul, South Korea
| | - Jung Yoon Choi
- Division of Hematology–Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, South Korea
| | - Won Jin Chang
- Division of Hematology–Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Soohyeon Lee
- Division of Hematology–Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Jae Sook Sung
- Cancer Research Institute, Korea University College of Medicine, Seoul, South Korea
| | - Boyeon Kim
- Cancer Research Institute, Korea University College of Medicine, Seoul, South Korea
- Brain Korea 21 Plus Project for Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Saet Byeol Lee
- Cancer Research Institute, Korea University College of Medicine, Seoul, South Korea
- Brain Korea 21 Plus Project for Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Sung Yong Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Medical Center, Korea University College of Medicine, Seoul, South Korea
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States
| | - Yeul Hong Kim
- Cancer Research Institute, Korea University College of Medicine, Seoul, South Korea
- Brain Korea 21 Plus Project for Biomedical Science, Korea University College of Medicine, Seoul, South Korea
- Division of Hematology–Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
- *Correspondence: Yeul Hong Kim,
| |
Collapse
|
15
|
Yao Q, Zhang X, Chen D. Emerging Roles and Mechanisms of lncRNA FOXD3-AS1 in Human Diseases. Front Oncol 2022; 12:848296. [PMID: 35280790 PMCID: PMC8914342 DOI: 10.3389/fonc.2022.848296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/01/2022] [Indexed: 01/02/2023] Open
Abstract
Numerous long noncoding RNAs (lncRNAs) have been identified as powerful regulators of human diseases. The lncRNA FOXD3-AS1 is a novel lncRNA that was recently shown to exert imperative roles in the initialization and progression of several diseases. Emerging studies have shown aberrant expression of FOXD3-AS1 and close correlation with pathophysiological traits of numerous diseases, particularly cancers. More importantly, FOXD3-AS1 was also found to ubiquitously impact a range of biological functions. This study aims to summarize the expression, associated clinicopathological features, major functions and molecular mechanisms of FOXD3-AS1 in human diseases and to explore its possible clinical applications.
Collapse
Affiliation(s)
- Qinfan Yao
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Xiuyuan Zhang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Dajin Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
- *Correspondence: Dajin Chen,
| |
Collapse
|