1
|
Ogbonna HN, Roberts Z, Godwin N, Muri P, Turbitt WJ, Swalley ZN, Dempsey FR, Stephens HR, Zhang J, Plaisance EP, Norian LA. An Exogenous Ketone Ester Slows Tumor Progression in Murine Breast and Renal Cancer Models. Cancers (Basel) 2024; 16:3390. [PMID: 39410010 PMCID: PMC11476193 DOI: 10.3390/cancers16193390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Ketone esters (KEs) exhibit promise as anti-cancer agents but their impact on spontaneous metastases remains poorly understood. Although consumption of a ketogenic diet (KD) that is low in carbohydrates and high in fats can lead to KE production in vivo, the restrictive composition of KDs may diminish adherence in cancer patients. METHODS We investigated the effects of an exogenous ketone ester-supplemented (eKET), carbohydrate-replete diet on tumor growth, metastasis, and underlying mechanisms in orthotopic models of metastatic breast (4T1-Luc) and renal (Renca-Luc) carcinomas. Mice were randomized to diet after tumor challenge. RESULTS Administration of KEs did not alter tumor cell growth in vitro. However, in mice, our eKET diet increased circulating β-hydroxybutyrate and inhibited primary tumor growth and lung metastasis in both models. Body composition analysis illustrated the overall safety of eKET diet use, although it was associated with a loss of fat mass in mice with renal tumors. Immunogenetic profiling revealed divergent intratumoral eKET-related changes by tumor type. In mammary tumors, Wnt and TGFβ pathways were downregulated, whereas in renal tumors, genes related to hypoxia and DNA damage repair were downregulated. CONCLUSIONS Thus, our eKET diet exerts potent antitumor and antimetastatic effects in both breast and renal cancer models, albeit with different modes of action and physiologic effects. Its potential as an adjuvant dietary approach for patients with diverse cancer types should be explored further.
Collapse
Affiliation(s)
- Henry Nnaemeka Ogbonna
- Graduate Biomedical Sciences, Pathobiology, Pharmacology, and Physiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Zachary Roberts
- Undergraduate Science and Technology Honors Program, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | | | - Pia Muri
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (P.M.); (W.J.T.)
| | - William J. Turbitt
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (P.M.); (W.J.T.)
| | - Zoey N. Swalley
- Undergraduate Honors College, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Francesca R. Dempsey
- Graduate Biomedical Sciences, Cancer Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Holly R. Stephens
- Graduate Biomedical Sciences, Immunology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Jianqing Zhang
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Eric P. Plaisance
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (P.M.); (W.J.T.)
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Lyse A. Norian
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (P.M.); (W.J.T.)
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
2
|
Boland L, Bitterlich LM, Hogan AE, Ankrum JA, English K. Translating MSC Therapy in the Age of Obesity. Front Immunol 2022; 13:943333. [PMID: 35860241 PMCID: PMC9289617 DOI: 10.3389/fimmu.2022.943333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stromal cell (MSC) therapy has seen increased attention as a possible option to treat a number of inflammatory conditions including COVID-19 acute respiratory distress syndrome (ARDS). As rates of obesity and metabolic disease continue to rise worldwide, increasing proportions of patients treated with MSC therapy will be living with obesity. The obese environment poses critical challenges for immunomodulatory therapies that should be accounted for during development and testing of MSCs. In this review, we look to cancer immunotherapy as a model for the challenges MSCs may face in obese environments. We then outline current evidence that obesity alters MSC immunomodulatory function, drastically modifies the host immune system, and therefore reshapes interactions between MSCs and immune cells. Finally, we argue that obese environments may alter essential features of allogeneic MSCs and offer potential strategies for licensing of MSCs to enhance their efficacy in the obese microenvironment. Our aim is to combine insights from basic research in MSC biology and clinical trials to inform new strategies to ensure MSC therapy is effective for a broad range of patients.
Collapse
Affiliation(s)
- Lauren Boland
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Laura Melanie Bitterlich
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
| | - Andrew E. Hogan
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
| | - James A. Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
- *Correspondence: James A. Ankrum, ; Karen English,
| | - Karen English
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
- *Correspondence: James A. Ankrum, ; Karen English,
| |
Collapse
|
3
|
Farag KI, Makkouk A, Norian LA. Re-Evaluating the Effects of Obesity on Cancer Immunotherapy Outcomes in Renal Cancer: What Do We Really Know? Front Immunol 2021; 12:668494. [PMID: 34421889 PMCID: PMC8374888 DOI: 10.3389/fimmu.2021.668494] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Obesity has reached global epidemic proportions and its effects on interactions between the immune system and malignancies, particularly as related to cancer immunotherapy outcomes, have come under increasing scrutiny. Although the vast majority of pre-clinical murine studies suggest that host obesity should have detrimental effects on anti-tumor immunity and cancer immunotherapy outcomes, the opposite has been found in multiple retrospective human studies. As a result, acceptance of the "obesity paradox" paradigm, wherein obesity increases cancer risk but then improves patient outcomes, has become widespread. However, results to the contrary do exist and the biological mechanisms that promote beneficial obesity-associated outcomes remain unclear. Here, we highlight discrepancies in the literature regarding the obesity paradox for cancer immunotherapy outcomes, with a particular focus on renal cancer. We also discuss multiple factors that may impact research findings and warrant renewed research attention in future studies. We propose that specific cancer patient populations may be affected in fundamentally different ways by host obesity, leading to divergent effects on anti-tumor immunity and/or immunotherapy outcomes. Continued, thoughtful analysis of this critical issue is therefore needed to permit a more nuanced understanding of the complex effects of host obesity on cancer immunotherapy outcomes in patients with renal cancer or other malignancies.
Collapse
Affiliation(s)
- Kristine I Farag
- Science and Technology Honors Program, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Amani Makkouk
- Department of Pharmacology, Adicet Bio, Menlo Park, CA, United States
| | - Lyse A Norian
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, United States.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States.,Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|