1
|
Xu HL, Gong TT, Song XJ, Chen Q, Bao Q, Yao W, Xie MM, Li C, Grzegorzek M, Shi Y, Sun HZ, Li XH, Zhao YH, Gao S, Wu QJ. Artificial Intelligence Performance in Image-Based Cancer Identification: Umbrella Review of Systematic Reviews. J Med Internet Res 2025; 27:e53567. [PMID: 40167239 PMCID: PMC12000792 DOI: 10.2196/53567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/30/2024] [Accepted: 11/11/2024] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Artificial intelligence (AI) has the potential to transform cancer diagnosis, ultimately leading to better patient outcomes. OBJECTIVE We performed an umbrella review to summarize and critically evaluate the evidence for the AI-based imaging diagnosis of cancers. METHODS PubMed, Embase, Web of Science, Cochrane, and IEEE databases were searched for relevant systematic reviews from inception to June 19, 2024. Two independent investigators abstracted data and assessed the quality of evidence, using the Joanna Briggs Institute (JBI) Critical Appraisal Checklist for Systematic Reviews and Research Syntheses. We further assessed the quality of evidence in each meta-analysis by applying the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) criteria. Diagnostic performance data were synthesized narratively. RESULTS In a comprehensive analysis of 158 included studies evaluating the performance of AI algorithms in noninvasive imaging diagnosis across 8 major human system cancers, the accuracy of the classifiers for central nervous system cancers varied widely (ranging from 48% to 100%). Similarities were observed in the diagnostic performance for cancers of the head and neck, respiratory system, digestive system, urinary system, female-related systems, skin, and other sites. Most meta-analyses demonstrated positive summary performance. For instance, 9 reviews meta-analyzed sensitivity and specificity for esophageal cancer, showing ranges of 90%-95% and 80%-93.8%, respectively. In the case of breast cancer detection, 8 reviews calculated the pooled sensitivity and specificity within the ranges of 75.4%-92% and 83%-90.6%, respectively. Four meta-analyses reported the ranges of sensitivity and specificity in ovarian cancer, and both were 75%-94%. Notably, in lung cancer, the pooled specificity was relatively low, primarily distributed between 65% and 80%. Furthermore, 80.4% (127/158) of the included studies were of high quality according to the JBI Critical Appraisal Checklist, with the remaining studies classified as medium quality. The GRADE assessment indicated that the overall quality of the evidence was moderate to low. CONCLUSIONS Although AI shows great potential for achieving accelerated, accurate, and more objective diagnoses of multiple cancers, there are still hurdles to overcome before its implementation in clinical settings. The present findings highlight that a concerted effort from the research community, clinicians, and policymakers is required to overcome existing hurdles and translate this potential into improved patient outcomes and health care delivery. TRIAL REGISTRATION PROSPERO CRD42022364278; https://www.crd.york.ac.uk/PROSPERO/view/CRD42022364278.
Collapse
Affiliation(s)
- He-Li Xu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Jian Song
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qian Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Bao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Wei Yao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Meng-Meng Xie
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chen Li
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Marcin Grzegorzek
- Institute for Medical Informatics, University of Luebeck, Luebeck, Germany
| | - Yu Shi
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hong-Zan Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao-Han Li
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi-Jun Wu
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China
| |
Collapse
|
2
|
Wen J, Wu X, Shu Z, Wu D, Yin Z, Chen M, Luo K, Liu K, Shen Y, Le Y, Shu Q. Clusterin-mediated polarization of M2 macrophages: a mechanism of temozolomide resistance in glioblastoma stem cells. Stem Cell Res Ther 2025; 16:146. [PMID: 40128761 PMCID: PMC11934612 DOI: 10.1186/s13287-025-04247-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/20/2025] [Indexed: 03/26/2025] Open
Abstract
Glioblastoma remains one of the most lethal malignancies, largely due to its resistance to standard chemotherapy such as temozolomide. This study investigates a novel resistance mechanism involving glioblastoma stem cells (GSCs) and the polarization of M2-type macrophages, mediated by the extracellular vesicle (EV)-based transfer of Clusterin. Using 6-week-old male CD34+ humanized huHSC-(M-NSG) mice (NM-NSG-017) and glioblastoma cell lines (T98G and U251), we demonstrated that GSC-derived EVs enriched with Clusterin induce M2 macrophage polarization, thereby enhancing temozolomide resistance in glioblastoma cells. Single-cell and transcriptome sequencing revealed close interactions between GSCs and M2 macrophages, highlighting Clusterin as a key mediator. Our findings indicate that Clusterin-rich EVs from GSCs drive glioblastoma cell proliferation and resistance to temozolomide by modulating macrophage phenotypes. Targeting this pathway could potentially reverse resistance mechanisms, offering a promising therapeutic approach for glioblastoma. This study not only sheds light on a critical pathway underpinning glioblastoma resistance but also lays the groundwork for developing therapies targeting the tumor microenvironment. Our results suggest a paradigm shift in understanding glioblastoma resistance, emphasizing the therapeutic potential of disrupting EV-mediated communication in the tumor microenvironment.
Collapse
Affiliation(s)
- Jianping Wen
- Department of Neurosurgery, Hunan University of Medicine General Hospital, No. 144, Jinxi South Road, Hecheng District, Huaihua, 418000, Hunan Province, China.
| | - Xia Wu
- Department of Neurosurgery, Hunan University of Medicine General Hospital, No. 144, Jinxi South Road, Hecheng District, Huaihua, 418000, Hunan Province, China
| | - Zhicheng Shu
- Department of Neurosurgery, Hunan University of Medicine General Hospital, No. 144, Jinxi South Road, Hecheng District, Huaihua, 418000, Hunan Province, China
| | - Dongxu Wu
- Department of Neurosurgery, Hunan University of Medicine General Hospital, No. 144, Jinxi South Road, Hecheng District, Huaihua, 418000, Hunan Province, China
| | - Zonghua Yin
- Department of Neurosurgery, Hunan University of Medicine General Hospital, No. 144, Jinxi South Road, Hecheng District, Huaihua, 418000, Hunan Province, China
| | - Minglong Chen
- Department of Neurosurgery, Hunan University of Medicine General Hospital, No. 144, Jinxi South Road, Hecheng District, Huaihua, 418000, Hunan Province, China
| | - Kun Luo
- Department of Neurosurgery, Hunan University of Medicine General Hospital, No. 144, Jinxi South Road, Hecheng District, Huaihua, 418000, Hunan Province, China
| | - Kebo Liu
- Department of Neurosurgery, Hunan University of Medicine General Hospital, No. 144, Jinxi South Road, Hecheng District, Huaihua, 418000, Hunan Province, China
| | - Yulong Shen
- Department of Neurosurgery, Hunan University of Medicine General Hospital, No. 144, Jinxi South Road, Hecheng District, Huaihua, 418000, Hunan Province, China
| | - Yi Le
- Department of Neurosurgery, Hunan University of Medicine General Hospital, No. 144, Jinxi South Road, Hecheng District, Huaihua, 418000, Hunan Province, China
| | - Qingxia Shu
- Department of Neurosurgery, Hunan University of Medicine General Hospital, No. 144, Jinxi South Road, Hecheng District, Huaihua, 418000, Hunan Province, China.
| |
Collapse
|
3
|
Farahani S, Hejazi M, Moradizeyveh S, Di Ieva A, Fatemizadeh E, Liu S. Diagnostic Accuracy of Deep Learning Models in Predicting Glioma Molecular Markers: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2025; 15:797. [PMID: 40218147 PMCID: PMC11988998 DOI: 10.3390/diagnostics15070797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Integrating deep learning (DL) into radiomics offers a noninvasive approach to predicting molecular markers in gliomas, a crucial step toward personalized medicine. This study aimed to assess the diagnostic accuracy of DL models in predicting various glioma molecular markers using MRI. Methods: Following PRISMA guidelines, we systematically searched PubMed, Scopus, Ovid, and Web of Science until 27 February 2024 for studies employing DL algorithms to predict gliomas' molecular markers from MRI sequences. The publications were assessed for the risk of bias, applicability concerns, and quality using the QUADAS-2 tool and the radiomics quality score (RQS). A bivariate random-effects model estimated pooled sensitivity and specificity, accounting for inter-study heterogeneity. Results: Of 728 articles, 43 were qualified for qualitative analysis, and 30 were included in the meta-analysis. In the validation cohorts, MGMT methylation had a pooled sensitivity of 0.74 (95% CI: 0.66-0.80) and a pooled specificity of 0.75 (95% CI: 0.65-0.82), both with significant heterogeneity (p = 0.00, I2 = 80.90-84.50%). ATRX and TERT mutations had a pooled sensitivity of 0.79 (95% CI: 0.67-0.87) and 0.81 (95% CI: 0.72-0.87) and a pooled specificity of 0.85 (95% CI: 0.78-0.91) and 0.70 (95% CI: 0.61-0.77), respectively. Meta-regression analyses revealed that significant heterogeneity was influenced by data sources, MRI sequences, feature extraction methods, and validation techniques. Conclusions: While the DL models show promising prediction accuracy for glioma molecular markers, variability in the study settings complicates clinical translation. To bridge this gap, future efforts should focus on harmonizing multi-center MRI datasets, incorporating external validation, and promoting open-source studies and data sharing.
Collapse
Affiliation(s)
- Somayeh Farahani
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran 14618-84513, Iran;
- Centre for Health Informatics, Australian Institute of Health Innovation, Macquarie University, Sydney, NSW 2109, Australia
- Computational NeuroSurgery (CNS) Lab, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.M.); (A.D.I.)
| | - Marjaneh Hejazi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran 14618-84513, Iran;
| | - Sahar Moradizeyveh
- Computational NeuroSurgery (CNS) Lab, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.M.); (A.D.I.)
| | - Antonio Di Ieva
- Computational NeuroSurgery (CNS) Lab, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.M.); (A.D.I.)
| | - Emad Fatemizadeh
- Department of Electrical Engineering, Sharif University of Technology, Tehran 14588-89694, Iran;
| | - Sidong Liu
- Centre for Health Informatics, Australian Institute of Health Innovation, Macquarie University, Sydney, NSW 2109, Australia
- Computational NeuroSurgery (CNS) Lab, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.M.); (A.D.I.)
| |
Collapse
|
4
|
Koska İÖ, Koska Ç. Deep learning classification of MGMT status of glioblastomas using multiparametric MRI with a novel domain knowledge augmented mask fusion approach. Sci Rep 2025; 15:3273. [PMID: 39863759 PMCID: PMC11762293 DOI: 10.1038/s41598-025-87803-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025] Open
Abstract
We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used. A comprehensive mask fusion approach was developed to select relevant image crops of diseased tissue. These fusion masks, which were guided by multiple sequences, helped collect information from the regions that seem disease-free to radiologists in standard MRI sequences while harboring pathology. Integrating the information in different MRI sequences and leveraging the high entropic capacity of deep neural networks, we built a 3D ROI-based custom CNN classifier for the automatic prediction of MGMT methylation status of glioblastoma in multi-parametric MRI. Single sequence-based classifiers reached intermediate predictive performance with 0.65, 0.71, 0.77, and 0.82 accuracy for T1W, T2W, T1 contrast-enhanced, and FLAIR sequences, respectively. The multiparametric classifier using T1 contrast-enhanced and FLAIR images reached 0.88 accuracy. The accuracy of the four-input model that used all sequences was 0.81. The best model reached 0.90 ROC AUC value. Integrating human knowledge in the form of relevant target selection was a useful approach in MGMT methylation status prediction in MRI. Exploration of means to integrate radiology knowledge into the models and achieve human-machine collaboration may help to develop better models. MGMT methylation status of glioblastoma is an important prognostic marker and is also important for treatment decisions. The preoperative non-invasive predictive ability and the explanation tools of the developed model may help clinicians to better understand imaging phenotypes of MGMT methylation status of glial tumors.
Collapse
Affiliation(s)
- İlker Özgür Koska
- Department of Radiology, Behçet Uz Children's Hospital, Izmir, Turkey.
- Department of Biomedical Technologies, Dokuz Eylül Universtiy The Graduate School of Natural and Applied Sciences, Buca, Izmir, Turkey.
| | - Çağan Koska
- Department of Electrical Electronical Engineering, Yaşar University, Bornova, İzmir, Turkey
| |
Collapse
|
5
|
Mohanarajan M, Salunke PP, Arif A, Iglesias Gonzalez PM, Ospina D, Benavides DS, Amudha C, Raman KK, Siddiqui HF. Advancements in Machine Learning and Artificial Intelligence in the Radiological Detection of Pulmonary Embolism. Cureus 2025; 17:e78217. [PMID: 40026993 PMCID: PMC11872007 DOI: 10.7759/cureus.78217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
Pulmonary embolism (PE) is a clinically challenging diagnosis that varies from silent to life-threatening symptoms. Timely diagnosis of the condition is subject to clinical assessment, D-dimer testing and radiological imaging. Computed tomography pulmonary angiogram (CTPA) is considered the gold standard imaging modality, although some cases can be missed due to reader dependency, resulting in adverse patient outcomes. Hence, it is crucial to implement faster and precise diagnostic strategies to help clinicians diagnose and treat PE patients promptly and mitigate morbidity and mortality. Machine learning (ML) and artificial intelligence (AI) are the newly emerging tools in the medical field, including in radiological imaging, potentially improving diagnostic efficacy. Our review of the studies showed that computer-aided design (CAD) and AI tools displayed similar to superior sensitivity and specificity in identifying PE on CTPA as compared to radiologists. Several tools demonstrated the potential in identifying minor PE on radiological scans showing promising ability to aid clinicians in reducing missed cases substantially. However, it is imperative to design sophisticated tools and conduct large clinical trials to integrate AI use in everyday clinical setting and establish guidelines for its ethical applicability. ML and AI can also potentially help physicians in formulating individualized management strategies to enhance patient outcomes.
Collapse
Affiliation(s)
| | | | - Ali Arif
- Medicine, Dow University of Health Sciences, Karachi, PAK
| | | | - David Ospina
- Internal Medicine, Universidad de los Andes, Bogotá, COL
| | | | - Chaithanya Amudha
- Medicine and Surgery, Saveetha Medical College and Hospital, Chennai, IND
| | - Kumareson K Raman
- Cardiology, Nottingham University Hospitals National Health Service (NHS) Trust, Nottingham, GBR
| | - Humza F Siddiqui
- Internal Medicine, Jinnah Postgraduate Medical Centre, Karachi, PAK
| |
Collapse
|
6
|
Siddiqui UA, Nasir R, Bajwa MH, Khan SA, Siddiqui YS, Shahzad Z, Arif A, Iftikhar H, Aftab K. Quality assessment of critical and non-critical domains of systematic reviews on artificial intelligence in gliomas using AMSTAR II: A systematic review. J Clin Neurosci 2025; 131:110926. [PMID: 39612612 DOI: 10.1016/j.jocn.2024.110926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024]
Abstract
INTRODUCTION Gliomas are the most common primary malignant intraparenchymal brain tumors with a dismal prognosis. With growing advances in artificial intelligence, machine learning and deep learning models are being utilized for preoperative, intraoperative and postoperative neurological decision-making. We aimed to compile published literature in one format and evaluate the quality of level 1a evidence currently available. METHODOLOGY Using PRISMA guidelines, a comprehensive literature search was conducted within databases including Medline, Scopus, and Cochrane Library, and records with the application of artificial intelligence in glioma management were included. The AMSTAR 2 tool was used to assess the quality of systematic reviews and meta-analyses by two independent researchers. RESULTS From 812 studies, 23 studies were included. AMSTAR II appraised most reviews as either low or critically low in quality. Most reviews failed to deliver in critical domains related to the exclusion of studies, appropriateness of meta-analytical methods, and assessment of publication bias. Similarly, compliance was lowest in non-critical areas related to study design selection and the disclosure of funding sources in individual records. Evidence is moderate to low in quality in reviews on multiple neuro-oncological applications, low quality in glioma diagnosis and individual molecular markers like MGMT promoter methylation status, IDH, and 1p19q identification, and critically low in tumor segmentation, glioma grading, and multiple molecular markers identification. CONCLUSION AMSTAR 2 is a robust tool to identify high-quality systematic reviews. There is a paucity of high-quality systematic reviews on the utility of artificial intelligence in glioma management, with some demonstrating critically low quality. Therefore, caution must be exercised when drawing inferences from these results.
Collapse
Affiliation(s)
| | - Roua Nasir
- Section of Neurosurgery, Department of Surgery, Aga Khan University, Karachi, Pakistan
| | - Mohammad Hamza Bajwa
- Section of Neurosurgery, Department of Surgery, Aga Khan University, Karachi, Pakistan.
| | - Saad Akhtar Khan
- Department of Neurosurgery, Liaquat National Hospital, Karachi, Pakistan.
| | | | - Zenab Shahzad
- Department of Neurosurgery, Liaquat National Hospital, Karachi, Pakistan
| | | | | | - Kiran Aftab
- Section of Neurosurgery, Department of Surgery, Aga Khan University, Karachi, Pakistan; University of Cambridge, UK.
| |
Collapse
|
7
|
Chung CYC, Pigott LE. Predicting IDH and ATRX mutations in gliomas from radiomic features with machine learning: a systematic review and meta-analysis. FRONTIERS IN RADIOLOGY 2024; 4:1493824. [PMID: 39544481 PMCID: PMC11560782 DOI: 10.3389/fradi.2024.1493824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/04/2024] [Indexed: 11/17/2024]
Abstract
Objective This systematic review aims to evaluate the quality and accuracy of ML algorithms in predicting ATRX and IDH mutation status in patients with glioma through the analysis of radiomic features extracted from medical imaging. The potential clinical impacts and areas for further improvement in non-invasive glioma diagnosis, classification and prognosis are also identified and discussed. Methods The review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses of Diagnostic and Test Accuracy (PRISMA-DTA) statement. Databases including PubMed, Science Direct, CINAHL, Academic Search Complete, Medline, and Google Scholar were searched from inception to April 2024. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool was used to assess the risk of bias and applicability concerns. Additionally, meta-regression identified covariates contributing to heterogeneity before a subgroup meta-analysis was conducted. Pooled sensitivities, specificities and area under the curve (AUC) values were calculated for the prediction of ATRX and IDH mutations. Results Eleven studies involving 1,685 patients with grade I-IV glioma were included. Primary contributors to heterogeneity included the MRI modalities utilised (conventional only vs. combined) and the types of ML models employed. The meta-analysis revealed pooled sensitivities of 0.682 for prediction of ATRX loss and 0.831 for IDH mutations, specificities of 0.874 and 0.828, and AUC values of 0.842 and 0.948, respectively. Interestingly, incorporating semantics and clinical data, including patient demographics, improved the diagnostic performance of ML models. Conclusions The high AUC in the prediction of both mutations demonstrates an overall robust diagnostic performance of ML, indicating the potential for accurate, non-invasive diagnosis and precise prognosis. Future research should focus on integrating diverse data types, including advanced imaging, semantics and clinical data while also aiming to standardise the collection and integration of multimodal data. This approach will enhance clinical applicability and consistency.
Collapse
Affiliation(s)
- Chor Yiu Chloe Chung
- Institute of Health and Social Care, London South Bank University, London, United Kingdom
| | - Laura Elin Pigott
- Institute of Health and Social Care, London South Bank University, London, United Kingdom
- Department of Brain Repair and Rehabilitation, Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
8
|
Ma A, Yan X, Qu Y, Wen H, Zou X, Liu X, Lu M, Mo J, Wen Z. Amide proton transfer weighted and diffusion weighted imaging based radiomics classification algorithm for predicting 1p/19q co-deletion status in low grade gliomas. BMC Med Imaging 2024; 24:85. [PMID: 38600452 PMCID: PMC11005152 DOI: 10.1186/s12880-024-01262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND 1p/19q co-deletion in low-grade gliomas (LGG, World Health Organization grade II and III) is of great significance in clinical decision making. We aim to use radiomics analysis to predict 1p/19q co-deletion in LGG based on amide proton transfer weighted (APTw), diffusion weighted imaging (DWI), and conventional MRI. METHODS This retrospective study included 90 patients histopathologically diagnosed with LGG. We performed a radiomics analysis by extracting 8454 MRI-based features form APTw, DWI and conventional MR images and applied a least absolute shrinkage and selection operator (LASSO) algorithm to select radiomics signature. A radiomics score (Rad-score) was generated using a linear combination of the values of the selected features weighted for each of the patients. Three neuroradiologists, including one experienced neuroradiologist and two resident physicians, independently evaluated the MR features of LGG and provided predictions on whether the tumor had 1p/19q co-deletion or 1p/19q intact status. A clinical model was then constructed based on the significant variables identified in this analysis. A combined model incorporating both the Rad-score and clinical factors was also constructed. The predictive performance was validated by receiver operating characteristic curve analysis, DeLong analysis and decision curve analysis. P < 0.05 was statistically significant. RESULTS The radiomics model and the combined model both exhibited excellent performance on both the training and test sets, achieving areas under the curve (AUCs) of 0.948 and 0.966, as well as 0.909 and 0.896, respectively. These results surpassed the performance of the clinical model, which achieved AUCs of 0.760 and 0.766 on the training and test sets, respectively. After performing Delong analysis, the clinical model did not significantly differ in predictive performance from three neuroradiologists. In the training set, both the radiomic and combined models performed better than all neuroradiologists. In the test set, the models exhibited higher AUCs than the neuroradiologists, with the radiomics model significantly outperforming resident physicians B and C, but not differing significantly from experienced neuroradiologist. CONCLUSIONS Our results suggest that our algorithm can noninvasively predict the 1p/19q co-deletion status of LGG. The predictive performance of radiomics model was comparable to that of experienced neuroradiologist, significantly outperforming the diagnostic accuracy of resident physicians, thereby offering the potential to facilitate non-invasive 1p/19q co-deletion prediction of LGG.
Collapse
Affiliation(s)
- Andong Ma
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China
| | - Xinran Yan
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China
| | - Yaoming Qu
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China
| | - Haitao Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China
| | - Xia Zou
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China
| | - Xinzi Liu
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China
| | - Mingjun Lu
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China
| | - Jianhua Mo
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China
| | - Zhibo Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China.
| |
Collapse
|
9
|
Samartha MVS, Dubey NK, Jena B, Maheswar G, Lo WC, Saxena S. AI-driven estimation of O6 methylguanine-DNA-methyltransferase (MGMT) promoter methylation in glioblastoma patients: a systematic review with bias analysis. J Cancer Res Clin Oncol 2024; 150:57. [PMID: 38291266 PMCID: PMC10827977 DOI: 10.1007/s00432-023-05566-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/27/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND Accurate and non-invasive estimation of MGMT promoter methylation status in glioblastoma (GBM) patients is of paramount clinical importance, as it is a predictive biomarker associated with improved overall survival (OS). In response to the clinical need, recent studies have focused on the development of non-invasive artificial intelligence (AI)-based methods for MGMT estimation. In this systematic review, we not only delve into the technical aspects of these AI-driven MGMT estimation methods but also emphasize their profound clinical implications. Specifically, we explore the potential impact of accurate non-invasive MGMT estimation on GBM patient care and treatment decisions. METHODS Employing a PRISMA search strategy, we identified 33 relevant studies from reputable databases, including PubMed, ScienceDirect, Google Scholar, and IEEE Explore. These studies were comprehensively assessed using 21 diverse attributes, encompassing factors such as types of imaging modalities, machine learning (ML) methods, and cohort sizes, with clear rationales for attribute scoring. Subsequently, we ranked these studies and established a cutoff value to categorize them into low-bias and high-bias groups. RESULTS By analyzing the 'cumulative plot of mean score' and the 'frequency plot curve' of the studies, we determined a cutoff value of 6.00. A higher mean score indicated a lower risk of bias, with studies scoring above the cutoff mark categorized as low-bias (73%), while 27% fell into the high-bias category. CONCLUSION Our findings underscore the immense potential of AI-based machine learning (ML) and deep learning (DL) methods in non-invasively determining MGMT promoter methylation status. Importantly, the clinical significance of these AI-driven advancements lies in their capacity to transform GBM patient care by providing accurate and timely information for treatment decisions. However, the translation of these technical advancements into clinical practice presents challenges, including the need for large multi-institutional cohorts and the integration of diverse data types. Addressing these challenges will be critical in realizing the full potential of AI in improving the reliability and accessibility of MGMT estimation while lowering the risk of bias in clinical decision-making.
Collapse
Affiliation(s)
- Mullapudi Venkata Sai Samartha
- Department of Computer Science & Engineering, International Institute of Information Technology, Bhubaneswar, 751003, India
| | - Navneet Kumar Dubey
- Victory Biotechnology Co., Ltd., Taipei, 114757, Taiwan
- Executive Programme in Healthcare Management, Indian Institute of Management, Lucknow, 226013, India
| | - Biswajit Jena
- Institute of Technical Education and Research, SOA Deemed to be University, Bhubaneswar, 751030, India
| | - Gorantla Maheswar
- Department of Computer Science & Engineering, International Institute of Information Technology, Bhubaneswar, 751003, India
| | - Wen-Cheng Lo
- Division of Neurosurgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei, 11031, Taiwan.
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Sanjay Saxena
- Department of Computer Science & Engineering, International Institute of Information Technology, Bhubaneswar, 751003, India.
| |
Collapse
|
10
|
Staartjes VE, Zanier O, da Mutten R, Serra C, Regli L. Machine Intelligence in Cerebrovascular and Endovascular Neurosurgery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1462:383-395. [PMID: 39523278 DOI: 10.1007/978-3-031-64892-2_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The advent of different realms of computational neurosurgery-including not only machine intelligence but also visualization techniques such as mixed reality and robotic applications-is beginning to impact both open vascular as well as endovascular neurosurgery. Especially in this relatively common patient population of often very fragile patients, with potential for devastating complications and clinical outcomes and sometimes highly complex pathologies, computer assistance could prove particularly useful. In this chapter, state-of-the-art applications of machine learning toward vascular patients are elucidated: Beginning from simple clinical diagnostic, prognostic, and predictive modeling, to the interpretation of medical imaging (radiomics, segmentation, and diagnostic assistance) and synthetic imaging (image modality conversion, super-resolution, and 2D-to-3D-synthesis), up to intraoperative applications of computer vision (robotic steering, rapid intraoperative histopathology, and anatomical and surgical phase recognition), and natural language processing (enabling model training and big data, documentation, and large language models)-this chapter provides a "tour de force" of machine intelligence in the realm of neurovascular medicine.
Collapse
Affiliation(s)
- Victor E Staartjes
- Machine Intelligence in Clinical Neuroscience & Microsurgical Neuroanatomy (MICN) Laboratory, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Olivier Zanier
- Machine Intelligence in Clinical Neuroscience & Microsurgical Neuroanatomy (MICN) Laboratory, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Raffaele da Mutten
- Machine Intelligence in Clinical Neuroscience & Microsurgical Neuroanatomy (MICN) Laboratory, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Carlo Serra
- Machine Intelligence in Clinical Neuroscience & Microsurgical Neuroanatomy (MICN) Laboratory, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Luca Regli
- Machine Intelligence in Clinical Neuroscience & Microsurgical Neuroanatomy (MICN) Laboratory, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Kolasa K, Admassu B, Hołownia-Voloskova M, Kędzior KJ, Poirrier JE, Perni S. Systematic reviews of machine learning in healthcare: a literature review. Expert Rev Pharmacoecon Outcomes Res 2024; 24:63-115. [PMID: 37955147 DOI: 10.1080/14737167.2023.2279107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
INTRODUCTION The increasing availability of data and computing power has made machine learning (ML) a viable approach to faster, more efficient healthcare delivery. METHODS A systematic literature review (SLR) of published SLRs evaluating ML applications in healthcare settings published between1 January 2010 and 27 March 2023 was conducted. RESULTS In total 220 SLRs covering 10,462 ML algorithms were reviewed. The main application of AI in medicine related to the clinical prediction and disease prognosis in oncology and neurology with the use of imaging data. Accuracy, specificity, and sensitivity were provided in 56%, 28%, and 25% SLRs respectively. Internal and external validation was reported in 53% and less than 1% of the cases respectively. The most common modeling approach was neural networks (2,454 ML algorithms), followed by support vector machine and random forest/decision trees (1,578 and 1,522 ML algorithms, respectively). EXPERT OPINION The review indicated considerable reporting gaps in terms of the ML's performance, both internal and external validation. Greater accessibility to healthcare data for developers can ensure the faster adoption of ML algorithms into clinical practice.
Collapse
Affiliation(s)
- Katarzyna Kolasa
- Division of Health Economics and Healthcare Management, Kozminski University, Warsaw, Poland
| | - Bisrat Admassu
- Division of Health Economics and Healthcare Management, Kozminski University, Warsaw, Poland
| | | | | | | | | |
Collapse
|
12
|
Song G, Xie G, Nie Y, Majid MS, Yavari I. Noninvasive grading of glioma brain tumors using magnetic resonance imaging and deep learning methods. J Cancer Res Clin Oncol 2023; 149:16293-16309. [PMID: 37698684 DOI: 10.1007/s00432-023-05389-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
PURPOSE Convolutional Neural Networks (ConvNets) have quickly become popular machine learning techniques in recent years, particularly in the classification and segmentation of medical images. One of the most prevalent types of brain cancers is glioma, and early, accurate diagnosis is essential for both treatment and survival. In this study, MRI scans were examined utilizing deep learning techniques to examine glioma diagnosis studies. METHODS In this systematic review, keywords were used to obtain English-language studies from the Arxiv, IEEE, Springer, ScienceDirect, and PubMed databases for the years 2010-2022. The material needed for review was then collected from the articles once they had been chosen based on the entry and exit criteria and in accordance with the research's goal. RESULTS Finally, 77 different academic articles were chosen. According to a study of published articles, glioma brain tumors were discovered, categorized, and segmented utilizing a coordinated approach that included image collecting, pre-processing, model design and execution, and model output evaluation. The majority of investigations have used publicly accessible photo databases and already-trained algorithms. The bulk of studies have employed Dice's classification accuracy and similarity coefficient metrics to assess model performance. CONCLUSION The results of this study indicate that glioma segmentation has received more attention from researchers than glioma detection and classification. It is advised that more research be done in the areas of glioma detection and, particularly, grading in order to be included in systems that support medical diagnosis.
Collapse
Affiliation(s)
- Guanghui Song
- School of Computer and Data Engineering, Ningbo Tech University, Ningbo, 315100, Zhejiang, China.
| | - Guanbao Xie
- School of Computer and Data Engineering, Ningbo Tech University, Ningbo, 315100, Zhejiang, China
| | - Yan Nie
- College of Science & Technology, Ningbo University, Ningbo, 315100, Zhejiang, China
| | - Mohammed Sh Majid
- Computer Techniques Engineering Department, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Iman Yavari
- School of Computing and Technology, Eastern Mediterranean University, Northern Cyprus, Famagusta, Cyprus.
| |
Collapse
|
13
|
Godoy LFDS, Paes VR, Ayres AS, Bandeira GA, Moreno RA, Hirata FDCC, Silva FAB, Nascimento F, Campos Neto GDC, Gentil AF, Lucato LT, Amaro Junior E, Young RJ, Malheiros SMF. Advances in diffuse glial tumors diagnosis. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:1134-1145. [PMID: 38157879 PMCID: PMC10756793 DOI: 10.1055/s-0043-1777729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/27/2023] [Indexed: 01/03/2024]
Abstract
In recent decades, there have been significant advances in the diagnosis of diffuse gliomas, driven by the integration of novel technologies. These advancements have deepened our understanding of tumor oncogenesis, enabling a more refined stratification of the biological behavior of these neoplasms. This progress culminated in the fifth edition of the WHO classification of central nervous system (CNS) tumors in 2021. This comprehensive review article aims to elucidate these advances within a multidisciplinary framework, contextualized within the backdrop of the new classification. This article will explore morphologic pathology and molecular/genetics techniques (immunohistochemistry, genetic sequencing, and methylation profiling), which are pivotal in diagnosis, besides the correlation of structural neuroimaging radiophenotypes to pathology and genetics. It briefly reviews the usefulness of tractography and functional neuroimaging in surgical planning. Additionally, the article addresses the value of other functional imaging techniques such as perfusion MRI, spectroscopy, and nuclear medicine in distinguishing tumor progression from treatment-related changes. Furthermore, it discusses the advantages of evolving diagnostic techniques in classifying these tumors, as well as their limitations in terms of availability and utilization. Moreover, the expanding domains of data processing, artificial intelligence, radiomics, and radiogenomics hold great promise and may soon exert a substantial influence on glioma diagnosis. These innovative technologies have the potential to revolutionize our approach to these tumors. Ultimately, this review underscores the fundamental importance of multidisciplinary collaboration in employing recent diagnostic advancements, thereby hoping to translate them into improved quality of life and extended survival for glioma patients.
Collapse
Affiliation(s)
- Luis Filipe de Souza Godoy
- Hospital Israelita Albert Einstein, Departamento de Radiologia, Seção de Neuroradiologia, São Paulo SP, Brazil.
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Seção de Neuroradiologia, São Paulo SP, Brazil.
| | - Vitor Ribeiro Paes
- Hospital Israelita Albert Einstein, Laboratório de Patologia Cirúrgica, São Paulo SP, Brazil.
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Patologia, São Paulo SP, Brazil.
| | - Aline Sgnolf Ayres
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Seção de Neuroradiologia, São Paulo SP, Brazil.
| | - Gabriela Alencar Bandeira
- Instituto do Câncer do Estado de São Paulo, Departamento de Radiologia, Seção de Neuroradiologia, São Paulo SP, Brazil.
| | - Raquel Andrade Moreno
- Instituto do Câncer do Estado de São Paulo, Departamento de Radiologia, Seção de Neuroradiologia, São Paulo SP, Brazil.
- Rede D'Or São Luiz, Departamento de Radiologia, Seção de Neuroradiologia, São Paulo SP, Brazil.
| | | | | | - Felipe Nascimento
- Hospital Israelita Albert Einstein, Departamento de Radiologia, Seção de Neuroradiologia, São Paulo SP, Brazil.
| | | | - Andre Felix Gentil
- Hospital Israelita Albert Einstein, Departamento de Neurocirurgia, São Paulo SP, Brazil.
| | - Leandro Tavares Lucato
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Seção de Neuroradiologia, São Paulo SP, Brazil.
- Grupo Fleury, São Paulo SP, Brazil.
| | - Edson Amaro Junior
- Hospital Israelita Albert Einstein, Departamento de Radiologia, Seção de Neuroradiologia, São Paulo SP, Brazil.
| | - Robert J. Young
- Memorial Sloan-Kettering Cancer Center, Neuroradiology Service, New York, New York, United States.
| | | |
Collapse
|
14
|
Sun W, Song C, Tang C, Pan C, Xue P, Fan J, Qiao Y. Performance of deep learning algorithms to distinguish high-grade glioma from low-grade glioma: A systematic review and meta-analysis. iScience 2023; 26:106815. [PMID: 37250800 PMCID: PMC10209541 DOI: 10.1016/j.isci.2023.106815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/23/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
This study aims to evaluate deep learning (DL) performance in differentiating low- and high-grade glioma. Search online database for studies continuously published from 1st January 2015 until 16th August 2022. The random-effects model was used for synthesis, based on pooled sensitivity (SE), specificity (SP), and area under the curve (AUC). Heterogeneity was estimated using the Higgins inconsistency index (I2). 33 were ultimately included in the meta-analysis. The overall pooled SE and SP were 94% and 93%, with an AUC of 0.98. There was great heterogeneity in this field. Our evidence-based study shows DL achieves high accuracy in glioma grading. Subgroup analysis reveals several limitations in this field: 1) Diagnostic trials require standard method for data merging for AI; 2) small sample size; 3) poor-quality image preprocessing; 4) not standard algorithm development; 5) not standard data report; 6) different definition of HGG and LGG; and 7) poor extrapolation.
Collapse
Affiliation(s)
- Wanyi Sun
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Song
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao Tang
- Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Chenghao Pan
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Xue
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinhu Fan
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Youlin Qiao
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Hu J, Wang Y, Guo D, Qu Z, Sui C, He G, Wang S, Chen X, Wang C, Liu X. Diagnostic performance of magnetic resonance imaging-based machine learning in Alzheimer's disease detection: a meta-analysis. Neuroradiology 2023; 65:513-527. [PMID: 36477499 DOI: 10.1007/s00234-022-03098-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE Advanced machine learning (ML) algorithms can assist rapid medical image recognition and realize automatic, efficient, noninvasive, and convenient diagnosis. We aim to further evaluate the diagnostic performance of ML to distinguish patients with probable Alzheimer's disease (AD) from normal older adults based on structural magnetic resonance imaging (MRI). METHODS The Medline, Embase, and Cochrane Library databases were searched for relevant literature published up until July 2021. We used the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool and Checklist for Artificial Intelligence in Medical Imaging (CLAIM) to evaluate all included studies' quality and potential bias. Random-effects models were used to calculate pooled sensitivity and specificity, and the Deeks' test was used to assess publication bias. RESULTS We included 24 models based on different brain features extracted by ML algorithms in 19 papers. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and area under the summary receiver operating characteristic curve for ML in detecting AD were 0.85 (95%CI 0.81-0.89), 0.88 (95%CI 0.84-0.91), 7.15 (95%CI 5.40-9.47), 0.17 (95%CI 0.12-0.22), 43.34 (95%CI 26.89-69.84), and 0.93 (95%CI 0.91-0.95). CONCLUSION ML using structural MRI data performed well in diagnosing probable AD patients and normal elderly. However, more high-quality, large-scale prospective studies are needed to further enhance the reliability and generalizability of ML for clinical applications before it can be introduced into clinical practice.
Collapse
Affiliation(s)
- Jiayi Hu
- Department of Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Yashan Wang
- Department of Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Dingjie Guo
- Department of Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Zihan Qu
- Department of Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Chuanying Sui
- Department of Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Guangliang He
- Department of Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Song Wang
- Department of Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Xiaofei Chen
- Department of Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Chunpeng Wang
- School of Mathematics and Statistics, Northeast Normal University, Changchun, Jilin, China.
| | - Xin Liu
- Department of Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
16
|
Henssen D, Meijer F, Verburg FA, Smits M. Challenges and opportunities for advanced neuroimaging of glioblastoma. Br J Radiol 2023; 96:20211232. [PMID: 36062962 PMCID: PMC10997013 DOI: 10.1259/bjr.20211232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 08/10/2022] [Accepted: 08/25/2022] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma is the most aggressive of glial tumours in adults. On conventional magnetic resonance (MR) imaging, these tumours are observed as irregular enhancing lesions with areas of infiltrating tumour and cortical expansion. More advanced imaging techniques including diffusion-weighted MRI, perfusion-weighted MRI, MR spectroscopy and positron emission tomography (PET) imaging have found widespread application to diagnostic challenges in the setting of first diagnosis, treatment planning and follow-up. This review aims to educate readers with regard to the strengths and weaknesses of the clinical application of these imaging techniques. For example, this review shows that the (semi)quantitative analysis of the mentioned advanced imaging tools was found useful for assessing tumour aggressiveness and tumour extent, and aids in the differentiation of tumour progression from treatment-related effects. Although these techniques may aid in the diagnostic work-up and (post-)treatment phase of glioblastoma, so far no unequivocal imaging strategy is available. Furthermore, the use and further development of artificial intelligence (AI)-based tools could greatly enhance neuroradiological practice by automating labour-intensive tasks such as tumour measurements, and by providing additional diagnostic information such as prediction of tumour genotype. Nevertheless, due to the fact that advanced imaging and AI-diagnostics is not part of response assessment criteria, there is no harmonised guidance on their use, while at the same time the lack of standardisation severely hampers the definition of uniform guidelines.
Collapse
Affiliation(s)
- Dylan Henssen
- Department of Medical Imaging, Radboud university medical
center, Nijmegen, The Netherlands
| | - Frederick Meijer
- Department of Medical Imaging, Radboud university medical
center, Nijmegen, The Netherlands
| | - Frederik A. Verburg
- Department of Medical Imaging, Radboud university medical
center, Nijmegen, The Netherlands
| | - Marion Smits
- Department of Medical Imaging, Radboud university medical
center, Nijmegen, The Netherlands
| |
Collapse
|
17
|
Karabacak M, Ozkara BB, Mordag S, Bisdas S. Deep learning for prediction of isocitrate dehydrogenase mutation in gliomas: a critical approach, systematic review and meta-analysis of the diagnostic test performance using a Bayesian approach. Quant Imaging Med Surg 2022; 12:4033-4046. [PMID: 35919062 PMCID: PMC9338374 DOI: 10.21037/qims-22-34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/25/2022] [Indexed: 11/08/2022]
Abstract
Background Conventionally, identifying isocitrate dehydrogenase (IDH) mutation in gliomas is based on histopathological analysis of tissue specimens acquired via stereotactic biopsy or definitive resection. Accurate pre-treatment prediction of IDH mutation status using magnetic resonance imaging (MRI) can guide clinical decision-making. We aim to evaluate the diagnostic performance of deep learning (DL) to determine IDH mutation status in gliomas. Methods A systematic search of Cochrane Library, Web of Science, Medline, and Scopus was conducted to identify relevant publications until August 1, 2021. Articles were included if all the following criteria were met: (I) patients with histopathologically confirmed World Health Organization (WHO) grade II, III, or IV gliomas; (II) histopathological examination with the IDH mutation; (III) DL was used to predict the IDH mutation status; (IV) sufficient data for reconstruction of confusion matrices in terms of the diagnostic performance of the DL algorithms; and (V) original research articles. Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) and Checklist for Artificial Intelligence in Medical Imaging (CLAIM) was used to assess the studies' quality. Bayes theorem was utilized to calculate the posttest probability. Results Four studies with a total of 1,295 patients were included. In the training set, the pooled sensitivity, specificity, and area under the summary receiver operating characteristic (SROC) curve were 93.9%, 90.9% and 0.958, respectively. In the validation set, the pooled sensitivity, specificity, and area under the SROC curve were 90.8%, 85.5% and 0.939, respectively. With a known pretest probability of 80.2%, the Bayes theorem yielded a posttest probability of 97.6% and 96.0% for a positive test and 27.0% and 30.6% for a negative test for training sets and validation sets, respectively. Discussion This is the first meta-analysis that summarizes the diagnostic performance of DL in predicting IDH mutation status in gliomas via the Bayes theorem. DL algorithms demonstrate excellent diagnostic performance in predicting IDH mutation in gliomas. Radiomic features associated with IDH mutation, and its underlying pathophysiology extracted from advanced MRI may improve prediction probability. However, more studies are required to optimize and increase its reliability. Limitations include obtaining some data via email and lack of training and test sets statistics.
Collapse
Affiliation(s)
- Mert Karabacak
- Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Cerrahpasa, Istanbul, Turkey
| | - Burak Berksu Ozkara
- Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Cerrahpasa, Istanbul, Turkey
| | - Seren Mordag
- Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, Turkey
| | - Sotirios Bisdas
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
18
|
Hanis TM, Islam MA, Musa KI. Diagnostic Accuracy of Machine Learning Models on Mammography in Breast Cancer Classification: A Meta-Analysis. Diagnostics (Basel) 2022; 12:1643. [PMID: 35885548 PMCID: PMC9320089 DOI: 10.3390/diagnostics12071643] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
In this meta-analysis, we aimed to estimate the diagnostic accuracy of machine learning models on digital mammograms and tomosynthesis in breast cancer classification and to assess the factors affecting its diagnostic accuracy. We searched for related studies in Web of Science, Scopus, PubMed, Google Scholar and Embase. The studies were screened in two stages to exclude the unrelated studies and duplicates. Finally, 36 studies containing 68 machine learning models were included in this meta-analysis. The area under the curve (AUC), hierarchical summary receiver operating characteristics (HSROC) curve, pooled sensitivity and pooled specificity were estimated using a bivariate Reitsma model. Overall AUC, pooled sensitivity and pooled specificity were 0.90 (95% CI: 0.85-0.90), 0.83 (95% CI: 0.78-0.87) and 0.84 (95% CI: 0.81-0.87), respectively. Additionally, the three significant covariates identified in this study were country (p = 0.003), source (p = 0.002) and classifier (p = 0.016). The type of data covariate was not statistically significant (p = 0.121). Additionally, Deeks' linear regression test indicated that there exists a publication bias in the included studies (p = 0.002). Thus, the results should be interpreted with caution.
Collapse
Affiliation(s)
- Tengku Muhammad Hanis
- Department of Community Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Kamarul Imran Musa
- Department of Community Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| |
Collapse
|
19
|
Kouwenberg V, van Santwijk L, Meijer FJA, Henssen D. Reliability of dynamic susceptibility contrast perfusion metrics in pre- and post-treatment glioma. Cancer Imaging 2022; 22:28. [PMID: 35715866 PMCID: PMC9205029 DOI: 10.1186/s40644-022-00466-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/26/2022] [Indexed: 11/26/2022] Open
Abstract
Background In neuro-oncology, dynamic susceptibility contrast magnetic resonance (DSC-MR) perfusion imaging emerged as a tool to aid in the diagnostic work-up and to surveil effectiveness of treatment. However, it is believed that a significant variability exists with regard to the measured in DSC-MR perfusion parameters. The aim of this study was to assess the observer variability in measured DSC-MR perfusion parameters in patients before and after treatment. In addition, we investigated whether region-of-interest (ROI) shape impacted the observer variability. Materials and methods Twenty non-treated patients and a matched group of twenty patients post-treatment (neurosurgical resection and post-chemoradiotherapy) were included. Six ROIs were independently placed by three readers: circular ROIs and polygonal ROIs covering 1) the tumor hotspot; 2) the peritumoral region (T2/FLAIR-hyperintense region) and 3) the whole tumor region. A two-way random Intra-class coefficient (ICC) model was used to assess variability in measured DSC-MRI perfusion parameters. The perfusion metrics as assessed by the circular and the polygonal ROI were compared by use of the dependent T-test. Results In the non-treated group, circular ROIs showed good–excellent overlap (ICC-values ranging from 0.741–0.963) with the exception of those representing the tumor hotspot. Polygonal ROIs showed lower ICC-values, ranging from 0.113 till 0.856. ROI-placement in the posttreatment group showed to be highly variable with a significant deterioration of ICC-values. Furthermore, perfusion metric assessment in similar tumor regions was not impacted by ROI shape. Discussion This study shows that posttreatment quantitative interpretation of DSC-MR perfusion imaging is highly variable and should be carried out with precaution. Pretreatment assessment of DSC-MR images, however, could be carried out be a single reader in order to provide valid data for further analyses. • DSC-MR perfusion imaging measurements in non-treated glioma is highly reliable between readers, even readers with little experience. • DSC-MR perfusion imaging measurements in treated glioma is show to be inconsistent between readers. • When using DSC-MR perfusion imaging as a quantitative surveillance tool for the recurrence of glioma after treatment, double-reading should be preferred.
Collapse
Affiliation(s)
- Valentina Kouwenberg
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Lusien van Santwijk
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Frederick J A Meijer
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Dylan Henssen
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands.
| |
Collapse
|
20
|
van Santwijk L, Kouwenberg V, Meijer F, Smits M, Henssen D. A systematic review and meta-analysis on the differentiation of glioma grade and mutational status by use of perfusion-based magnetic resonance imaging. Insights Imaging 2022; 13:102. [PMID: 35670981 PMCID: PMC9174367 DOI: 10.1186/s13244-022-01230-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/20/2022] [Indexed: 01/17/2023] Open
Abstract
Background Molecular characterization plays a crucial role in glioma classification which impacts treatment strategy and patient outcome. Dynamic susceptibility contrast (DSC) and dynamic contrast enhanced (DCE) perfusion imaging have been suggested as methods to help characterize glioma in a non-invasive fashion. This study set out to review and meta-analyze the evidence on the accuracy of DSC and/or DCE perfusion MRI in predicting IDH genotype and 1p/19q integrity status. Methods After systematic literature search on Medline, EMBASE, Web of Science and the Cochrane Library, a qualitative meta-synthesis and quantitative meta-analysis were conducted. Meta-analysis was carried out on aggregated AUC data for different perfusion metrics. Results Of 680 papers, twelve were included for the qualitative meta-synthesis, totaling 1384 patients. It was observed that CBV, ktrans, Ve and Vp values were, in general, significantly higher in IDH wildtype compared to IDH mutated glioma. Meta-analysis comprising of five papers (totaling 316 patients) showed that the AUC of CBV, ktrans, Ve and Vp were 0.85 (95%-CI 0.75–0.93), 0.81 (95%-CI 0.74–0.89), 0.84 (95%-CI 0.71–0.97) and 0.76 (95%-CI 0.61–0.90), respectively. No conclusive data on the prediction of 1p/19q integrity was available from these studies. Conclusions Future research should aim to predict 1p/19q integrity based on perfusion MRI data. Additionally, correlations with other clinically relevant outcomes should be further investigated, including patient stratification for treatment and overall survival. Supplementary Information The online version contains supplementary material available at 10.1186/s13244-022-01230-7.
Collapse
Affiliation(s)
- Lusien van Santwijk
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Valentina Kouwenberg
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Frederick Meijer
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dylan Henssen
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands.
| |
Collapse
|
21
|
Tozzi AE, Fabozzi F, Eckley M, Croci I, Dell’Anna VA, Colantonio E, Mastronuzzi A. Gaps and Opportunities of Artificial Intelligence Applications for Pediatric Oncology in European Research: A Systematic Review of Reviews and a Bibliometric Analysis. Front Oncol 2022; 12:905770. [PMID: 35712463 PMCID: PMC9194810 DOI: 10.3389/fonc.2022.905770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/04/2022] [Indexed: 12/23/2022] Open
Abstract
The application of artificial intelligence (AI) systems is emerging in many fields in recent years, due to the increased computing power available at lower cost. Although its applications in various branches of medicine, such as pediatric oncology, are many and promising, its use is still in an embryonic stage. The aim of this paper is to provide an overview of the state of the art regarding the AI application in pediatric oncology, through a systematic review of systematic reviews, and to analyze current trends in Europe, through a bibliometric analysis of publications written by European authors. Among 330 records found, 25 were included in the systematic review. All papers have been published since 2017, demonstrating only recent attention to this field. The total number of studies included in the selected reviews was 674, with a third including an author with a European affiliation. In bibliometric analysis, 304 out of the 978 records found were included. Similarly, the number of publications began to dramatically increase from 2017. Most explored AI applications regard the use of diagnostic images, particularly radiomics, as well as the group of neoplasms most involved are the central nervous system tumors. No evidence was found regarding the use of AI for process mining, clinical pathway modeling, or computer interpreted guidelines to improve the healthcare process. No robust evidence is yet available in any of the domains investigated by systematic reviews. However, the scientific production in Europe is significant and consistent with the topics covered in systematic reviews at the global level. The use of AI in pediatric oncology is developing rapidly with promising results, but numerous gaps and challenges persist to validate its utilization in clinical practice. An important limitation is the need for large datasets for training algorithms, calling for international collaborative studies.
Collapse
Affiliation(s)
- Alberto Eugenio Tozzi
- Multifactorial and Complex Diseases Research Area, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Francesco Fabozzi
- Department of Onco Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Department of Pediatrics, University of Rome Tor Vergata, Rome, Italy
| | - Megan Eckley
- Department of Onco Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Ileana Croci
- Multifactorial and Complex Diseases Research Area, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Vito Andrea Dell’Anna
- Department of Onco Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Erica Colantonio
- Department of Onco Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Angela Mastronuzzi
- Department of Onco Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- *Correspondence: Angela Mastronuzzi,
| |
Collapse
|
22
|
Williams S, Layard Horsfall H, Funnell JP, Hanrahan JG, Khan DZ, Muirhead W, Stoyanov D, Marcus HJ. Artificial Intelligence in Brain Tumour Surgery-An Emerging Paradigm. Cancers (Basel) 2021; 13:cancers13195010. [PMID: 34638495 PMCID: PMC8508169 DOI: 10.3390/cancers13195010] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 01/01/2023] Open
Abstract
Artificial intelligence (AI) platforms have the potential to cause a paradigm shift in brain tumour surgery. Brain tumour surgery augmented with AI can result in safer and more effective treatment. In this review article, we explore the current and future role of AI in patients undergoing brain tumour surgery, including aiding diagnosis, optimising the surgical plan, providing support during the operation, and better predicting the prognosis. Finally, we discuss barriers to the successful clinical implementation, the ethical concerns, and we provide our perspective on how the field could be advanced.
Collapse
Affiliation(s)
- Simon Williams
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK; (H.L.H.); (J.P.F.); (J.G.H.); (D.Z.K.); (W.M.); (H.J.M.)
- Wellcome/Engineering and Physical Sciences Research Council (EPSRC) Centre for Interventional and Surgical Sciences (WEISS), London W1W 7TY, UK;
- Correspondence:
| | - Hugo Layard Horsfall
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK; (H.L.H.); (J.P.F.); (J.G.H.); (D.Z.K.); (W.M.); (H.J.M.)
- Wellcome/Engineering and Physical Sciences Research Council (EPSRC) Centre for Interventional and Surgical Sciences (WEISS), London W1W 7TY, UK;
| | - Jonathan P. Funnell
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK; (H.L.H.); (J.P.F.); (J.G.H.); (D.Z.K.); (W.M.); (H.J.M.)
- Wellcome/Engineering and Physical Sciences Research Council (EPSRC) Centre for Interventional and Surgical Sciences (WEISS), London W1W 7TY, UK;
| | - John G. Hanrahan
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK; (H.L.H.); (J.P.F.); (J.G.H.); (D.Z.K.); (W.M.); (H.J.M.)
- Wellcome/Engineering and Physical Sciences Research Council (EPSRC) Centre for Interventional and Surgical Sciences (WEISS), London W1W 7TY, UK;
| | - Danyal Z. Khan
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK; (H.L.H.); (J.P.F.); (J.G.H.); (D.Z.K.); (W.M.); (H.J.M.)
- Wellcome/Engineering and Physical Sciences Research Council (EPSRC) Centre for Interventional and Surgical Sciences (WEISS), London W1W 7TY, UK;
| | - William Muirhead
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK; (H.L.H.); (J.P.F.); (J.G.H.); (D.Z.K.); (W.M.); (H.J.M.)
- Wellcome/Engineering and Physical Sciences Research Council (EPSRC) Centre for Interventional and Surgical Sciences (WEISS), London W1W 7TY, UK;
| | - Danail Stoyanov
- Wellcome/Engineering and Physical Sciences Research Council (EPSRC) Centre for Interventional and Surgical Sciences (WEISS), London W1W 7TY, UK;
| | - Hani J. Marcus
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK; (H.L.H.); (J.P.F.); (J.G.H.); (D.Z.K.); (W.M.); (H.J.M.)
- Wellcome/Engineering and Physical Sciences Research Council (EPSRC) Centre for Interventional and Surgical Sciences (WEISS), London W1W 7TY, UK;
| |
Collapse
|