1
|
Li Y, Kong LZ. Prognostic value of the Controlling Nutritional Status score in patients with newly diagnosed multiple myeloma. Am J Transl Res 2024; 16:4788-4795. [PMID: 39398615 PMCID: PMC11470358 DOI: 10.62347/fyjj5585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 07/15/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE There is some evidence indicating that the Controlling Nutritional Status (CONUT) score is a prognostic factor in patients with hematological malignancies, including multiple myeloma (MM). The aim of this study was to assess the prognostic value of the CONUT score in newly diagnosed MM. METHOD We retrospectively investigated multiple clinical variables, including the CONUT score, age, sex, body mass index, M protein type, International Staging System (ISS) stage, Durie-Salmon (DS) stage, and blood cell count, in 58 patients with newly diagnosed MM. RESULT There was a significant correlation between a high CONUT score (>5.5) and poor OS. The prognostic impact of this score was more significant in patients with a low ISS or DS stage. In univariate analysis, the white blood cell count (P=0.021), monocyte count (P=0.022), eosinophil count (P=0.004), and lactic dehydrogenase (LDH) (P=0.042) predicted OS. Multivariate analysis identified the CONUT score (P=0.012), monocyte count (P=0.008), eosinophil count (P=0.031), and LDH (P=0.001) to be independent prognostic factors for overall survival (OS). CONCLUSION The CONUT score is a useful prognostic indicator in patients with MM, especially those with a low ISS or DS stage. The monocyte count, eosinophil count, and LDH are independent prognostic factors in these patients.
Collapse
Affiliation(s)
- Yan Li
- Department of Hematology, Hebei General HospitalShijiazhuang 050051, Hebei, The People’s Republic of China
| | - Ling-Zhijie Kong
- Department of Hematology, Hebei General HospitalShijiazhuang 050051, Hebei, The People’s Republic of China
- Department of Graduate School, Hebei North UniversityZhangjiakou 075000, Hebei, The People’s Republic of China
| |
Collapse
|
2
|
Chen G, Gao X, Jia X, Wang Y, Xu L, Yu D, Chang S, Deng H, Hu K, Wang G, Li B, Xu Z, Lu Y, Wang H, Zhang T, Song D, Yang G, Wu X, Zhu H, Zhu W, Shi J. Ribosomal protein S3 mediates drug resistance of proteasome inhibitor: potential therapeutic application in multiple myeloma. Haematologica 2024; 109:1206-1219. [PMID: 37767568 PMCID: PMC10985453 DOI: 10.3324/haematol.2023.282789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Multiple myeloma (MM) remains incurable due to drug resistance. Ribosomal protein S3 (RPS3) has been identified as a non-Rel subunit of NF-κB. However, the detailed biological roles of RPS3 remain unclear. Here, we report for the first time that RPS3 is necessary for MM survival and drug resistance. RPS3 was highly expressed in MM, and knockout of RPS3 in MM inhibited cell growth and induced cell apoptosis both in vitro and in vivo. Overexpression of RPS3 mediated the proteasome inhibitor resistance of MM and shortened the survival of MM tumor-bearing animals. Moreover, our present study found an interaction between RPS3 and the thyroid hormone receptor interactor 13 (TRIP13), an oncogene related to MM tumorigenesis and drug resistance. We demonstrated that the phosphorylation of RPS3 was mediated by TRIP13 via PKCδ, which played an important role in activating the canonical NF-κB signaling and inducing cell survival and drug resistance in MM. Notably, the inhibition of NF-κB signaling by the small-molecule inhibitor targeting TRIP13, DCZ0415, was capable of triggering synergistic cytotoxicity when combined with bortezomib in drug-resistant MM. This study identifies RPS3 as a novel biomarker and therapeutic target in MM.
Collapse
Affiliation(s)
- Gege Chen
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120
| | - Xuejie Gao
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120
| | - Xinyan Jia
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120
| | - Yingcong Wang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072
| | - Li Xu
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120
| | - Dandan Yu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072
| | - Shuaikang Chang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120
| | - Hui Deng
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120
| | - Ke Hu
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120
| | - Guanli Wang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120
| | - Bo Li
- CAS Key Laboratory of Receptor Research; State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research; State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203
| | - Yumeng Lu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072
| | - Huaping Wang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072
| | - Ting Zhang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072
| | - Dongliang Song
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072
| | - Guang Yang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072
| | - Xiaosong Wu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072
| | - Huabin Zhu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research; State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203.
| | - Jumei Shi
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120.
| |
Collapse
|
3
|
Morton LM, Curtis RE, Linet MS, Schonfeld SJ, Advani PG, Dalal NH, Sasse EC, Dores GM. Trends in risk for therapy-related myelodysplastic syndrome/acute myeloid leukemia after initial chemo/immunotherapy for common and rare lymphoid neoplasms, 2000-2018. EClinicalMedicine 2023; 61:102060. [PMID: 37457112 PMCID: PMC10344829 DOI: 10.1016/j.eclinm.2023.102060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Background Historically, survivors of common lymphoid neoplasms (LNs) had increased risks for therapy-related myelodysplastic syndrome/acute myeloid leukemia (tMDS/AML). Despite major treatment advances in the treatment of LNs over the last two decades, a comprehensive evaluation of tMDS/AML trends following both common and rare LNs treated in this contemporary period is lacking. Methods In US cancer registries during 2000-2018, we identified 1496 tMDS/AML cases among 186,503 adults who were treated with initial chemo/immunotherapy for first primary LN and survived ≥1 year. We quantified tMDS/AML standardized incidence ratios (SIRs), excess absolute risks (EARs, per 10,000 person-years), and cumulative incidence. Findings The highest tMDS/AML risks occurred after precursor leukemia/lymphoma (SIR = 39, EAR = 30), Burkitt leukemia/lymphoma (SIR = 20, EAR = 24), peripheral T-cell lymphoma (SIR = 12, EAR = 23), chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL; SIR = 9.0, EAR = 27), and mantle cell lymphoma (SIR = 8.5, EAR = 25). Elevated risks (SIRs = 4.2-6.9, EARs = 4.9-15) also were observed after all other LN subtypes except hairy cell leukemia and mycosis fungoides/Sézary syndrome. Among patients treated more recently, tMDS/AML risks were significantly higher after CLL/SLL (SIR2000-2005 = 4.8, SIR2012-2017 = 10, Ptrend = 0.0043), significantly lower after Hodgkin (SIR2000-2005 = 15, SIR2012-2017 = 6.3, Ptrend = 0.024) and marginal zone (SIR2000-2005 = 7.5, SIR2012-2017 = 2.3, Ptrend = 0.015) lymphomas, and non-significantly lower after mantle cell lymphoma (SIR2000-2005 = 10, SIR2012-2017 = 3.2, Ptrend = 0.054), lymphoplasmacytic lymphoma/Waldenström macroglobulinemia (SIR2000-2005 = 6.9, SIR2012-2017 = 1.0, Ptrend = 0.067), and plasma cell neoplasms (SIR2000-2005 = 5.4, SIR2012-2017 = 3.1, Ptrend = 0.051). EAR and cumulative incidence trends generally were similar to SIR trends. Median survival after tMDS/AML was 8.0 months (interquartile range, 3.0-22.0). Interpretation Although tMDS/AML risks are significantly elevated after initial chemo/immunotherapy for most LNs, patients treated more recently have lower tMDS/AML risks, except after CLL/SLL. Though rare, the poor prognosis following tMDS/AML emphasizes the importance of continued efforts to reduce treatment-associated toxicity. Funding This research was supported in part by the Intramural Research Program of the National Cancer Institute, National Institutes of Health. LMM, GMD, REC, and CBS verified the data, and all authors had access to the data and made the decision to submit for publication.
Collapse
Affiliation(s)
- Lindsay M. Morton
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Rochelle E. Curtis
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Martha S. Linet
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Sara J. Schonfeld
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Pragati G. Advani
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Nicole H. Dalal
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Department of Internal Medicine, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Elizabeth C. Sasse
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Graça M. Dores
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| |
Collapse
|
4
|
Matula Z, Uher F, Vályi-Nagy I, Mikala G. The Effect of Belantamab Mafodotin on Primary Myeloma–Stroma Co-Cultures: Asymmetrical Mitochondrial Transfer between Myeloma Cells and Autologous Bone Marrow Stromal Cells. Int J Mol Sci 2023; 24:ijms24065303. [PMID: 36982377 PMCID: PMC10048929 DOI: 10.3390/ijms24065303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/25/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Belantamab mafodotin (belamaf) is an afucosylated monoclonal antibody conjugated to the microtubule disrupter monomethyl auristatin-F (MMAF) that targets B cell maturation antigen (BCMA) on the surface of malignant plasma cells. Belamaf can eliminate myeloma cells (MMs) through several mechanisms. On the one hand, in addition to inhibiting BCMA-receptor signaling and cell survival, intracellularly released MMAF disrupts tubulin polymerization and causes cell cycle arrest. On the other hand, belamaf induces effector cell-mediated tumor cell lysis via antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis. In our in vitro co-culture model, the consequences of the first mentioned mechanism can be investigated: belamaf binds to BCMA, reduces the proliferation and survival of MMs, and then enters the lysosomes of malignant cells, where MMAF is released. The MMAF payload causes a cell cycle arrest at the DNA damage checkpoint between the G2 and M phases, resulting in caspase-3-dependent apoptosis. Here, we show that primary MMs isolated from different patients can vary widely in terms of BCMA expression level, and inadequate expression is associated with extremely high resistance to belamaf according to our cytotoxicity assay. We also reveal that primary MMs respond to increasing concentrations of belamaf by enhancing the incorporation of mitochondria from autologous bone marrow stromal cells (BM-MSCs), and as a consequence, MMs become more resistant to belamaf in this way, which is similar to other medications we have analyzed previously in this regard, such as proteasome inhibitor carfilzomib or the BCL-2 inhibitor venetoclax. The remarkable resistance against belamaf observed in the case of certain primary myeloma cell cultures is a cause for concern and points towards the use of combination therapies to overcome the risk of antigen escape.
Collapse
Affiliation(s)
- Zsolt Matula
- Laboratory for Experimental Cell Therapy, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary;
- Correspondence:
| | - Ferenc Uher
- Laboratory for Experimental Cell Therapy, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary;
| | - István Vályi-Nagy
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary; (I.V.-N.); (G.M.)
| | - Gábor Mikala
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary; (I.V.-N.); (G.M.)
| |
Collapse
|
5
|
Antibody Drug Conjugates in Multiple Myeloma. Cancer J 2022; 28:488-495. [DOI: 10.1097/ppo.0000000000000628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Stalker ME, Mark TM. Clinical Management of Triple-Class Refractory Multiple Myeloma: A Review of Current Strategies and Emerging Therapies. Curr Oncol 2022; 29:4464-4477. [PMID: 35877215 PMCID: PMC9315521 DOI: 10.3390/curroncol29070355] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Major progress has been made in the upfront treatment of multiple myeloma, but the disease ultimately relapses and leads to death in the vast majority of those afflicted. New treatment strategies and modalities are necessary to treat myeloma in relapse, particularly in cases of triple-refractory status defined by disease progression during or shortly after treatment with immunomodulatory agents, proteasome inhibitors, and anti-CD38 monoclonal antibody therapy. In this manuscript, we review recent promising developments in the treatment of triple-class refractory myeloma including bispecific antibodies and T cell engagers, chimeric antigen receptor cellular therapies, as well as chemotherapeutics with novel mechanisms of action.
Collapse
Affiliation(s)
| | - Tomer M. Mark
- Department of Medicine, Division of Hematology, University of Colorado, Aurora, CO 80045, USA
- Correspondence:
| |
Collapse
|
7
|
Swamydas M, Murphy EV, Ignatz-Hoover JJ, Malek E, Driscoll JJ. Deciphering mechanisms of immune escape to inform immunotherapeutic strategies in multiple myeloma. J Hematol Oncol 2022; 15:17. [PMID: 35172851 PMCID: PMC8848665 DOI: 10.1186/s13045-022-01234-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/03/2022] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma is an incurable cancer characterized by the uncontrolled growth of malignant plasma cells nurtured within a permissive bone marrow microenvironment. While patients mount numerous adaptive immune responses directed against their disease, emerging data demonstrate that tumor intrinsic and extrinsic mechanisms allow myeloma cells to subvert host immunosurveillance and resist current therapeutic strategies. Myeloma downregulates antigens recognized by cellular immunity and modulates the bone marrow microenvironment to promote uncontrolled tumor proliferation, apoptotic resistance, and further hamper anti-tumor immunity. Additional resistance often develops after an initial clinical response to small molecules, immune-targeting antibodies, immune checkpoint blockade or cellular immunotherapy. Profound quantitative and qualitative dysfunction of numerous immune effector cell types that confer anti-myeloma immunity further supports myelomagenesis, disease progression and the emergence of drug resistance. Identification of tumor intrinsic and extrinsic resistance mechanisms may direct the design of rationally-designed drug combinations that prevent or overcome drug resistance to improve patient survival. Here, we summarize various mechanisms of immune escape as a means to inform novel strategies that may restore and improve host anti-myeloma immunity.
Collapse
Affiliation(s)
| | - Elena V Murphy
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| | - James J Ignatz-Hoover
- Seidman Cancer Center, University Hospitals, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Hematopoietic and Immune Cancer Biology Program, Cleveland, OH, USA
| | - Ehsan Malek
- Seidman Cancer Center, University Hospitals, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Hematopoietic and Immune Cancer Biology Program, Cleveland, OH, USA
| | - James J Driscoll
- Seidman Cancer Center, University Hospitals, Cleveland, OH, USA. .,Case Comprehensive Cancer Center, Hematopoietic and Immune Cancer Biology Program, Cleveland, OH, USA.
| |
Collapse
|
8
|
Allegra A, Tonacci A, Musolino C, Pioggia G, Gangemi S. Secondary Immunodeficiency in Hematological Malignancies: Focus on Multiple Myeloma and Chronic Lymphocytic Leukemia. Front Immunol 2021; 12:738915. [PMID: 34759921 PMCID: PMC8573331 DOI: 10.3389/fimmu.2021.738915] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022] Open
Abstract
Secondary immunodeficiency is reported in most patients with hematological malignancies such as chronic lymphocytic leukemia and multiple myeloma. The aim of our review was to evaluate the existing literature data on patients with hematological malignancies, with regard to the effect of immunodeficiency on the outcome, the clinical and therapeutic approach, and on the onset of noninfectious complications, including thrombosis, pleural effusion, and orofacial complications. Immunodeficiency in these patients has an intense impact on their risk of infection, in turn increasing morbidity and mortality even years after treatment completion. However, these patients with increased risk of severe infectious diseases could be treated with adequate vaccination coverage, but the vaccines' administration can be associated with a decreased immune response and an augmented risk of adverse reactions. Probably, immunogenicity of the inactivated is analogous to that of healthy subjects at the moment of vaccination, but it undertakes a gradual weakening over time. However, the dispensation of live attenuated viral vaccines is controversial because of the risk of the activation of vaccine viruses. A particular immunization schedule should be employed according to the clinical and immunological condition of each of these patients to guarantee a constant immune response without any risks to the patients' health.
Collapse
MESH Headings
- Animals
- Humans
- Immunocompromised Host
- Immunogenicity, Vaccine
- Immunologic Deficiency Syndromes/epidemiology
- Immunologic Deficiency Syndromes/immunology
- Immunologic Deficiency Syndromes/therapy
- Incidence
- Leukemia, Lymphocytic, Chronic, B-Cell/epidemiology
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Multiple Myeloma/epidemiology
- Multiple Myeloma/immunology
- Multiple Myeloma/therapy
- Opportunistic Infections/epidemiology
- Opportunistic Infections/immunology
- Opportunistic Infections/prevention & control
- Risk Factors
- Vaccination
- Vaccine Efficacy
- Vaccines/administration & dosage
- Vaccines/adverse effects
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), Pisa, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Messina, Italy
| | - Sebastiano Gangemi
- School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
9
|
BCMA in Multiple Myeloma-A Promising Key to Therapy. J Clin Med 2021; 10:jcm10184088. [PMID: 34575199 PMCID: PMC8472544 DOI: 10.3390/jcm10184088] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
Despite the discoveries of numerous agents including next generation proteasome inhibitors, immunomodulatory drugs, and monoclonal antibodies, multiple myeloma (MM) remains an incurable disease. The field of myeloma treatment in refractory or relapsed patients after standard therapy entered a new era due to the B-cell maturation antigen (BMCA) targeted approach. BCMA is a member of the tumor necrosis factor receptor family with high expression in mature B-lymphocytes and plasma cells. Given the understanding of BCMA mechanism of action in MM, BCMA plays a promising role as a therapeutic target. Several clinical trials are underway to evolve the current BCMA targeted treatment concept such as antibody-drug conjugates (ADCs), bispecific T cell engagers (BITEs) and chimeric antigen receptor (CAR) T cell therapy. Current results of representative BCMA trials may close the gap of the unmet clinical need to further improve the outcome of heavily pretreated MM patients with the potency to change the paradigm in newly diagnosed and refractory MM. This comprehensive review will give an update on various BMCA targeted treatment modalities (ADCs, BITEs, CAR T cell therapy) and its existing results on efficacy and safety from preclinical and clinical trials.
Collapse
|