1
|
Ma C, Li Y, Zhu H, Li Z, Liu Y. Clinical applications of circulating tumor cell detection: challenges and strategies. Clin Chem Lab Med 2025; 63:1060-1068. [PMID: 39610299 DOI: 10.1515/cclm-2024-0959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/15/2024] [Indexed: 11/30/2024]
Abstract
Circulating tumor cells (CTCs) are pivotal in the distant metastasis of tumors, serving as one of the primary materials for liquid biopsy. They hold significant clinical importance in assessing prognosis, predicting efficacy, evaluating therapeutic outcomes, and studying recurrence, metastasis, and resistance mechanisms in cancer patients. Nevertheless, the rareness and heterogeneity of CTC and the complexity of metastasis make the clinical application of CTC detection confront many challenges, which may need to be settled by some practical strategies. This article will review the content mentioned above.
Collapse
Affiliation(s)
- Chunhui Ma
- Faculty of Medical Imaging, Naval Medical University, Shanghai, China
| | - Yang Li
- Faculty of Medical Imaging, Naval Medical University, Shanghai, China
| | - Hai Zhu
- Faculty of Medical Imaging, Naval Medical University, Shanghai, China
| | - Zhiyong Li
- Faculty of Medical Imaging, Naval Medical University, Shanghai, China
| | - Yi Liu
- 26460 The Fifth Medical Center of Chinese PLA General Hospital , Beijing, China
| |
Collapse
|
2
|
Kumar NM, Navaneeth N, Shettar A, Chelimeswamy A. Elements of liquid biopsies: isolation, analysis, and clinical application in cancer diagnosis to prognosis. Expert Rev Mol Diagn 2024:1-12. [PMID: 39695357 DOI: 10.1080/14737159.2024.2445111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 12/20/2024]
Abstract
INTRODUCTION The liquid biopsy is a breakthrough in the field of medical diagnostics. It serves as a sentinel that can quietly detect even the subtlest aberrations that indicate the presence of disease. They make it possible to uncover relevant genetic factors of tumors with minimal to no risk to cancer patients. Liquid biopsies allow detailed diagnosis, dynamic treatment monitoring, and accurate prognosis. They are also invaluable in diagnosing other diseases such as infectious diseases and aberrant gene mutations. AREAS COVERED The present review undertakes an in-depth analysis of the existing status of liquid biopsy diagnostic tools, focusing on their principal components. Furthermore, the review highlights pertinent and recent research in this field to provide a comprehensive understanding of the current state of this technology and its prospects. EXPERT OPINION Despite new and upcoming research in liquid biopsies, multiple areas need to be further explored before the viable transition into the clinical arena. With the advancements in tools such as artificial intelligence and machine learning and the integration of these technologies with liquid biopsies, these challenges are being addressed and will eventually lead to the development of a highly evolved liquid biopsy diagnostic tools.
Collapse
Affiliation(s)
| | - Niyati Navaneeth
- Department of Biotechnology, M.S Ramaiah Institute of Technology, Bengaluru, India
| | - Abhijith Shettar
- Department of Biotechnology, M.S Ramaiah Institute of Technology, Bengaluru, India
| | - Anupama Chelimeswamy
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, India
| |
Collapse
|
3
|
Bahmaie N, Ozensoy Guler O, Simsek E. A revolutionary era in advancing precision immuno-oncology; role of circulating tumor cells. THE JOURNAL OF LIQUID BIOPSY 2024; 6:100169. [PMID: 40027303 PMCID: PMC11863822 DOI: 10.1016/j.jlb.2024.100169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 03/05/2025]
Abstract
Despite a substantial progress in the development of strategies against cancer, cancer still remains a major global health issue due to a high recurrence rate, and severe side effects, leading basic medical scientists and clinical specialists toward more efficient diagnostics, prognostics, and therapeutics. Therefore, there is an imperative need for a comprehensive understanding on the cellular immunopathophysiology involved in the tumor microenvironment. In addition, results from a wide range of studies depicted that an aberration in the cellular mechanisms and immunopathophysiological interactions like Circulating Tumor Cells (CTCs) plays an indispensable role in the metastasis and tumor progression, revolutionizing cancer management by offering non-invasive detection methods and a real-time monitoring of tumor dynamics. Moreover, CTCs can clarify the tumor heterogeneity and the evolution of resistance mechanisms, aiding in the early detection of tumors and informing personalized treatment strategies. An increase in CTCs count can be associated with a worsened cancer prognosis, providing promising biomarkers for tumor phenotyping, tumor spreading or relapse, and monitoring the treatment response in patients with cancer. Hence, this systematic review aims to highlight the diagnostic, prognostic, and therapeutic potentials of CTCs, necessitating further investigations and an interdisciplinary collaboration among basic medical scientists and oncologists to address the current gaps in the strategies of cancer management, precisely improving patient-care and optimized clinical outcomes.
Collapse
Affiliation(s)
- Nazila Bahmaie
- Department of Medical Biology, Faculty of Medicine, Ankara Yildirim Beyazit University (AYBU), Turkey
| | - Ozen Ozensoy Guler
- Department of Medical Biology, Faculty of Medicine, Ankara Yildirim Beyazit University (AYBU), Turkey
| | - Ender Simsek
- Department of Medical Biology, Faculty of Medicine, Ankara Yildirim Beyazit University (AYBU), Turkey
| |
Collapse
|
4
|
Fabisiewicz A, Szostakowska-Rodzos M, Grzybowska EA. Improving the Prognostic and Predictive Value of Circulating Tumor Cell Enumeration: Is Longitudinal Monitoring the Answer? Int J Mol Sci 2024; 25:10612. [PMID: 39408942 PMCID: PMC11476589 DOI: 10.3390/ijms251910612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Circulating tumor cell (CTC) numbers in the blood of cancer patients can indicate the progression and invasiveness of tumors, and their prognostic and predictive value has been repeatedly demonstrated. However, the standard baseline CTC count at the beginning of treatment, while informative, is not completely reliable and may not adequately reflect the state of the disease. A growing number of studies indicate that the long-term monitoring of CTC numbers in the same patient provides more comprehensive prognostic data and should be incorporated into clinical practice, as a factor that contributes to therapeutic decisions. This review describes the current status of CTC enumeration as a prognostic and predictive factor, highlights the shortcomings of current solutions, and advocates for longitudinal CTC analysis as a more effective method of the evaluation of developing disease, treatment efficacy, and the long term-monitoring of the minimal residual disease. As evidenced by the described reports, the longitudinal monitoring of CTCs should provide a better and more sensitive prediction of the course of the disease, and its incorporation in clinical practice should be beneficial.
Collapse
Affiliation(s)
| | | | - Ewa A. Grzybowska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland; (A.F.); (M.S.-R.)
| |
Collapse
|
5
|
Tevlek A. Diagnostic use of circulating cells and sub-cellular bio-particles. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 192:19-36. [PMID: 39159788 DOI: 10.1016/j.pbiomolbio.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 08/21/2024]
Abstract
In the bloodstream or other physiological fluids, "circulating cells and sub-cellular bio-particles" include many microscopic biological elements such as circulating tumor cells (CTCs), cell-free DNA (cfDNA), exosomes, microRNAs, platelets, immune cells, and proteins are the most well-known and investigated. These structures are crucial biomarkers in healthcare and medical research for the early detection of cancer and other disorders, enabling treatment to commence before the onset of clinical symptoms and enhancing the efficacy of treatments. As the size of these biomarkers to be detected decreases and their numbers in body fluids diminishes, the detection materials, ranging from visual inspection to advanced microscopy techniques, begin to become smaller, more sensitive, faster, and more effective, thanks to developing nanotechnology. This review first defines the circulating cells and subcellular bio-particles with their biological, physical, and mechanical properties and second focuses on their diagnostic importance, including their most recent applications as biomarkers, the biosensors that are utilized to detect them, the present obstacles that must be surmounted, and prospective developments in the domain. As technology advances and biomolecular pathways are deepens, diagnostic tests will become more sensitive, specific, and thorough. Finally, integrating recent advances in the diagnostic use of circulating cells and bioparticles into clinical practice is promising for precision medicine and patient outcomes.
Collapse
Affiliation(s)
- Atakan Tevlek
- Department of Medical Biology, Faculty of Medicine, Atilim University, Ankara, 06836, Turkey.
| |
Collapse
|
6
|
Shanehband N, Naghib SM. Recent advances in nano/microfluidics-based cell isolation techniques for cancer diagnosis and treatments. Biochimie 2024; 220:122-143. [PMID: 38176605 DOI: 10.1016/j.biochi.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/26/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024]
Abstract
Miniaturization has improved significantly in the recent decade, which has enabled the development of numerous microfluidic systems. Microfluidic technologies have shown great potential for separating desired cells from heterogeneous samples, as they offer benefits such as low sample consumption, easy operation, and high separation accuracy. Microfluidic cell separation approaches can be classified into physical (label-free) and biological (labeled) methods based on their working principles. Each method has remarkable and feasible benefits for the purposes of cancer detection and therapy, as well as the challenges that we have discussed in this article. In this review, we present the recent advances in microfluidic cell sorting techniques that incorporate both physical and biological aspects, with an emphasis on the methods by which the cells are separated. We first introduce and discuss the biological cell sorting techniques, followed by the physical cell sorting techniques. Additionally, we explore the role of microfluidics in drug screening, drug delivery, and lab-on-chip (LOC) therapy. In addition, we discuss the challenges and future prospects of integrated microfluidics for cell sorting.
Collapse
Affiliation(s)
- Nahid Shanehband
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran.
| |
Collapse
|
7
|
Kotsifaki A, Maroulaki S, Armakolas A. Exploring the Immunological Profile in Breast Cancer: Recent Advances in Diagnosis and Prognosis through Circulating Tumor Cells. Int J Mol Sci 2024; 25:4832. [PMID: 38732051 PMCID: PMC11084220 DOI: 10.3390/ijms25094832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
This review offers a comprehensive exploration of the intricate immunological landscape of breast cancer (BC), focusing on recent advances in diagnosis and prognosis through the analysis of circulating tumor cells (CTCs). Positioned within the broader context of BC research, it underscores the pivotal role of the immune system in shaping the disease's progression. The primary objective of this investigation is to synthesize current knowledge on the immunological aspects of BC, with a particular emphasis on the diagnostic and prognostic potential offered by CTCs. This review adopts a thorough examination of the relevant literature, incorporating recent breakthroughs in the field. The methodology section succinctly outlines the approach, with a specific focus on CTC analysis and its implications for BC diagnosis and prognosis. Through this review, insights into the dynamic interplay between the immune system and BC are highlighted, with a specific emphasis on the role of CTCs in advancing diagnostic methodologies and refining prognostic assessments. Furthermore, this review presents objective and substantiated results, contributing to a deeper understanding of the immunological complexity in BC. In conclusion, this investigation underscores the significance of exploring the immunological profile of BC patients, providing valuable insights into novel advances in diagnosis and prognosis through the utilization of CTCs. The objective presentation of findings emphasizes the crucial role of the immune system in BC dynamics, thereby opening avenues for enhanced clinical management strategies.
Collapse
Affiliation(s)
| | | | - Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.K.); (S.M.)
| |
Collapse
|
8
|
Hao YJ, Chang LW, Yang CY, Lo LC, Lin CP, Jian YW, Jiang JK, Tseng FG. The rare circulating tumor microemboli as a biomarker contributes to predicting early colorectal cancer recurrences after medical treatment. Transl Res 2024; 263:1-14. [PMID: 37558203 DOI: 10.1016/j.trsl.2023.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/03/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Early prognosis of cancer recurrence remains difficult partially due to insufficient and ineffective screening biomarkers or regimes. This study evaluated the rare circulating tumor microemboli (CTM) from liquid biopsy individually and together with circulating tumor cells (CTCs) and serum CEA/CA19-9 in a panel, on early prediction of colorectal cancer (CRC) recurrence. Stained CTCs/CTM were detected by a microfluidic chip-based automatic rare-cell imaging platform. ROC, AUC, Kaplan-Meier survival, and Cox proportional hazard models regarding 4 selected biomarkers were analyzed. The relative risk, odds ratio, predictive accuracy, and positive/negative predictive value of biomarkers individually and in combination, to predict CRC recurrence were assessed and preliminarily validated. The EpCAM+Hochest+CD45- CTCs/CTM could be found in all cancer stages, where more recurrences were observed in late-stage cases. Significant correlations between CTCs/CTM with metastatic stages and clinical treatment were illustrated. CA19-9 and CTM could be seen as independent risk factors in patient survivals, while stratified patients by grouped biomarkers on the Kaplan-Meier analyses presented more significant differences in predicting CRC recurrences. By monitoring the panel of selected biomarkers, disease progressions of 4 CRC patients during follow-up visits after first treatments within 3 years were predicted successfully. This study unveiled the value of rare CTM on clinical studies and a panel of selected biomarkers on predicting CRC recurrences in patients at the early time after medical treatment, in which the CTM and serum CA19-9 could be applied in clinical surveillance and CRC management to improve the accuracy.
Collapse
Affiliation(s)
- Yun-Jie Hao
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Lu-Wey Chang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Yung Yang
- Department of Teaching and Research, Taipei City Hospital, Taipei, Taiwan; Commission for General Education, National United University, Miaoli, Taiwan; General Education Center, University of Taipei, Taipei, Taiwan
| | - Liang-Chuan Lo
- National Genomics Center for Clinical and Biotechnological Applications, Cancer and Immunology Research Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Chien-Ping Lin
- Department of Surgery, Division of Colorectal Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yuan-Wei Jian
- Department of Surgery, Division of Colorectal Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jeng-Kai Jiang
- Department of Surgery, Division of Colorectal Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan; Department of Chemistry, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing-Hua University, Hsinchu, Taiwan; Research Center for Applied Sciences, Taipei, Taiwan.
| |
Collapse
|
9
|
Tong L, Wan Y. A Hybrid Intelligence Approach for Circulating Tumor Cell Enumeration in Digital Pathology by Using CNN and Weak Annotations. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2023; 11:142992-143003. [PMID: 38957613 PMCID: PMC11218908 DOI: 10.1109/access.2023.3343701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Counting the number of Circulating Tumor Cells (CTCs) for cancer screenings is currently done by cytopathologists with a heavy time and energy cost. AI, especially deep learning, has shown great potential in medical imaging domains. The aim of this paper is to develop a novel hybrid intelligence approach to automatically enumerate CTCs by combining cytopathologist expertise with the efficiency of deep learning convolutional neural networks (CNNs). This hybrid intelligence approach includes three major components: CNN based CTC detection/localization using weak annotations, CNN based CTC segmentation, and a classifier to ultimately determine CTCs. A support vector machine (SVM) was investigated for classification efficiency. The B-scale transform was also introduced to find the maximum sphericality of a given region. The SVM classifier was implemented to use a three-element vector as its input, including the B-scale (size), texture, and area values from the detection and segmentation results. We collected 466 fluoroscopic images for CTC detection/localization, 473 images for CTC segmentation and another 198 images with 323 CTCs as an independent data set for CTC enumeration. Precision and recall for CTC detection are 0.98 and 0.92, which is comparable with the state-of-the-art results that needed much larger and stricter training data sets. The counting error on an independent testing set was 2-3% and 9% (with/without B-scale) and performs much better than previous thresholding approaches with 30% of counting error rates. Recent publications prove facilitation of other types of research in object localization and segmentation are necessary.
Collapse
Affiliation(s)
- Leihui Tong
- Conestoga High School, Berwyn, PA 19087, USA
| | - Yuan Wan
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY 13902, USA
| |
Collapse
|
10
|
Alkhaiyat AM, Badran M. Numerical Simulation of a Lab-on-Chip for Dielectrophoretic Separation of Circulating Tumor Cells. MICROMACHINES 2023; 14:1769. [PMID: 37763932 PMCID: PMC10534381 DOI: 10.3390/mi14091769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023]
Abstract
Circulating tumor cells (CTCs) are cancer cells detached from tumors that enter the bloodstream with the rest of the blood cells before settling on remote organs and growing. CTCs play a major role as a target for cancer diagnosis. This study aims to propose and simulate a lab-on-chip (LOC) design that separates CTCs from white blood cells (WBCs) and blood platelets (PLTs) using low-voltage dielectrophoretic separation with high efficiency. The proposed design include two stages a passive and an active one cascaded in a compact package. Numerical simulations are performed on the COMSOL Multiphysics® software package to optimize the geometric parameters of the LOC, such as the width and length of the microchannel and the number of electrodes and their arrangements. Moreover, the effects of adjusting the applied voltage values as well as buffer inlet velocity are investigated. The proposed LOC design uses four electrodes at ±2 V to achieve 100% separation efficiency for the three cell types in simulation. The 919 µm × 440 µm LOC has a channel width of 40 µm. The inlet velocities for the blood-carrying cells and buffer are 134 and 850 µm/s, respectively. The proposed LOC can be used for the early detection of CTCs, which can be beneficial in cancer diagnosis and early treatment. In addition, it can be used in cancer prognosis, treatment monitoring and personalizing medicine.
Collapse
Affiliation(s)
| | - Mohamed Badran
- Department of Mechanical Engineering, The American University in Cairo, New Cairo 11835, Egypt;
| |
Collapse
|
11
|
Shen C, Rawal S, Brown R, Zhou H, Agarwal A, Watson MA, Cote RJ, Yang C. Automatic detection of circulating tumor cells and cancer associated fibroblasts using deep learning. Sci Rep 2023; 13:5708. [PMID: 37029224 PMCID: PMC10082202 DOI: 10.1038/s41598-023-32955-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/05/2023] [Indexed: 04/09/2023] Open
Abstract
Circulating tumor cells (CTCs) and cancer-associated fibroblasts (CAFs) from whole blood are emerging as important biomarkers that potentially aid in cancer diagnosis and prognosis. The microfilter technology provides an efficient capture platform for them but is confounded by two challenges. First, uneven microfilter surfaces makes it hard for commercial scanners to obtain images with all cells in-focus. Second, current analysis is labor-intensive with long turnaround time and user-to-user variability. Here we addressed the first challenge through developing a customized imaging system and data pre-processing algorithms. Utilizing cultured cancer and CAF cells captured by microfilters, we showed that images from our custom system are 99.3% in-focus compared to 89.9% from a top-of-the-line commercial scanner. Then we developed a deep-learning-based method to automatically identify tumor cells serving to mimic CTC (mCTC) and CAFs. Our deep learning method achieved precision and recall of 94% (± 0.2%) and 96% (± 0.2%) for mCTC detection, and 93% (± 1.7%) and 84% (± 3.1%) for CAF detection, significantly better than a conventional computer vision method, whose numbers are 92% (± 0.2%) and 78% (± 0.3%) for mCTC and 58% (± 3.9%) and 56% (± 3.5%) for CAF. Our custom imaging system combined with deep learning cell identification method represents an important advance on CTC and CAF analysis.
Collapse
Affiliation(s)
- Cheng Shen
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Siddarth Rawal
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rebecca Brown
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Haowen Zhou
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Ashutosh Agarwal
- Department of Biomedical Engineering, DJTMF Biomedical Nanotechnology Institute, University of Miami, Coral Gables, FL, 33146, USA
| | - Mark A Watson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Richard J Cote
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Changhuei Yang
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
12
|
Shi J, Xu J, Yu Y, Wu C, Chen J, Li S, Ouyang Q, Yang W, Luo C. A Parallelable 3D Microfluidic Chip for Circulating‐Tumor‐Cell Capture at Ultra‐High Throughput and Wide Flow Rate Range. ADVANCED NANOBIOMED RESEARCH 2023. [DOI: 10.1002/anbr.202200140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Affiliation(s)
- Jialin Shi
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics School of Physics Peking University 5 Summer Palace Road Beijing 100871 China
- Center for Quantitative Biology Academy for Advanced Interdisciplinary Studies Peking University 5 Summer Palace Road Beijing 100871 China
| | - Jian Xu
- Wenzhou Institute University of Chinese Academy of Sciences 1 Jinlian Road Wenzhou Zhejiang 325001 China
| | - Yaojun Yu
- Department of Surgery The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University 1111 Wenzhou Road Wenzhou Zhejiang 325027 China
| | - Chengyuan Wu
- Department of Surgery The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University 1111 Wenzhou Road Wenzhou Zhejiang 325027 China
| | - Jiangnan Chen
- Department of Surgery The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University 1111 Wenzhou Road Wenzhou Zhejiang 325027 China
| | - Shuangshuang Li
- Wenzhou Institute University of Chinese Academy of Sciences 1 Jinlian Road Wenzhou Zhejiang 325001 China
| | - Qi Ouyang
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics School of Physics Peking University 5 Summer Palace Road Beijing 100871 China
- Center for Quantitative Biology Academy for Advanced Interdisciplinary Studies Peking University 5 Summer Palace Road Beijing 100871 China
- Wenzhou Institute University of Chinese Academy of Sciences 1 Jinlian Road Wenzhou Zhejiang 325001 China
- Peking-Tsinghua Center for Life Sciences Peking University 5 Summer Palace Road Beijing 100817 China
| | - Wei Yang
- Wenzhou Institute University of Chinese Academy of Sciences 1 Jinlian Road Wenzhou Zhejiang 325001 China
| | - Chunxiong Luo
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics School of Physics Peking University 5 Summer Palace Road Beijing 100871 China
- Center for Quantitative Biology Academy for Advanced Interdisciplinary Studies Peking University 5 Summer Palace Road Beijing 100871 China
- Wenzhou Institute University of Chinese Academy of Sciences 1 Jinlian Road Wenzhou Zhejiang 325001 China
| |
Collapse
|
13
|
Vidlarova M, Rehulkova A, Stejskal P, Prokopova A, Slavik H, Hajduch M, Srovnal J. Recent Advances in Methods for Circulating Tumor Cell Detection. Int J Mol Sci 2023; 24:3902. [PMID: 36835311 PMCID: PMC9959336 DOI: 10.3390/ijms24043902] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Circulating tumor cells (CTCs) are released from primary tumors and transported through the body via blood or lymphatic vessels before settling to form micrometastases under suitable conditions. Accordingly, several studies have identified CTCs as a negative prognostic factor for survival in many types of cancer. CTCs also reflect the current heterogeneity and genetic and biological state of tumors; so, their study can provide valuable insights into tumor progression, cell senescence, and cancer dormancy. Diverse methods with differing specificity, utility, costs, and sensitivity have been developed for isolating and characterizing CTCs. Additionally, novel techniques with the potential to overcome the limitations of existing ones are being developed. This primary literature review describes the current and emerging methods for enriching, detecting, isolating, and characterizing CTCs.
Collapse
Affiliation(s)
- Monika Vidlarova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital in Olomouc, 779 00 Olomouc, Czech Republic
| | - Alona Rehulkova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital in Olomouc, 779 00 Olomouc, Czech Republic
| | - Pavel Stejskal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital in Olomouc, 779 00 Olomouc, Czech Republic
| | - Andrea Prokopova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
| | - Hanus Slavik
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, 67000 Strasbourg, France
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital in Olomouc, 779 00 Olomouc, Czech Republic
| | - Josef Srovnal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital in Olomouc, 779 00 Olomouc, Czech Republic
| |
Collapse
|
14
|
Wang X, Gao T, Zhu J, Long S, Zhao S, Yuan L, Wang Z. Fabrication of Channeled and Three-Dimensional Electrodes for the Integrated Capture and Detection of Invasive Circulating Tumor Cells during Hematogenous Metastasis. Anal Chem 2023; 95:2496-2503. [PMID: 36639744 DOI: 10.1021/acs.analchem.2c04809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Hematogenous metastasis is the main route of cancer spreading, causing majority death of cancer patients. During this process, platelets in the blood are found increasingly essential to promote hematogenous metastasis by forming platelet-interacted circulating tumor cells (CTCs). Hence, we aim to fabricate an integrated method for the availability of capture and detection of such invasive CTCs. Specifically, a new form of channeled and conductive three-dimensional (3D) electrode is constructed by modifying a conductive layer and capture antibody on the templated and channeled poly(dimethylsiloxane) scaffold. The modified antibody enables the capture of the platelet-interacted CTC hybrid, while the conductive layer significantly facilitates electron transfer from electro-active signal molecules that are targeting platelets. Therefore, sensitive electrochemical detection of platelet-interacted CTCs has been realized. Efficient capture and sensitive detection have been demonstrated by this work. Additionally, dynamic analysis of patients' CTCs has also been conducted to provide accurate information about disease assessment and efficacy evaluation. The cut-off line was set as 5.15 nA based on the sample signals from healthy volunteers. Thus, stage III cancer patients with high risk of hematogenous metastasis have been identified. Together, this work shows the development of a new strategy for simultaneous capture and detection of the invasive CTC subtype form patient blood, which favors precise monitoring of hematogenous metastasis.
Collapse
Affiliation(s)
- Xiaoying Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, P. R. China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211100, P. R. China.,Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Tao Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jin Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Shipeng Long
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Songyan Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Li Yuan
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211100, P. R. China
| | - Zhaoxia Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, P. R. China
| |
Collapse
|
15
|
Xiao J, Pohlmann PR, Schlegel R, Agarwal S. State of the Art in the Propagation of Circulating Tumor Cells. CURRENT CANCER RESEARCH 2023:247-274. [DOI: 10.1007/978-3-031-22903-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Xiong J, Dong C, Zhang J, Fang X, Ni J, Gan H, Li J, Song C. DNA walker-powered ratiometric SERS cytosensor of circulating tumor cells with single-cell sensitivity. Biosens Bioelectron 2022; 213:114442. [DOI: 10.1016/j.bios.2022.114442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/15/2022] [Accepted: 05/29/2022] [Indexed: 12/30/2022]
|
17
|
Geus PF, Hehnen F, Krakowski S, Lücke K, Hoon DSB, Frost N, Kertzscher U, Wendt G. Verification of a Novel Minimally Invasive Device for the Isolation of Rare Circulating Tumor Cells (CTC) in Cancer Patients’ Blood. Cancers (Basel) 2022; 14:cancers14194753. [PMID: 36230675 PMCID: PMC9562020 DOI: 10.3390/cancers14194753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Detection of circulating tumor cells (CTCs) in blood can be used to diagnose cancer or monitor treatment response for various cancers. However, these cells are rare in the bloodstream in the early stages of cancers, and it, therefore, remains a technical challenge to isolate them. To overcome the limitations of a blood draw, we introduce a minimally invasive device, called the BMProbe™, for the isolation of CTCs directly from the bloodstream. Thereby a large volume of blood is screened. This study first shows how the geometry of the in vivo BMProbe™ causes improved cell deposition conditions. We then performed a verification of the in vivo device using blood samples from lung cancer patients. The results indicate the functionality of the BMProbe™ to isolate CTCs in blood samples. The future step is to use the BMProbe™ in various types of cancer patients to detect CTCs. Abstract Circulating tumor cells (CTCs) exist in low quantities in the bloodstream in the early stages of cancers. It, therefore, remains a technical challenge to isolate them in large enough quantities for a precise diagnosis and downstream analysis. We introduce the BMProbe™, a minimally invasive device that isolates CTCs during a 30-minute incubation in the median cubital vein. The optimized geometry of the device creates flow conditions for improved cell deposition. The CTCs are isolated using antibodies that are bound to the surface of the BMProbe™. In this study, flow experiments using cell culture cells were conducted. They indicate a 31 times greater cell binding efficiency of the BMProbe™ compared to a flat geometry. Further, the functionality of isolating CTCs from patient blood was verified in a small ex vivo study that compared the cell count from seven non-small-cell lung carcinoma (NSCLC) patients compared to nine healthy controls with 10 mL blood samples. The median cell count was 1 in NSCLC patients and 0 in healthy controls. In conclusion, the BMProbe™ is a promising method to isolate CTCs in large quantities directly from the venous bloodstream without removing blood from a patient. The future step is to verify the functionality in vivo.
Collapse
Affiliation(s)
- Paul Friedrich Geus
- Biofluid Mechanics Laboratory, Institute of Computer-assisted Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- Correspondence:
| | - Felix Hehnen
- Biofluid Mechanics Laboratory, Institute of Computer-assisted Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Sophia Krakowski
- Biofluid Mechanics Laboratory, Institute of Computer-assisted Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Klaus Lücke
- Invicol GmbH, Müllerstraße 178, 13353 Berlin, Germany
- HaimaChek Inc., 2200 Santa Monica Blvd, Santa Monica, CA 90404, USA
| | - Dave S. B. Hoon
- HaimaChek Inc., 2200 Santa Monica Blvd, Santa Monica, CA 90404, USA
- Department of Translational Molecular Medicine, Saint John’s Cancer Institute (SJCI), Providence Saint John’s Health Center (SJHC), Santa Monica, CA 90404, USA
| | - Nikolaj Frost
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Ulrich Kertzscher
- Biofluid Mechanics Laboratory, Institute of Computer-assisted Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Gabi Wendt
- Invicol GmbH, Müllerstraße 178, 13353 Berlin, Germany
| |
Collapse
|
18
|
Wu M, Huang Y, Zhou Y, Zhao H, Lan Y, Yu Z, Jia C, Cong H, Zhao J. The Discovery of Novel Circulating Cancer-Related Cells in Circulation Poses New Challenges to Microfluidic Devices for Enrichment and Detection. SMALL METHODS 2022; 6:e2200226. [PMID: 35595707 DOI: 10.1002/smtd.202200226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Circulating tumor cells (CTCs) enumeration has been widely used as a surrogate predictive marker for early diagnoses, the evaluation of chemotherapy efficacy, and cancer prognosis. Microfluidic technologies for CTCs enrichment and detection have been developed and commercialized as automation platforms. Currently, in addition to CTCs, some new types of circulating cancer-related cells (e.g., CCSCs, CTECs, CAMLs, and heterotypic CTC clusters) in circulation are also reported to be correlated to cancer diagnosis, metastasis, or prognosis. And they widely differ from the conventional CTCs in positive markers, cellular morphology, or size, which presents a new technological challenge to microfluidic devices that use affinity-based capture methods or size-based filtration methods for CTCs detection. This review focuses on the biological and physical properties as well as clinical significance of the novel circulating cancer-related cells, and discusses the challenges of their discovery to microfluidic chip for enrichment. Finally, the current challenges of CTCs detection in clinical application and future opportunities are also discussed.
Collapse
Affiliation(s)
- Man Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhang Huang
- Shanghai Normal University, Shanghai, 200030, China
| | - Yang Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuwei Lan
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhibin Yu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunping Jia
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Cong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Han J, Lu C, Shen M, Sun X, Mo X, Yang G. Fast, Reusable, Cell Uniformly Distributed Membrane Filtration Device for Separation of Circulating Tumor Cells. ACS OMEGA 2022; 7:20761-20767. [PMID: 35755342 PMCID: PMC9219081 DOI: 10.1021/acsomega.2c01153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Isolation of circulating tumor cells (CTCs) is of great significance for the diagnosis, prognosis, and treatment of metastatic cancer. Among CTC capture methods independent of antibodies, membrane filtration-based methods have the advantages of simplicity, rapidity, and high throughput but usually have problems such as clogging, high pressure drop, and impaired cell viability. In this study, we designed and tested a reusable device that used horizontal rotor and fluid-assisted separation to capture CTCs by centrifugal membrane filtration, achieving simple, fast, highly efficient, and viable cell capture on traditional centrifuge. The average capture efficiency was 95.8% for different types of cancer cells with >90% survival, and the removal of white blood cells can reach 99.72% under four times cleaning of the membrane after filtration. A further clinic demo was performed using the device to detect residual leukemic cells in patients; the results showed a 10-fold enrichment of the leukemic cells in peripheral blood samples. Taken together, the simple, robust, and efficient CTC capture device may have the potential for clinic routine detection and analysis of circulating tumor cells.
Collapse
Affiliation(s)
- Jintao Han
- State
Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Chunyang Lu
- State
Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Mengzhu Shen
- Beijing
Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, Peking
University People’s Hospital, Beijing 100044, China
| | - Xiaoyi Sun
- State
Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Xiaodong Mo
- Beijing
Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, Peking
University People’s Hospital, Beijing 100044, China
| | - Gen Yang
- State
Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
- Wenzhou
Institute, University of Chinese Academy
of Sciences, Wenzhou 352001, China
| |
Collapse
|
20
|
Li J, Xia Y, Zhou F, He R, Chen B, Guo S. Electric field-assisted MnO 2 nanomaterials for rapid capture and in situ delivery of circulating tumour cells. NANOSCALE 2022; 14:6959-6969. [PMID: 35467678 DOI: 10.1039/d2nr01371a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The heterogeneity of cancer has become a major obstacle to treatment, and the development of an efficient, fast, and accurate drug delivery system is even more urgent. In this work, we designed a device that integrated multiple functions of cell capture, in situ manipulation, and non-destructive release on a single device. With an applied electric field, an intelligent device based on MnO2 nanomaterials was used to realize efficient and rapid capture of cancer cells in both patients' blood and artificial blood samples. This device could capture cancer cells with high efficiency (up to about 93%) and strong specificity in blood samples, the capture time was nearly 50 min faster than that of natural sedimentation, and reduce the effects on cells caused by long-time in vitro culture. In addition, Mn3+ on the surface of the MnO2 substrate was reduced to Mn2+ by an electrochemical method, partial dissolution occurred, and then the captured cells were non-destructively released with rapid speed (about 8 s) and high efficiency (about 94 ± 2%). For in situ regulation, upon applying a pulse electric field, the captured cells were perforated nondestructively, and extracellular molecules could be delivered to the captured cells with well-performed dose and temporal controls. As a proof-of-concept application, we proved that the device could capture circulating tumor cells in peripheral blood faster and achieve in situ drug delivery. Finally, it can also quickly release circulating tumour cells for subsequent analysis, highlighting its accuracy, due to which it is widely used in medical treatment, basic tumor research and drug development.
Collapse
Affiliation(s)
- Juan Li
- Key Laboratory of Artificial Micro/Nano-Structures, Ministry of Education School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Hubei Yangtze Memory Laboratories, Wuhan 430205, China
| | - Yu Xia
- Key Laboratory of Artificial Micro/Nano-Structures, Ministry of Education School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Hubei Yangtze Memory Laboratories, Wuhan 430205, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Rongxiang He
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Photoelectric Materials and Technology, Jianghan University, Wuhan 430056, China
| | - Bolei Chen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Shishang Guo
- Key Laboratory of Artificial Micro/Nano-Structures, Ministry of Education School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Hubei Yangtze Memory Laboratories, Wuhan 430205, China
| |
Collapse
|
21
|
Radfar P, Aboulkheyr Es H, Salomon R, Kulasinghe A, Ramalingam N, Sarafraz-Yazdi E, Thiery JP, Warkiani ME. Single-cell analysis of circulating tumour cells: enabling technologies and clinical applications. Trends Biotechnol 2022; 40:1041-1060. [DOI: 10.1016/j.tibtech.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/26/2022]
|
22
|
Multigene Profiling of Circulating Tumor Cells (CTCs) for Prognostic Assessment in Treatment-Naïve Metastatic Hormone-Sensitive Prostate Cancer (mHSPC). Int J Mol Sci 2021; 23:ijms23010004. [PMID: 35008431 PMCID: PMC8744626 DOI: 10.3390/ijms23010004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/11/2021] [Accepted: 12/11/2021] [Indexed: 12/25/2022] Open
Abstract
The substantial biological heterogeneity of metastatic prostate cancer has hindered the development of personalized therapeutic approaches. Therefore, it is difficult to predict the course of metastatic hormone-sensitive prostate cancer (mHSPC), with some men remaining on first-line androgen deprivation therapy (ADT) for several years while others progress more rapidly. Improving our ability to risk-stratify patients would allow for the optimization of systemic therapies and support the development of stratified prospective clinical trials focused on patients likely to have the greatest potential benefit. Here, we applied a liquid biopsy approach to identify clinically relevant, blood-based prognostic biomarkers in patients with mHSPC. Gene expression indicating the presence of CTCs was greater in CHAARTED high-volume (HV) patients (52% CTChigh) than in low-volume (LV) patients (23% CTChigh; * p = 0.03). HV disease (p = 0.005, q = 0.033) and CTC presence at baseline prior to treatment initiation (p = 0.008, q = 0.033) were found to be independently associated with the risk of nonresponse at 7 months. The pooled gene expression from CTCs of pre-ADT samples found AR, DSG2, KLK3, MDK, and PCA3 as genes predictive of nonresponse. These observations support the utility of liquid biomarker approaches to identify patients with poor initial response. This approach could facilitate more precise treatment intensification in the highest risk patients.
Collapse
|