1
|
Dong Q, Guo Y, Lv C, Ren L, Chen B, Wang Y, Liu Y, Liu M, Liu K, Zhang N, Wang L, Sang S, Li X, Hui Y, Liang H, Gu Y. Unveiling a novel cancer hallmark by evaluation of neural infiltration in cancer. Brief Bioinform 2025; 26:bbaf082. [PMID: 40052442 PMCID: PMC11886572 DOI: 10.1093/bib/bbaf082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/30/2025] [Accepted: 02/17/2025] [Indexed: 03/10/2025] Open
Abstract
Cancer cells acquire necessary functional capabilities for malignancy through the influence of the nervous system. We evaluate the extent of neural infiltration within the tumor microenvironment (TME) across multiple cancer types, highlighting its role as a cancer hallmark. We identify cancer-related neural genes using 40 bulk RNA-seq datasets across 10 cancer types, developing a predictive score for cancer-related neural infiltration (C-Neural score). Cancer samples with elevated C-Neural scores exhibit perineural invasion, recurrence, metastasis, higher stage or grade, or poor prognosis. Epithelial cells show the highest C-Neural scores among all cell types in 55 single-cell RNA sequencing datasets. The epithelial cells with high C-Neural scores (epi-highCNs) characterized by increased copy number variation, reduced cell differentiation, higher epithelial-mesenchymal transition scores, and elevated metabolic level. Epi-highCNs frequently communicate with Schwann cells by FN1 signaling pathway. The co-culture experiment indicates that Schwann cells may facilitate cancer progression through upregulation of VDAC1. Moreover, C-Neural scores positively correlate with the infiltration of antitumor immune cells, indicating potential response for immunotherapy. Melanoma patients with high C-Neural scores may benefit from trametinib. These analyses illuminate the extent of neural influence within TME, suggesting potential role as a cancer hallmark and offering implications for effective therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Qi Dong
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Yingying Guo
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Chen Lv
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Lingxue Ren
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Bo Chen
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Yan Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Yang Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Mingyue Liu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Kaidong Liu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Nan Zhang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Linzhu Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Shaocong Sang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Xin Li
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Yang Hui
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Haihai Liang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
- Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150081, China
| | - Yunyan Gu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| |
Collapse
|
2
|
Lin C, Xin L, Xie S. Knockdown of VDAC1 Promotes Ferroptosis in Diffuse Large B-Cell Lymphoma. Hematol Oncol 2025; 43:e70054. [PMID: 39983084 DOI: 10.1002/hon.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/22/2025] [Accepted: 02/11/2025] [Indexed: 02/23/2025]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a prevalent subtype of non-Hodgkin's lymphoma (NHL). Ferroptosis is a novel form of cell death involved in multiple tumor development. However, the relationship between ferroptosis-related genes and DLBCL has not been extensively studied. The GSE95290 dataset was downloaded from the Gene Expression Omnibus (GEO) database and merged with genes associated with ferroptosis to screen differentially expressed genes (DEGs). Hub genes were identified by constructing a protein-protein interaction (PPI) network. The messenger RNA (mRNA) expressions of hub genes were subsequently detected in vitro using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). The impact of voltage dependent anion channel 1 (VDAC1) on the proliferation, apoptosis, and ferroptosis of DLBCL was evaluated using Cell Counting Kit-8, flow cytometry, and relevant ferroptosis assays, respectively. Six highly expressed hub genes were identified, all of which could be used as diagnostic biomarkers for DLBCL. In vitro studies revealed that suppressing VDAC1 expression inhibited DLBCL cell proliferation and promoted apoptosis. Furthermore, knockdown of VDAC1 promoted ferroptosis in DLBCL cells and xenograft tumor models, resulting in elevated levels of malondialdehyde (MDA) and iron and increased protein levels of Acyl-CoA synthetase long-chain family 4 (ACSL4) and cyclooxygenase-2 (COX2). Conversely, glutathione (GSH) and superoxide dismutase (SOD) levels were reduced, accompanied by decreased protein levels of glutathione peroxidase 4 (GPX4) and ferritin heavy chain1 (FTH1). VDAC1 knockdown induces ferroptosis in DLBCL, which provides new insights into the pathogenic mechanisms of DLBCL.
Collapse
Affiliation(s)
- Chuanming Lin
- Department of Hematology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Liuyan Xin
- Department of Hematology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shuiling Xie
- Department of Hematology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
3
|
Duan X, Shi J, Hou R, Huang Y, Wang C, Du H. The necroptosis-related lncRNA ENSG00000253385.1 promotes the progression of esophageal squamous cell carcinoma by targeting the miR-16-2-3p/VDAC1 axis. Sci Rep 2025; 15:2650. [PMID: 39837946 PMCID: PMC11751061 DOI: 10.1038/s41598-025-85646-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/06/2025] [Indexed: 01/23/2025] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common digestive malignancies. Our previous studies revealed necroptosis-related lncRNA ENSG00000253385.1 was an independent prognostic factor for ESCC. However, the specific regulatory mechanisms are unknown. This study aimed to investigate the expression of the lncRNA ENSG00000253385.1 in ESCC tissues and its relationship with clinicopathological features and patient prognosis, and to explore its potential regulatory mechanism in ESCC cells. We detected the location of the lncRNA ENSG00000253385.1 in ESCC cells by fluorescence in situ hybridization (FISH). FISH and quantitative real-time polymerase chain reaction (qRT‒PCR) were used to detect gene expression in ESCC tissues and cells. Cell proliferation, migration and apoptosis were evaluated by CCK-8 assay, wound healing, transwell cell migration, invasion and flow cytometry assay. The levels of necroptosis-related protein were detected by western blot. The binding sites between miR-16-2-3p and lncRNA ENSG00000253385.1 or voltage-dependent anion channel 1 (VDAC1) were predicted by bioinformatics database and confirmed by dual luciferase reporter gene assay. Results revealed that the lncRNA ENSG00000253385.1 expression was higher in ESCC tissues than in the adjacent tissues. High lncRNA ENSG00000253385.1 expression, positive lymph node metastasis and clinical stage III were associated with poor overall survival (OS) in patients with ESCC, and were independent risk factors for prognosis of patients with ESCC. The lncRNA ENSG00000253385.1 was located in the cytoplasm. MiR-16-2-3p had a direct targeting regulatory relation ship with lncRNA ENSG00000253385.1 and VDAC1. MiR-16-2-3p inhibitor promoted proliferation, migration and invasion, and inhibited apoptosis of ESCC cells. Knockdown of the lncRNA ENSG00000253385.1 could inhibit the proliferation, migration and invasion, promote the apoptosis, and result in increases in the necroptosis-related proteins p-receptor-interacting protein kinase 3 (RIPK3)/RIPK3 and p-mixed lineaae kinase domain-like protein (MLKL)/MLKL and a decrease in the VDAC1 protein levels in ESCC cells, whereas miR-16-2-3p inhibition rescued these effects. Therefore, The lncRNA ENSG00000253385.1/ miR-16-2-3p/VDAC1 axis may be considered as a potential predictive biomarker and target for ESCC.
Collapse
Affiliation(s)
- Xiaoyang Duan
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Jian Shi
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Ran Hou
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Yajie Huang
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Chunyan Wang
- Gastroenterology department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Huazhen Du
- Emergency department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China.
| |
Collapse
|
4
|
Arif T, Shteinfer-Kuzmine A, Shoshan-Barmatz V. Decoding Cancer through Silencing the Mitochondrial Gatekeeper VDAC1. Biomolecules 2024; 14:1304. [PMID: 39456237 PMCID: PMC11506819 DOI: 10.3390/biom14101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Mitochondria serve as central hubs for regulating numerous cellular processes that include metabolism, apoptosis, cell cycle progression, proliferation, differentiation, epigenetics, immune signaling, and aging. The voltage-dependent anion channel 1 (VDAC1) functions as a crucial mitochondrial gatekeeper, controlling the flow of ions, such as Ca2+, nucleotides, and metabolites across the outer mitochondrial membrane, and is also integral to mitochondria-mediated apoptosis. VDAC1 functions in regulating ATP production, Ca2+ homeostasis, and apoptosis, which are essential for maintaining mitochondrial function and overall cellular health. Most cancer cells undergo metabolic reprogramming, often referred to as the "Warburg effect", supplying tumors with energy and precursors for the biosynthesis of nucleic acids, phospholipids, fatty acids, cholesterol, and porphyrins. Given its multifunctional nature and overexpression in many cancers, VDAC1 presents an attractive target for therapeutic intervention. Our research has demonstrated that silencing VDAC1 expression using specific siRNA in various tumor types leads to a metabolic rewiring of the malignant cancer phenotype. This results in a reversal of oncogenic properties that include reduced tumor growth, invasiveness, stemness, epithelial-mesenchymal transition. Additionally, VDAC1 depletion alters the tumor microenvironment by reducing angiogenesis and modifying the expression of extracellular matrix- and structure-related genes, such as collagens and glycoproteins. Furthermore, VDAC1 depletion affects several epigenetic-related enzymes and substrates, including the acetylation-related enzymes SIRT1, SIRT6, and HDAC2, which in turn modify the acetylation and methylation profiles of histone 3 and histone 4. These epigenetic changes can explain the altered expression levels of approximately 4000 genes that are associated with reversing cancer cells oncogenic properties. Given VDAC1's critical role in regulating metabolic and energy processes, targeting it offers a promising strategy for anti-cancer therapy. We also highlight the role of VDAC1 expression in various disease pathologies, including cardiovascular, neurodegenerative, and viral and bacterial infections, as explored through siRNA targeting VDAC1. Thus, this review underscores the potential of targeting VDAC1 as a strategy for addressing high-energy-demand cancers. By thoroughly understanding VDAC1's diverse roles in metabolism, energy regulation, mitochondrial functions, and other cellular processes, silencing VDAC1 emerges as a novel and strategic approach to combat cancer.
Collapse
Affiliation(s)
- Tasleem Arif
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Varda Shoshan-Barmatz
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
5
|
Gao S, Huang J, Zhao R, He H, Zhang J, Wen X. Comprehensive analysis of multiple regulated cell death risk signatures in lung adenocarcinoma. Heliyon 2024; 10:e38641. [PMID: 39398028 PMCID: PMC11471212 DOI: 10.1016/j.heliyon.2024.e38641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Background Regulated cell death (RCD) has considerable impact on tumor progress and sensitivity of treatment. Lung adenocarcinoma (LUAD) show a high resistance for conventional radiotherapies and chemotherapies. Currently, regulation of cancer cell death has been emerging as a new promising therapeutic avenue for LUAD patients. However, the crosstalk in each pattern RCD is unclear. Methods We integrated collected the hub-genes of 12 RCD subroutines and compressively analyzed these hub-genes synergistic effect in LUAD. The characters of RCD genes expression and prognosis were developed in The Cancer Genome Atlas (TCGA)-LUAD data. We developed and validated an RCD risk model based on TCGA and GSE70294 data set, respectively. Functional annotation and tumor immunotherapy based on the risk model were also investigated. Results 28 RCD-related genes and two LUAD molecular cluster were identified. Survival analysis revealed that the prognosis in high-risk group was worser than those in low-risk group. Functional enrichment analysis indicated that the RCD risk model correlated with immune responses. Further analysis indicated that the high-risk group in RCD risk model exhibited an immunosuppressive microenvironment and a lowly immunotherapy responder ratio. Conclusions We present an RCD risk model which have a promising ability in predicting LUAD prognosis and immunotherapy response.
Collapse
Affiliation(s)
| | | | - Rui Zhao
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Haiqi He
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jia Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaopeng Wen
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
6
|
Melnikov N, Pittala S, Shteinfer-Kuzmine A, Shoshan-Barmatz V. Mitochondrial VDAC1 Silencing in Urethane-Induced Lung Cancer Inhibits Tumor Growth and Alters Cancer Oncogenic Properties. Cancers (Basel) 2024; 16:2970. [PMID: 39272828 PMCID: PMC11393979 DOI: 10.3390/cancers16172970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Alterations in cellular metabolism are vital for cancer cell growth and motility. Here, we focused on metabolic reprogramming and changes in tumor hallmarks in lung cancer by silencing the expression of the mitochondrial gatekeeper VDAC1. To better mimic the clinical situation of lung cancer, we induced lung cancer in A/J mice using the carcinogen urethane and examined the effectiveness of si-m/hVDAC1-B encapsulated in PLGA-PEI nanoparticles. si-m/hVDAC1-B, given intravenously, induced metabolism reprogramming and inhibited tumor growth as monitored using MRI. Mice treated with non-targeted (NT) PLGA-PEI-si-NT showed many large size tumors in the lungs, while in PLGA-PEI-si-m/hVDAC-B-treated mice, lung tumor number and area were markedly decreased. Immunofluorescence staining showed decreased expression of VDAC1 and metabolism-related proteins and altered expression of cancer stem cell markers. Morphological analysis showed two types of tumors differing in their morphology; cell size and organization within the tumor. Based on specific markers, the two tumor types were identified as small cell (SCLC) and non-small cell (NSCLC) lung cancer. These two types of tumors were found only in control tumors, suggesting that PLGA-PEI-si-m/hVDAC1-B also targeted SCLC. Indeed, using a xenograft mouse model of human-derived SCLC H69 cells, si-m/hVDAC1-B inhibited tumor growth and reduced the expression of VDAC1 and energy- and metabolism-related enzymes, and of cancer stem cells in the established xenograft. Additionally, intravenous treatment of urethane-induced lung cancer mice with the VDAC1-based peptide, Retro-Tf-D-LP4, showed inhibition of tumor growth, and decreased expression levels of metabolism- and cancer stem cells-related proteins. Thus, silencing VDAC1 targeting both NSCLC and SCLC points to si-VDAC1 as a possible therapeutic tool to treat these lung cancer types. This is important as target NSCLC tumors undergo transformation to SCLC.
Collapse
Affiliation(s)
- Nataly Melnikov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Srinivas Pittala
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| |
Collapse
|
7
|
Wang Y, Pattarayan D, Huang H, Zhao Y, Li S, Wang Y, Zhang M, Li S, Yang D. Systematic investigation of chemo-immunotherapy synergism to shift anti-PD-1 resistance in cancer. Nat Commun 2024; 15:3178. [PMID: 38609378 PMCID: PMC11015024 DOI: 10.1038/s41467-024-47433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Chemo-immunotherapy combinations have been regarded as one of the most practical ways to improve immunotherapy response in cancer patients. In this study, we integrate the transcriptomics data from anti-PD-1-treated tumors and compound-treated cancer cell lines to systematically screen for chemo-immunotherapy synergisms in silico. Through analyzing anti-PD-1 induced expression changes in patient tumors, we develop a shift ability score to measure if a chemotherapy or a small molecule inhibitor treatment can shift anti-PD-1 resistance in tumor cells. By applying shift ability analysis to 41,321 compounds and 16,853 shRNA treated cancer cell lines transcriptomic data, we characterize the landscape of chemo-immunotherapy synergism and experimentally validated a mitochondrial RNA-dependent mechanism for drug-induced immune activation in tumor. Our study represents an effort to mechanistically characterize chemo-immunotherapy synergism and will facilitate future pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Yue Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Dhamotharan Pattarayan
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Haozhe Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yueshan Zhao
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Sihan Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yifei Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Min Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Da Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
- UPMC Hillman Cancer Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
8
|
Alhozeel B, Pandey SK, Shteinfer-Kuzmine A, Santhanam M, Shoshan-Barmatz V. Silencing the Mitochondrial Gatekeeper VDAC1 as a Potential Treatment for Bladder Cancer. Cells 2024; 13:627. [PMID: 38607066 PMCID: PMC11012128 DOI: 10.3390/cells13070627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024] Open
Abstract
The strategy for treating bladder cancer (BC) depends on whether there is muscle invasion or not, with the latter mostly treated with intravesical therapy, such as with bacillus Calmette-Guérin (BCG). However, BCG treatment is unsuccessful in 70% of patients, who are then subjected to radical cystectomy. Although immune-checkpoint inhibitors have been approved as a second-line therapy for a subset of BC patients, these have failed to meet primary endpoints in clinical trials. Thus, it is crucial to find a new treatment. The mitochondrial gatekeeper protein, the voltage-dependent anion channel 1 (VDAC1), mediates metabolic crosstalk between the mitochondria and cytosol and is involved in apoptosis. It is overexpressed in many cancer types, as shown here for BC, pointing to its significance in high-energy-demanding cancer cells. The BC cell lines UM-UC3 and HTB-5 express high VDAC1 levels compared to other cancer cell lines. VDAC1 silencing in these cells using siRNA that recognizes both human and mouse VDAC1 (si-m/hVDAC1-B) reduces cell viability, mitochondria membrane potential, and cellular ATP levels. Here, we used two BC mouse models: subcutaneous UM-UC3 cells and chemically induced BC using the carcinogen N-Butyl-N-(4-hydroxybutyl) nitrosamine (BBN). Subcutaneous UM-UC3-derived tumors treated with si-m/hVDAC1 showed inhibited tumor growth and reprogrammed metabolism, as reflected in the reduced expression of metabolism-related proteins, including Glut1, hexokinase, citrate synthase, complex-IV, and ATP synthase, suggesting reduced metabolic activity. Furthermore, si-m/hVDAC1-B reduced the expression levels of cancer-stem-cell-related proteins (cytokeratin-14, ALDH1a), modifying the tumor microenvironment, including decreased angiogenesis, extracellular matrix, tumor-associated macrophages, and inhibited epithelial-mesenchymal transition. The BBN-induced BC mouse model showed a clear carcinoma, with damaged bladder morphology and muscle-invasive tumors. Treatment with si-m/hVDAC1-B encapsulated in PLGA-PEI nanoparticles that were administered intravesically directly to the bladder showed a decreased tumor area and less bladder morphology destruction and muscle invasion. Overall, the obtained results point to the potential of si-m/hVDAC1-B as a possible therapeutic tool for treating bladder cancer.
Collapse
Affiliation(s)
- Belal Alhozeel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (B.A.); (S.K.P.); (M.S.)
| | - Swaroop Kumar Pandey
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (B.A.); (S.K.P.); (M.S.)
| | - Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Manikandan Santhanam
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (B.A.); (S.K.P.); (M.S.)
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (B.A.); (S.K.P.); (M.S.)
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| |
Collapse
|
9
|
Zhang N, Wang F, Yang X, Wang Q, Chang R, Zhu L, Feitelson MA, Chen Z. TMEM43 promotes the development of hepatocellular carcinoma by activating VDAC1 through USP7 deubiquitination. Transl Gastroenterol Hepatol 2024; 9:9. [PMID: 38317750 PMCID: PMC10838614 DOI: 10.21037/tgh-23-108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Background Transmembrane protein 43 (TMEM43), a member of the TMEM subfamily, is encoded by a highly conserved gene and widely expressed in most species from bacteria to humans. In previous studies, TMEM43 has been found to play an important role in a variety of tumors. However, the role of TMEM43 in cancer remains unclear. Methods We utilized the RNA sequencing (RNA-seq) and The Cancer Genome Atlas (TGCA) databases to explore and identify genes that may play an important role in the occurrence and development of hepatocellular carcinoma (HCC), such as TMEM43. The role of TMEM43 in HCC was explored through Cell Counting Kit-8 (CCK-8) cloning, flow cytometry, and Transwell experiments. The regulatory relationship between TMEM43 and voltage-dependent anion channel 1 (VDAC1) was investigated through coimmunoprecipitation (co-IP) and western blot (WB) experiments. WB was used to study the deubiquitination effect of ubiquitin-specific protease 7 (USP7) on TMEM43. Results In this study, we utilized the RNA-seq and TGCA databases to mine data and found that TMEM43 is highly expressed in HCC. The absence of TMEM43 in cancer cells was shown to inhibit tumor development. Further research detected an important regulatory relationship between TMEM43 and VDAC1. In addition, we found that USP7 affected the progression of HCC by regulating the ubiquitination level of TMEM43 through deubiquitination. Conclusions Our study demonstrated that USP7 participates in the growth of HCC tumors through TMEM43/VDAC1.Our results suggest that USP7/TMEM43/VDAC1 may have predictive value and represent a new treatment strategy for HCC.
Collapse
Affiliation(s)
- Nannan Zhang
- Department of General Surgery, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, China
| | - Feiran Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, China
| | - Xiaobing Yang
- Department of General Surgery, Huai’an Hospital of Huai’an City, Huai’an, China
| | - Quhui Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, China
| | - Renan Chang
- Department of General Surgery, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, China
| | - Lirong Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, China
| | - Mark A. Feitelson
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Zhong Chen
- Department of General Surgery, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, China
| |
Collapse
|
10
|
Xiao H, Ma L, Ding J, Wang H, Bi X, Tan F, Piao W. Mitochondrial Calcium Uniporter (MCU) that Modulates Mitochondrial Calcium Uptake and Facilitates Endometrial Cancer Progression through Interaction with VDAC1. Curr Cancer Drug Targets 2024; 24:354-367. [PMID: 37702230 DOI: 10.2174/1568009624666230912095526] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Although endometrial cancer represents a frequently diagnosed malignancy of the female reproductive tract, we know very little about the factors that control endometrial cancer. OBJECTIVE Our study was presented to investigate the function of MCU in endometrial tumorigenesis and the molecular mechanisms involved. MATERIALS AND METHODS A total of 94 endometrial cancer patients were recruited into our cohort. MCU and VDAC1 expression was examined in tumor and normal tissues via immunohistochemistry and immunofluorescence. Associations of MCU and VDAC1 expression with clinicopathological characteristics were evaluated. After transfection with shRNA targeting MCU or full-length MCU plasmids, clone formation, wound healing, transwell and MitoTracker Red staining were separately presented in Ishikawa and RL95-2 cells. Moreover, Western blotting or immunofluorescence was utilized to examine the expression of MCU, VDAC1, Na+/Ca2+/Li+ exchanger (NCLX), and β-catenin under VDAC1 knockdown and/or MCU overexpression or knockdown. RESULTS MCU and VDAC1 expression were prominently up-regulated in endometrial cancer tissues and were significantly associated with histological grade, depth of myometrial invasion and lymph node status. MCU up-regulation enhanced clone formation, migration, and mitochondrial activity of endometrial cancer cells. The opposite results were investigated when MCU was silenced. MCU or VDAC1 silencing reduced the expression of MCU, VDAC1, NCLX, and β-catenin. Moreover, VDAC1 knockdown alleviated the promoting effect of MCU overexpression on the above proteins. CONCLUSION This investigation demonstrated that MCU-induced mitochondrial calcium uptake plays a critical role in endometrial tumorigenesis through interaction with VDAC1.
Collapse
Affiliation(s)
- Hongyan Xiao
- Department of Pathology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| | - Lijun Ma
- School of Electrical and Information Engineering, Department of Medical Imaging, North Minzu University, Yinchuan, 750021, Ningxia Hui Autonomous Region, China
| | - Jie Ding
- Medical Imaging Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| | - Honghong Wang
- Department of Pathology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| | - Xiaofang Bi
- Department of Pathology, The First People's Hospital of Yinchuan, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| | - Fengmei Tan
- Department of Pathology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| | - Wenhua Piao
- Clinical Medical Laboratory Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| |
Collapse
|
11
|
Lemeshko VV. VDAC as a voltage-dependent mitochondrial gatekeeper under physiological conditions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184175. [PMID: 37201560 DOI: 10.1016/j.bbamem.2023.184175] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Mitochondria, composed of two membranes, play a key role in energy production in eukaryotic cells. The main function of the inner membrane is oxidative phosphorylation, while the mitochondrial outer membrane (MOM) seems to control the energy flux and exchange of various charged metabolites between mitochondria and the cytosol. Metabolites cross MOM via the various isoforms of voltage-dependent anion channel (VDAC). In turn, VDACs interact with some enzymes, other proteins and molecules, including drugs. This work aimed to analyze various literature experimental data related to targeting mitochondrial VDACs and VDAC-kinase complexes on the basis of the hypothesis of generation of the outer membrane potential (OMP) and OMP-dependent reprogramming of cell energy metabolism. Our previous model of the VDAC-hexokinase-linked generation of OMP was further complemented in this study with an additional regulation of the MOM permeability by the OMP-dependent docking of cytosolic proteins like tubulin to VDACs. Computational analysis of the model suggests that OMP changes might be involved in the mechanisms of apoptosis promotion through the so-called transient hyperpolarization of mitochondria. The high concordance of the performed computational estimations with many published experimental data allows concluding that OMP generation under physiological conditions is highly probable and VDAC might function as an OMP-dependent gatekeeper of mitochondria, controlling cell life and death. The proposed model of OMP generation allows understanding in more detail the mechanisms of cancer death resistance and anticancer action of various drugs and treatments influencing VDAC voltage-gating properties, VDAC content, mitochondrial hexokinase activity and VDAC-kinase interactions in MOM.
Collapse
Affiliation(s)
- Victor V Lemeshko
- Universidad Nacional de Colombia, Sede Medellín, Carrera 65, Nro. 59A - 110, Medellín, Colombia.
| |
Collapse
|
12
|
Dutta A, Halder P, Gayen A, Mukherjee A, Mukherjee C, Majumder S. Increase in primary cilia number and length upon VDAC1 depletion contributes to attenuated proliferation of cancer cells. Exp Cell Res 2023:113671. [PMID: 37276998 DOI: 10.1016/j.yexcr.2023.113671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
Primary cilia (PCs) that are present in most human cells and perform sensory function or signal transduction are lost in many solid tumors. Previously, we identified VDAC1, best known to regulate mitochondrial bioenergetics, to negatively regulate ciliogenesis. Here, we show that downregulation of VDAC1 in pancreatic cancer-derived Panc1 and glioblastoma-derived U-87MG cells significantly increased ciliation. Those PCs were significantly longer than the control cells. Such increased ciliation possibly inhibited cell cycle, which contributed to reduced proliferation of these cells. VDAC1-depletion also led to longer PCs in quiescent RPE1 cells. Therefore, serum-induced PC disassembly was slower in VDAC1-depleted RPE1 cells. Overall, this study reiterates the importance of VDAC1 in modulating tumorigenesis, due to its novel role in regulating PC disassembly and cilia length.
Collapse
Affiliation(s)
- Arpita Dutta
- Institute of Health Sciences, Presidency University, India
| | | | - Anakshi Gayen
- Institute of Health Sciences, Presidency University, India; RNABio Lab, Institute of Health Sciences, Presidency University, India
| | - Avik Mukherjee
- RNABio Lab, Institute of Health Sciences, Presidency University, India
| | | | | |
Collapse
|
13
|
Shoshan-Barmatz V, Arif T, Shteinfer-Kuzmine A. Apoptotic proteins with non-apoptotic activity: expression and function in cancer. Apoptosis 2023; 28:730-753. [PMID: 37014578 PMCID: PMC10071271 DOI: 10.1007/s10495-023-01835-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2023] [Indexed: 04/05/2023]
Abstract
Apoptosis is a process of programmed cell death in which a cell commits suicide while maintaining the integrity and architecture of the tissue as a whole. Apoptosis involves activation of one of two major pathways: the extrinsic pathway, where extracellular pro-apoptotic signals, transduced through plasma membrane death receptors, activate a caspase cascade leading to apoptosis. The second, the intrinsic apoptotic pathway, where damaged DNA, oxidative stress, or chemicals, induce the release of pro-apoptotic proteins from the mitochondria, leading to the activation of caspase-dependent and independent apoptosis. However, it has recently become apparent that proteins involved in apoptosis also exhibit non-cell death-related physiological functions that are related to the cell cycle, differentiation, metabolism, inflammation or immunity. Such non-conventional activities were predominantly reported in non-cancer cells although, recently, such a dual function for pro-apoptotic proteins has also been reported in cancers where they are overexpressed. Interestingly, some apoptotic proteins translocate to the nucleus in order to perform a non-apoptotic function. In this review, we summarize the unconventional roles of the apoptotic proteins from a functional perspective, while focusing on two mitochondrial proteins: VDAC1 and SMAC/Diablo. Despite having pro-apoptotic functions, these proteins are overexpressed in cancers and this apparent paradox and the associated pathophysiological implications will be discussed. We will also present possible mechanisms underlying the switch from apoptotic to non-apoptotic activities although a deeper investigation into the process awaits further study.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
- National Institute for Biotechnology in the Negev, Beer Sheva, Israel.
| | - Tasleem Arif
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | |
Collapse
|
14
|
Yang H, Wang Z, Hu S, Chen L, Li W, Yang Z. miRNA-874-3p inhibits the migration, invasion and proliferation of breast cancer cells by targeting VDAC1. Aging (Albany NY) 2023; 15:705-717. [PMID: 36750173 PMCID: PMC9970320 DOI: 10.18632/aging.204474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/27/2022] [Indexed: 02/09/2023]
Abstract
Breast cancer is an important cause of crisis for women's life and health. Voltage-dependent anion channel 1 (VDAC1) is mainly localized in the outer mitochondrial membrane of all eukaryotes, and it plays a crucial role in the cell as the main interface between mitochondria and cellular metabolism. Through bioinformatics, we found that VDAC1 is abnormally highly expressed in breast cancer, and the prognosis of breast cancer patients with high VDAC1 expression is poor. Through in vivo and in vitro experiments, we found that VDAC1 can promote the proliferation, migration and invasion of breast cancer cells. Further research we found that VDAC1 can activate the wnt signaling pathway. Through analysis, we found that miR-874-3p can regulate the expression of VDAC1, and the expression of miR-874-3p is decreased in breast cancer, resulting in the increase of VDAC1 expression. Our findings will provide new targets and ideas for the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Housheng Yang
- School of Medicine, Hunan Normal University, Changsha 414006, Hunan, P.R. China
| | - Zhiwen Wang
- Key Laboratory of Chronic Noncommunicable Diseases, Yueyang Vocational Technical College, Yueyang 414006, Hunan, P.R. China
| | - Shuang Hu
- Yueyang Engineering Technology Research Center of Breast Disease Diagnosis and Treatment, Yueyang People’s Hospital, Yueyang Hospital Affiliated to Hunan Normal University, Yueyang 414006, Hunan, P.R. China
| | - Lu Chen
- College of Health, Dongguan Polytechnic, Dongguan 523808, Guangdong, P.R. China
| | - Wei Li
- Yueyang Engineering Technology Research Center of Breast Disease Diagnosis and Treatment, Yueyang People’s Hospital, Yueyang Hospital Affiliated to Hunan Normal University, Yueyang 414006, Hunan, P.R. China
| | - Zhongyi Yang
- Yueyang Engineering Technology Research Center of Breast Disease Diagnosis and Treatment, Yueyang People’s Hospital, Yueyang Hospital Affiliated to Hunan Normal University, Yueyang 414006, Hunan, P.R. China
| |
Collapse
|
15
|
Tang X, Chen W, Liu H, Liu N, Chen D, Tian D, Wang J. Research progress on SLC7A11 in the regulation of cystine/cysteine metabolism in tumors. Oncol Lett 2022; 23:47. [PMID: 34992680 PMCID: PMC8721856 DOI: 10.3892/ol.2021.13165] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/25/2021] [Indexed: 12/24/2022] Open
Abstract
Solute carrier family 7 member 11 (SLC7A11) is a major transporter regulating cysteine metabolism and is widely expressed in a variety of tumor cells. SLC7A11 plays an important role in the occurrence, development, invasion and metastasis of tumors by regulating the transport of cysteine in the tumor microenvironment. SLC7A11 is expected to become a new therapeutic target and prognostic indicator for the individualized treatment of patients. According to relevant research reports, SLC7A11 can predict the stages and metastasis of liver, breast and lung cancer. Therefore, an in-depth exploration of the role of SLC7A11 in tumors may be important for the screening, early diagnosis, treatment and prognosis of patients with tumors. The current review summarizes the research progress on SLC7A11 in liver cancer, lung cancer and other tumors on the basis of previous primary studies. In addition, the present review systematically elaborates on the three main aspects of SLC7A11 pathways in some tumors, the cancer-promoting mechanisms, and the therapeutic relationship between SLC7A11 and tumors. Finally, the present review aims to provide a reference for assessing whether SLC7A11 can be used as a prognostic indicator and treatment target for tumor patients, and the future research direction with regard to SLC7A11 in tumors.
Collapse
Affiliation(s)
- Xiang Tang
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Wei Chen
- Department of Radiotherapy Oncology, The Affiliated Yancheng First Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224000, P.R. China
| | - Hui Liu
- Department of Radiotherapy Oncology, The Affiliated Yancheng First Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224000, P.R. China
| | - Na Liu
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Deyu Chen
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Dalong Tian
- Department of Radiotherapy Oncology, The Affiliated Yancheng First Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224000, P.R. China
| | - Jingzhi Wang
- Department of Radiotherapy Oncology, The Affiliated Yancheng First Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224000, P.R. China
| |
Collapse
|
16
|
Wang T, Ma F, Qian HL. Defueling the cancer: ATP synthase as an emerging target in cancer therapy. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:82-95. [PMID: 34703878 PMCID: PMC8517097 DOI: 10.1016/j.omto.2021.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reprogramming of cellular metabolism is a hallmark of cancer. Mitochondrial ATP synthase (MAS) produces most of the ATP that drives the cell. High expression of the MAS-composing proteins is found during cancer and is linked to a poor prognosis in glioblastoma, ovarian cancer, prostate cancer, breast cancer, and clear cell renal cell carcinoma. Cell surface-expressed ATP synthase, translocated from mitochondrion to cell membrane, involves the angiogenesis, tumorigenesis, and metastasis of cancer. ATP synthase has therefore been considered a therapeutic target. We review recent various ATP synthase inhibitors that suppress tumor growth and are being tested for the clinic.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100021, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hai-Li Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
17
|
A Robust Panel Based on Mitochondrial Localized Proteins for Prognostic Prediction of Lung Adenocarcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7569168. [PMID: 34539973 PMCID: PMC8445726 DOI: 10.1155/2021/7569168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/09/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022]
Abstract
Due to high energy and material metabolism requirements, mitochondria are frequently active in tumor cells. Our study found that the high energy metabolism status is positively correlated with the poor prognosis of patients with lung adenocarcinoma. We constructed a scoring system (mitoRiskscore) based on the gene expression of specific mitochondrial localized proteins through univariate and LASSO cox regression. It has been shown that high mitoRiskscore was correlated with a shorter survival time after surgery in patients with lung adenocarcinoma. Compared with the typical TNM grading system, the mitoRiskscore gene panel had higher prediction accuracy. A vast number of external verification results ensured its universality. Additionally, the mitoRiskscore could evaluate the metabolic pattern and chemotherapy sensitivity of the tumor samples. Lung adenocarcinoma with higher mitoRiskscore was more active in glycolysis, and oxidative phosphorylation expression of proliferation-related pathway genes was also significantly upregulated. In contrast, patients with low mitoRiskscore had similar metabolic patterns to normal tissues. In order to improve the accuracy of prediction ability and promote clinical usage, we developed a nomogram that combined mitoRiskscore and clinical prognostic factors to predict the 3-year, 5-year, and 10-year survival rates of patients. We also performed in vitro experiments to verify the function of the key genes in the mitoRiskscore panel. In conclusion, the mitoRiskscore scoring system may assist clinicians to judge the postoperative survival rate and chemotherapy of patients with lung adenocarcinoma.
Collapse
|